
UNIVERSITY OF FRIBOURG IDIAP
DEPARTMENT OF MATHEMATICS RESEARCH INSTITUT

MASTER’S THESIS

Sandrine Revaz
Milos Cernak (supervisor at IDIAP)

Christian Mazza (supervisor at UNIVERSITY OF FRIBOURG)

Statistical Models in Automatic Speech Recognition

June 2015

Abstract

The general subject of this work is to present mathematical methods encountered in auto-
matic speech recognition (ASR).

Learning, evaluation and decoding problems are important parts in ASR and need hidden
Markov models to solve them. These processes are explained in the first chapter after some
basic definitions. Because ASR model has roots in machine learning, we present it in the second
part of this chapter. What is important in this field of study is the learning in its various forms;
the supervised and unsupervised learning are explained with their mathematical links. Artificial
neural network is touched on in the last part of this section being widely used in supervised or
unsupervised learning.

In the second chapter explanations of the organisation of ASR systems are given, together
with mathematical formulation. Therefore acoustic features, language model, pronounciation
dictionary, acoustic model and decoder are presented with details of their respective methods.
At the end of this chapter, we speak about the performance evaluation of the ASR system.

This performance can be improved by unsupervised learning with confidence measures (CM)
introduced in the third chapter. Acoustic CM, utterance verification, confidence estimation meth-
ods for neural network and CM for hybrid HMM/ANN are explained.

Finally, we present experiments done in 2013 during a three months trainee work at Idiap
Research Institut. It is on development of German automatic speech recognition (ASR) system
using a German part of multilingual database Mediaparl. Results confirm that supervised hybrid
HMM/ANN system performs the best.

Contents

1 Introduction to Machine Learning in Mathematics 3
1.1 Basic Definitions . 3
1.2 Hidden Markov Models (HMMs) and Speech Recognition 4

1.2.1 Hidden Markov Models . 4
1.2.2 Learning Problem . 6
1.2.3 Evaluation Problem . 7
1.2.4 Decoding Problem . 7

1.3 Machine Learning . 8
1.3.1 Learning Models . 9
1.3.2 Supervised Learning - Regression Problem 10
1.3.3 Unsupervised Learning - Cluster Analysis 13
1.3.4 Artificial Neural Networks (ANN) . 16

2 Components of Automatic Speech Recognition Systems 20
2.1 Fundamentals of Automatic Speech Recognition 20

2.1.1 Main Components . 20
2.1.2 Mathematical Formulation of Recognition Process 21

2.2 Features Extraction . 23
2.2.1 Perceptual Linear Predictive Coefficients (PLP) 23
2.2.2 Posterior Features . 24

2.3 N-Gram Language Models (LM) . 24
2.4 Pronunciation Dictionary / Lexicon . 25
2.5 Acoustic Models’ Architectures . 25
2.6 Decoder . 28
2.7 Evaluation of the Performance . 29

3 Confidence Measures (CM) 30
3.1 Acoustic CM . 30
3.2 Utterance Verification . 31
3.3 Confidence Estimation Methods for Neural Network 31
3.4 Confidence Measures for Hybrid HMM/ANN . 33

4 Experiments 35
4.1 Mediaparl’s Database . 35

4.1.1 Preparation of Data . 36
4.2 HMM/GMM Method . 36

4.2.1 Supervised Models . 37
4.2.2 Unsupervised Models . 38
4.2.3 Semi-Supervised Models . 39

4.3 HMM Tandem . 40
4.3.1 Supervised Tandem Models . 40

1

4.3.2 Semi-Supervised Tandem Models . 40
4.4 Conclusion of the Experiment . 41

2

Chapter 1

Introduction to Machine Learning in
Mathematics

1.1 Basic Definitions

Let Ω be the state space, ω ∈ Ω, and P(Ω) the power set of Ω, i.e. the set of all subsets of Ω,
here are some basic definitions:

Definition 1. A ∈ P(Ω) is an algebra if

1. Ω ∈ A

2. ∀A ∈ A⇒ AC ∈ A

3. ∀A,B ∈ A⇒ A ∪ B ∈ A

An algebra is a σ-algebra, F, if it is closed for countable intersections and unions. σ(A) is the
σ-algebra generated by A, i.e. the smallest σ-algebra containing A.

Definition 2. A set function P : A −→ [0, 1], where A is an algebra, is a probability if

1. 0 ≤ P(A) ≤ 1, ∀A ∈ A

2. P(∅) = 0, P(Ω) = 1

3. Let (Ai)i∈I be a family of countable elements of A s.t. Ai ∩Aj = ∅ if i 6= j,
⋃
i∈I
Ai ∈ A then

P(
⋃
i∈I
Ai) =

∑
i∈I
P(Ai) (additivity).

Theorem 1. (Caratheodory’s theorem) Let P be a probability on (Ω,A), where A is an algebra,
then ∃!Q on σ(A) which coincides with P on A, i.e. Q(A) = P(A) ∀A ∈ A.

Thanks to the Caratheodory’s theorem, we extend the definition of the probability on a σ-
algebra; we note P the extended probability.

To work in R in the following, we need to define measurable functions named also random
variable,

Definition 3. Let F ∈ P(Ω) be a σ-algebra, E a set and E ∈ P(E) a σ-algebra, X : Ω −→ E is a
random variable if it is (F,E)-measurable, i.e. X−1(E) ∈ F.

In our situation, X is a real random variable so that E = R and F = B where B is the
σ-algebra of Borel.

In the following chapter, we will consider families of random values that have the Markov
property which permits us to define hidden Markov models used in speech recognition.

3

1.2 Hidden Markov Models (HMMs) and Speech Recognition

1.2.1 Hidden Markov Models

Before introduce hidden Markov model, we need the definition of the Markov chain,

Definition 4. A family (Xn)n∈R of random variables is a Markov chain with values in E if ∀n ≥ 1,
∀i, j, i0, i1, . . . , in−1 ∈ E, we have:

P(Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X1 = i1, X0 = i0) = P(Xn+1 = j|Xn = i)

when P(Xn = i) > 0 and P(Xn = i, Xn−1 = in−1, . . . , X0 = i0) > 0.

A hidden Markov model is a stochastic finite-state automaton which generates a sequence
of observable symbols. The sequence of states is a Markov chain (see definition 4), i.e. there
exists transition probability. Each state has an associated probability function to generate an
observable symbol. This is a hidden Markov chain because only the sequence of observations is
visible and the sequence of states is not observable, i.e. hidden.

Definition 5. A hidden Markov model (HMM) M = (A,B,Π) is defined by

• A state space Ω = {1, 2, . . . ,N};

• An output observation alphabet O = {o1,o2, . . . ,oM}, where M is the number of observ-
able symbols;

• A probability distribution of transitions between states, defined as the matrix A = {aij},
where

aij = P(Xt = j|Xt−1 = i), 1 ≤ i, j ≤ N

where Xt is the state at time t;

• An output probability distribution B = {bi(ok)|i ∈ Ω}, where

bi(ok) = P(ok|Xt = i);

• An initial state distribution Π = {πi := P(X0 = i)|i ∈ Ω}.

Hidden Markov models are classified according to the properties of their Markov chain.
There exist two types of HMM:

• An HMM is ergotic (see figure 1.1) if its Markov chain is ergotic, i.e. positive recurrent,
irreductible and aperiodic.

Definition 6. i ∈ Ω is recurrent if P(inf{n ≥ 1;Xn = i} < +∞) = 1.

Definition 7. An Markov chain is irreductible if |Ω/R| = 1 where R is the relation

iRj⇔ either i = j or i↔ j,

Where i→ j means ∃n ≥ 1 s.t. P(Xn = j|X0 = i) > 0 and i↔ j means i→ j and j→ i.

Definition 8. The period of a state i is the greatest common divisor of the set {n ≥
0|P(Xn = j|X0 = i) > 0}. If two states communicate, they have the same period; one
can thus speak of the period of a state class. If the period is 1, the class is called aperiodic.

4

Figure 1.1: Architecture of an ergotic HMM with 4 states.

• A left-to-right HMMs are HMMs for which the transition matrix A is uppertriangular, i.e.

A =

a11 a12 · · · a1N
0 a22 · · · a2N
...

.
...

0 0 · · · aNN

and the initial state has probability one, i.e. π1 = 1 (see figure 1.2).

Left-to-right HMMs are particulary well suited to modeling stochastic transitory processes
like speech processing model.

Figure 1.2: Architecture of a left-to-right HMM with 4 states.

Given an observation sequence O = o1o2 · · ·oT and a hidden Markov model M = (A,B,Π),
we meet three main problems in speech recognition:

• Learning problem: How to estimate the model parameters to maximize P(O|M), the
probability of the observation sequence given the model?
(This problem is encountered in the acoustic model in the training part (see section 2.5).)

• Evaluation problem: How P(O|M) is efficiently computed?
(This problem is encountered in the acoustic model in the recognition part (see section
2.5).)

• Decoding problem: How to choose the corresponding state sequence X = X1X2 · · ·XT that
is optimal in some sense?
(This problem is encountered in the decoding part (see section 2.6).)

5

1.2.2 Learning Problem

The parameters of the model M can be estimated by maximizing P(O|M) locally using an itera-
tive algorithm, such as the Baum-Welch algorithm, also called forward-backward algorithm.

Baum-Welch Algorithm (see figure 1.3)

Figure 1.3: Illustration of the procedure of the Baum-Welch algorithm.

First we solved inductively the forward probability αt(i) and the backward probability βt(i).

• Definition,
αt(i) = P(o1o2 · · ·ot, Xt = i|M)

i.e. αt(i) is the probability of the partial observation sequence in state i at time t, given
the model M;

βt(i) = P(ot+1ot+2 · · ·oT |Xt = i,M)

i.e. βt(i) is the probability of seeing the partial observation sequence from time t + 1 to
the end in sate i at time t given the model M.

• Initialization, for 1 ≤ i ≤ N:
αt(i) = πibi(o1);

βT (i) =
1

N
;

• Induction, for 1 ≤ j ≤ N:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
, 1 ≤ t ≤ T − 1;

βt(j) =

[
N∑
i=1

aijbj(oj+1)βt+1(j)

]
, t = T − 1, T − 2, . . . , 1.

• Update,
Before reestimation procedure, we need to define two auxilary variables,

ξt(i, j) := P(Xt = i, Xt+1 = j|O,M)

which is the probability of being in state i at time t, and state j at time t+ 1 and

γt(i) :=

N∑
j=1

ξt(i, j)

6

which is the probability of being in state i at time t and every state at time t+ 1.

We can rewrite ξt(i, j) as

ξt(i, j) =
P(Xt = i, Xt+1 = j,O|M)

P(O|M)
=

αt(i)aijbj(ot+1)βt+1(j)∑N
i=1

∑N
j=1 αt(i)aijbj(ot+1)βt+1(j)

Using the above formulas, the reestimation procedure of the HMM parameters is defined
as

π̃i = γ1(i)

ãij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

b̃j(ok) =

∑T
t=1,ot=ok

ξt(i, j)∑T
t=1 γt(i)

Thus we obtain an updated model M̃ = (Ã, B̃, π̃) with P(O|M̃) > P(O|M).

This process is repeated until it reachs some limiting point.
Ultimately we obtain the model M̃ = (Ã, B̃, π̃) which maximizes P(O|M).

1.2.3 Evaluation Problem

A simple way to compute P(O|M) is to use the forward algorithm which evaluates state by state
the probability of being at that state given the observation sequence

P(O|M) =

N∑
i=1

αT (i)

where αT (i) is solved by induction:

• Initialization:
αt(i) = πibi(o1), 1 ≤ i ≤ N;

• Induction:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
, 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N;

The forward algorithm has a complexity of O(N2T).

1.2.4 Decoding Problem

This problem is solved with the Viterbi algorithm (see figure 1.4), for more explanation about
decoding have a look at decoder on section 2.6.

Viterbi algorithm:
Suppose we are given a Hidden Markov Model (HMM) with state space Ω, initial probabilities
πi of being in state i and transition probabilities aij. Say we observe outputs o1 · · ·oT . We define
ψt(Xt) as a saving back pointer that remember which state Xt was used at time t. The most
likely state sequence X1 · · ·XT that produces the observations is given by this processus:

• Initialization
δ1(i) = πibi(o1), 1 ≤ i ≤ N

ψ1(i) = 0

7

Figure 1.4: Illustration of the Viterbi algorithm for an isolated word.

• Recursion
δt(j) = max

1≤i≤N
(δt−1(i)aij)bj(ot),

ψt(j) = arg max
1≤i≤N

(δt−1(i)aij), 2 ≤ t ≤ T, 1 ≤ j ≤ N

• Termination
P∗ = max

1≤i≤N
(δT (i)),

X∗t = arg max
1≤i≤N

(δT (i)).

• Path backtracking
X∗t = ψt+1(X

∗
t+1), t = T − 1, T − 2, . . . , 1

Speech recognition, the main part of the subject, is a particular context of machine learning
that we will define in the following chapter.

1.3 Machine Learning

Arthur Samuel (1959) gives this definition of machine learning:

Definition 9. Machine Learning is the field of study that gives computers the ability to learn
without being explicitly programmed.

Tom Mitchell (1998) completes with

Definition 10. Well-posed learning problem: a computer program is said to learn from expe-
rience E with respect to some task T and some performance measure P, if its performance on T,
as measured by P, improves with experience E.

Here is a comparison of different denominations between statisticians and computer scien-
tists:

8

Statistics / Data Mining Dictionary
Statistics Computer Science Meaning
Estimation Learning Using data to estimate an unkown quantity
Classification Supervised learning Predicting a discrete Y from X

Clustering Unsupervised learning Putting data into groups
Data Training sample (X1, Y1), . . . , (Xl, Yl)

Covariates Features The Xi’s
Classifier Hypothesis A map from covariates to outcomes
Hypothesis - Subset of a parameter space Θ
Large deviation bounds PAC learning Uniform bounds on probability of errors

Table 1.1: Comparison of different namings between statisticians and computer scientists, and
their meaning.

1.3.1 Learning Models

There exist several learning algorithms, we will speak about supervised, unsupervised and semi-
supervised one.

• Supervised learning algorithms are trained on labelled examples, i.e. inputs associated
with known outputs. In the context of speech recognition an input is some spoken sen-
tences and its associated output is their text transcriptions. Formally, we have a data set
{(X1, Y1), . . . , (Xl, Yl)}, called training set, where l is the number of training examples, Xi
are input features and Yi their corresponding outputs.

The aim of supervised training is to generalise a function from this data set which can then
be used to speculatively generate an output for previously unseen inputs; this problem
is called in mathematics a regression problem. In other words, the algorithm creates
a function which can predict new outputs linked to new inputs thanks to training with
labelled examples. We will see later that artificial neural networks are a technique used in
regression models (see section 1.3.4).

If outputs are discrete values (generaly 0 or 1), we speak about classification problems.

• On the other side, unsupervised learning operates on unlabelled data, i.e. the associated
outputs is unkown. To us, it means that we only have spoken sentences and no text
transcriptions.

Thus the objective is to find structure in the data to predict best text transcriptions, i.e.
’decoded’ label; in statistics this is called clustering problem. Artificial neural networks
are also a technique used in cluster analysis.

• Semi-supervised learning is a combination of supervised and unsupervised learning be-
cause it combines both labelled and unlabelled data.

The principle is the same as supervised learning but the difference lies in the data. Super-
vised learning uses only ’true’ labelled data while semi-supervised uses ’true’ plus ’decoded’
labelled data the last one obtained with unsupervised learning.

These problems, supervised and unsupervised, are explained in the next two sections, to-
gether with artificial neural networks which can be used in both methods.

9

1.3.2 Supervised Learning - Regression Problem

Linear Regression

In this subsection, we assume that r is linear.

Aim. Predict a real-valued output, Y = rθ(x), estimated from a data set of the form
{(X1, Y1), . . . , (Xl, Yl)} ~ FX,Y .

Thus the regression is a method for studying the relationship between a response variable Y
and a covariate X, also called feature. The regression function is a good way to summarize the
relationship between X and Y.

Definition 11. The regression function is defined by

r(x) = E(Y|X = x) =

∫
Ω

yf(y|x)dy. (1.1)

For best understanding we will first explain the process for one-dimensional variable, i.e.
simple linear regression, and then multiple.

• Simple Linear Regression

In this part, we assume that Xi is one-dimensional, thus we obtain the simple linear re-
gression model:

r(x) = β0 + β1x.

We add the assumption that Var(Y|X = x) = σ2 does not depend on x. We can thus write
the linear regression model as follows.

Definition 12. The simple linear regression model is defined by

Yi = β0 + β1Xi + εi (1.2)

where E(εi|Xi) = 0 and Var(εi|Xi) = σ2.

The unknow parameters in the model are the intercept β0, the slope β1 and the variance
σ2. Let β̂0 and β̂1 denote estimates of β0 and β1 respectively. The predicted values are

Ŷi := r̂(Xi) = β̂0 + β̂1Xi (1.3)

and the residuals are defined to be

ε̂i := Yi − Ŷi = Yi −
(
β̂0 + β̂1Xi

)
. (1.4)

To measure how well the line fits the data, we use the residual sums of squares,
∑l
i=1 ε̂

2
i .

Thus the least squares estimates are the values β̂0 and β̂1 that minimize
∑l
i=1 ε̂

2
i . For

finding them, we have this theorem

Theorem 2. The least squares estimates are given by

β̂1 =

∑l
i=1(Xi − X̄l)(Yi − Ȳl)

(Xi − X̄l)2
(1.5)

β̂0 = Ȳl − β̂1X̄l, (1.6)

where X̄l is the sample mean, X̄l = 1
l

∑l
i=1 Xi.

And an unbiased estimate of σ2 is

σ̂2 =

(
1

l− 2

) l∑
i=1

ε̂2i . (1.7)

10

• Multiple Regression

Now suppose that the feature Xi is a vector of length k. The data set is of the form

{(X1, Y1), . . . , (Xi, Yi), . . . , (Xl, Yl)}

where

Xi =

Xi1
Xi2
...
Xik

 .
Definition 13. The linear regression model is

Yi =

k∑
j=1

βjXij + εi (1.8)

where E(εi|Xi1, . . . , Xik) = 0, ∀i = 1, . . . , l.

Instead of adding the intercept β0 like in the simple linear regression model, see (1.2),
we set Xi0 = 1, ∀i = 1, . . . , l.

By convenience, we express the model in matrix notation. The outcomes will be denoted
by

Y =

Y0
Y1
...
Yl

and the covariates will be denoted by

X =

1 X11 X12 · · · X1k
1 X21 X22 · · · X2k
...

...
...

...
...

1 Xl1 Xl2 · · · Xlk

 .
Thus X is a (l+ 1)× k matrix where each row is an observation and each columns corre-
spond to the covariates.

Let

β =

β1
β2
...
βk

 and ε =

0

ε1
ε2
...
εl

 ,
then we can write (1.8) as

Y =Xβ + ε. (1.9)

The least squares estimate are given in the following theorem

Theorem 3. Assuming that the (k× k) matrix XTX is invertible,

β̂ = (XTX)−1XTY (1.10)

Var(β̂|Xl) = σ2(XTX)−1 (1.11)

β̂ ≈ N(β, σ2(XTX)−1). (1.12)

11

The estimate regression function is

r̂(x) =

k∑
j=1

β̂jx

and an unbiased estimate of σ2 is

σ̂2 =

(
1

l− k

) l∑
i=1

ε̂2i

where ε̂ =Xβ̂ − Y is the vector of residuals.

Classification Problem

The problem of predicting a discrete random variable Y from another random variable X
is called classification, supervised learning, discrimination or pattern recognition. Let
(X1, Y1), . . . , (Xl, Yl) be i.i.d. data where

Xi =

Xi1
Xi2
...
Xik

 ∈ X ⊂ Rk

is a k-dimensional vector and Yi takes values in some finite set Y. A classification rule is a
function h : X→ Y; when we observe a new X, we predict Y to be h(X).

Aim. Find a classification rule h that makes accurate predictions.

First, some definitions:

Definition 14. The Fisher information, I(·), is a way of measuring the amount of information
that an observable random variable X carries about an unknown parameter θ upon which the
probability of X depends. I is defined as the second moment of the score which is the partial
derivative with respect to θ of the natural logarithm of the likelihood function, i.e.

I(θ) = E

[(
∂

∂θ
logP(X|θ)

)2∣∣∣∣∣ θ
]

Definition 15. The true error rate of a classifier h is

L(h) = P({h(X) 6= Y}) (1.13)

and the empirical error rate or training error rate is

L̂l(h) =
1

l

l∑
i=1

I(h(Xi) 6= Yi) (1.14)

where I(·) is the Fisher information.

Firstly we consider the special case Y = {0, 1} and secondly a generalisation.

12

• Special case:Y = {0, 1}

Let
r(x) = E(Y|X = x) = P(Y = 1|X = x)

denote the regression function. From Bayes’ theorem, we have that

r(x) = P(Y = 1|X = x)

=
f(x|Y = 1)P(Y = 1)

f(x|Y = 1)P(Y = 1) + f(x|Y = 0)P(Y = 0)

=
πf1(x)

πf1(x) + (1− π)f0(x)
(1.15)

where fr(x) = f(x|Y = r), r = 0, 1 and π = P(Y = 1).

Definition 16. The Bayes classification rule h∗ is

h∗(X) =

{
1 if r(x) > 1

2 ,

0 otherwise.
(1.16)

The set D(h) := {x|P(Y = 1|X = x) = P(Y = 0|X = x)} is called the decision boundary.

Theorem 4. The Bayes rule is optimal, that is, if h is any other classification rule then
L(h∗) ≤ L(h).

We need to use the data to find some approximation to the Bayes rule as it depends on
unknown quantities. We use the regression model to estimate ĥ:

ĥ(X) :=

{
1 if r̂(x) > 1

2 ,

0 otherwise.
(1.17)

where r̂ is an estimate of the regression function r.

• Generalization

Now, let us generalize to the case where Y takes more than two values as follows.

Theorem 5. Suppose that Y ∈ Y = {1, . . . , K}. The optimal rule is

h(X) = arg max
k
P(Y = k|X = x) (1.18)

= arg max
k
πkfk(x) (1.19)

where

P(Y = k|X = x) =
fk(x)πk∑
r fr(x)πr

, (1.20)

πr = P(Y = r), fr(x) = f(x|Y = r) and arg max
k

means ’the value of k that maximizes that

expression’.

1.3.3 Unsupervised Learning - Cluster Analysis

Remember that the problem of unsupervised learning is that of trying to find hidden structure
in unlabeled data. In mathematics we call this problem cluster analysis.

Aim. Grouping a set of objects in such a way that objects in the same group are more similar to
each other than to those in other groups.

Cluster analysis can be achieved by various algorithms that differ significantly in their notion
of what constitutes a cluster and how to efficiently find them. So we can have connectivity
models like hierarchical clustering based on distance connectivity or centroid models like k-
means algorithm which represents each cluster by a single mean vector, or others. These two
kinds of clustering, explained above, are used for unsupervised learning in the context of speech
recognition.

13

Hierarchical Clustering

Aim. The aim of the hierarchical cluster analysis is to build a hierarchy of clusters.

To reach this objective there exist two different strategies:

• Agglomerative: each observation starts in its own cluster and pairs of clusters are merged
as one moves up the hierarchy.

• Divisive: all observations start in one cluster and splits are performed recursively as one
moves down the hierarchy.

A measure of dissimilarity between sets of observations is required to decide respectively
which clusters should be combined (for agglomerative), or when a cluster should be split (for
divisive). This is achieved by use of an appropriate metric and a linkage criterion which
specifies the dissimilarity of sets.

The choice of an appropriate metric will influence the shape of the clusters, as some elements
may be close to one another according to one distance and farther away according to another.
For text or other non-numeric data, metric such as the Hamming distance is often used.

Definition 17. The Hamming distance, d(·, ·), between two strings of equal length is the num-
ber of positions at which the corresponding symbols are different. Formally, let A be an alphabet
and F the set of sequences of length n to value A. The Hamming distance between two elements
a = (ai)i∈[1,n] and b = (bj)j∈[1,n] ∈ F is the number of elements of the set of images of a which
is different from b,

d(a, b) := #{i|ai 6= bi}.

Examples 1. The Hamming distance between:

• “words” and “world” is 2.

• “instance” and “distance” is 2.

• “two” and “too” is 1.

The problem is that entries must have the same lentgh. The generalisation of the Hamming
distance for different length is the Levenshtein distance.

Definition 18. The Levenshtein distance between two words is the minimum number of single-
character edits, i.e. insertions, deletions or substitutions. Formally let a = (ai)i∈[1,n] and b =
(bj)j∈[1,n] ∈ F as in the Hamming distance definition, leva,b(|a|, |b|) is given by

leva,b(i := |a|, j := |b|) =

max(i, j), if min(i, j) = 0,

min

leva,b(i− 1, j) + 1,
leva,b(i, j− 1) + 1,

leva,b(i− 1, j− 1) + 1ai 6=bj ,
otherwise,

where 1ai 6=bj is the indicator function equal to 0 when ai = bj. Note that the first element
in the minimum corresponds to deletion (from a to b), the second to insertion and the third to
match or mismatch, depending on whether the respective symbols are the same.

Examples 2. The Levenshtein distance between:

• “sing” and “singing” is 3 because we add three letters.

• “homework” and “home” is 4 because we delete four letters.

14

• “lettre” and “letter” is 2 because there are two substitutions.

• “definition” and “decision” is 6 because there are 4 substitutions and 2 additions.

Note 1. With this definition, we see that the letters additions can not be done in the middle of
the word. For example between “decision” and “definition” we could do this changes:

1. “decision”→ “defision”, one substitution;

2. “defision”→ “definion”, one substitution;

3. “definion”→ “definiton”, one addition in the middle;

4. “definiton”→ “definition”, one addition in the middle.

So we obtain a result of 4 instead of 6.

The linkage criterion determines the distance between sets of observations as a function of
the pairwise distances between observations. For example letA,B being two sets of observations
and d(·, ·) the distance, the single-linkage clustering is min{d(a, b)|a ∈ A, b ∈ B}.

k-Mean Algorithm

Given a set of observations, {X1, X2, . . . , Xn}, here is the aim of the k-mean clustering,

Aim. Partition the n observations into k (≤ n) sets S = {S1, . . . , Sk} in which each observation
belongs to the cluster with the nearest mean. The objective is to minimize the within-cluster
sum of squares, i.e. argmin

S

∑k
i=1

∑
X∈Si ‖X− µi‖2 where µi is the mean of observations in Si

and ‖·‖ the Euclidean distance.

To achieve this aim, there is a standard algorithm which proceeds by alternating between
two steps:
Given an initial set of k means m(0)

1 ,m
(0)
2 , . . . ,m

(0)
k and let t ∈ N be the mutable state,

• Assignment step: Each observation is assigned to the cluster, S(t)i , whose mean gives the
least within-cluster sum of squares.

S
(t)
i = {Xl | ‖Xl −m

(t)
i ‖

2
≤ ‖Xl −m

(t)
j ‖

2
, ∀j s.t. 1 ≤ j ≤ k},

where each Xl is assigned to exactly one S(t)i .

• Update step: Update the new means

m
(t+1)
i =

1

S
(t)
i

∑
Xl∈S

(t)
i

Xl

whose represent the centroids of the observations in the new clusters.
This also minimizes the within-cluster sum of squares objective because arithmetic mean
is a least-squares estimator.

The algorithm converges, to a local optimum, when the assignments no longer change; this
can happen because there only exists a finite number of partitionings. There is no guarantee
that it will converge to the global optimum. The result may depend on the initial clusters so it
is common to run it multiple times with different starting conditions as the algorithm is usually
very fast.

15

The number of clusters k is an input parameter, an inappropriate choice of k may yield poor
results. The correct choice of k is often ambiguous, with interpretations depending on the shape
and scale of the distribution of the observations and the desired clustering resolution. One
simple manner is the rule of thumb which sets the number to

k ≈
√
n/2

where n is the number of observations. There are other methods like for example Elbow method
not explained in this paper.

1.3.4 Artificial Neural Networks (ANN)

Artificial Neural Networks are computational models inspired by the brain; they are capable
of machine learning and pattern recognition. The architecture are presented as systems of
interconnected artificial neurons which can compute values from input by feeding information
through the network.

Figure 1.5: Comparison of biological (left) and artificial (right) neuron.

An artificial neuron (see figure 1.5) receives one or more ’inputs wires’, representing the
dendrites, and sums them to produce output, representing an axon. The sums of each node
are weighted, representing the importance of the information i.e. the transmission speed (de-
pending in part on myelin), and passed through an activation function, representing the rate of
action potential firing in the cell.

An ANN is defined by three main components

1. The activation function that converts input to output,

2. The architecture pattern between different layers of neurons,

3. The learning process for updating the weights of the interconnections.

Activation Function

The activation function, denoted g(z), is a monotically increasing, continuous, differentiable
and bounded function like for example Heaviside step function or sigmoid function.

Definition 19. The Heaviside function H(·) is the integral of the Dirac delta function δ(·)

H(t) =

∫ t
−∞ δ(s)ds

where ∀t ∈ R

δ(t) =

{
+∞, t = 0
0, t 6= 0 (1.21)

16

with constraint ∫∞
−∞ δ(s)ds = 1.

Definition 20. A sigmoid function (see figure 1.6), a function with a ’S’ shape, is defined by
the formula,

S(t) :=
1

1+ e−t
, ∀t ∈ R

Figure 1.6: Graph of the sigmoid function.

The sigmoid function is often generalised by

Sθ(t) =
1

1+ e−θt

where θ is a constant in R.
For t ∈ Rn and a constant θ ∈ Rn, we have

Sθ(t) =
1

1+ e−θT t

ANN Architecture

Figure 1.7: Architecture of a simple ANN (3 layers).

The different layers of an ANN architecture (see figure 1.7) are

• the first layer called the input layer,

• the middles called hidden layers,

17

• and the last called the output layer.

More middle layers there are, the more complex non-linear functions can be learn.

Here are the corresponding notations:

• g : Ω 7−→ Ω the activation function;

• X =

X0
X1
X2
...
Xl1

 ∈ Ωl1+1 is the input layer with l1 units plus X0 = 1, the bias unit;

• a(j) =

a
(j)
0

a
(j)
1

a
(j)
2
...
a
l
(j)
j

∈ Ωlj+1 is the hidden layer j with lj neurons plus the bias unit a(j)0 where

j ∈ N and a(0) :=X;

• W(j) = {w
(j)
ik } ∈ M([0, 1], lj+1, lj + 1) where w(j)

ik is the weight between the ith and kth

element of a(j+1) and a(j) respectively;

• and Y := a(m) ∈ Ωlm the output where we assume that m is the output layer.

Learning Process

In classification problem, there are two kinds of propagation, explained below, first a forward
propagation to calculate Y and then a backward one to calculate the errors of the cost function
for every unit.

Forward propagation: For 1 ≤ j ≤ m, we define for practical notations z(j) =

z
(j)
1

z
(j)
2
...
z
l
(j)
j

by

z
(j)
i := w

(j−1)
i0 a

(j−1)
0 +w

(j−1)
i1 a

(j−1)
1 + · · ·+w(j−1)

ilj−1
a
(j−1)
lj−1

, ∀1 ≤ i ≤ lj.

Thus, every layer 1 ≤ j ≤ m is calculable by this reccurent relation

a(j) = g(z(j))

where

g(z(j)) :=

g(z

(j)
1)

g(z
(j)
2)
...

g(z
l
(j)
j

)

At every step, a bias unit a(j)0 = 1 is added to the layer, for 1 ≤ j ≤ m− 1.

18

Backward propagation: Suppose we have a training set {(X1, Y1), . . . , (Xl1 , Yl1)}. Let a(1)i =
Xi, ∀i and we set

δ
(m)
i = a

(m)
i − Yi,

and we have this recursive formula

δ(j) = (W(j))Tδ(j+1)g ′(z(j)),

where δ(j)i represents the error of node i in layer j.

The most interesting possibility in neural network is the learning process. Learning means,
using a set of observations, to find a solution which solves the task in some optimal sense.

Definition 21. Let F be a set of functions, a cost function is a function C : F −→ R such that,
for the optimal solution f∗,

C(f∗) ≤ C(f), ∀f ∈ F,

i.e. no solution has a cost less than the cost of the optimal solution.

The cost function C is an important concept in learning, as it is a measure of how far away
a particular solution is from an optimal solution to the problem to be solved. Entropy or mean
squared error can be examples of cost functions. Learning algorithms search through the solu-
tion space to find a function that has the smallest possible cost.

The weights are adaptatives, i.e. they are tuned by a learning algorithm.

19

Chapter 2

Components of Automatic Speech
Recognition Systems

2.1 Fundamentals of Automatic Speech Recognition

2.1.1 Main Components

The automatic speech recognition (ASR) is simply the translation of spoken words into text. In
this section, the key components of an ASR system are broadly presented.

• Acoustic Features: A raw audio signal, for example as received from a microphone, needs
to be converted into a more manageable form because it is too complex to deal with when
it comes to the task of speech recognition.

First the incoming audio is treated as a sequence of frames at regular time intervals, 10
[ms] for example.

These frames are then analysed such that some key (perceptually important) data can be
extracted; this process is driven by the perception of speech and elimination of redundant
data.

For each audio frame, we obtain a representative feature vector.

• Language Model (LM): A language model describes how words can be combined.

• Pronunciation Dictionary: The pronunciation dictionary contains the set of words and
their pronunciations using a common set of phonemes as for the acoustic model. Multiple
entries can appear for a word depending on pronunciations. It can also contain homonyms.

• Acoustic Model (AM): An acoustic model contains the data describing the acoustic nature
of all the phonemes understood by the system. Acoustic models are built through a training
process using large quantities of transcribed audio. An acoustic model is usually specific
to one language; and could be adjusted to a particular accent.

One difficulty is that phonemes are context-dependent; they tend to sound different de-
pending on what the previous and next phonemes are. Each context-dependent phoneme,
also called triphone, is represented by a hidden Markov model (HMM). The HMM states
permit to describe how the sound of the phonemes progresses in time. The number of
states used can vary depending on the type of model, but five is typical. Thus HMM repre-
sents the phonemes.

The acoustic model assigns parameters to each triphone state which describes the proba-
bility that the triphone state matches a feature vector, called probability density function
(pdf).

20

• Decoder: The decoder is the reason of the ASR system; its job is to decode a sequence of
speech signal to reveal what words were spoken.

For each audio frame, there is a process of pattern matching; the decoder evaluates the
received features against all active HMMs to determine probabilities of staying/changing
states or HMMs. At any given time the decoder is keeping the trace of any possible HMM
states in a decoding space; this is necessary because a state that has low local score can
finally be the best match when more frames are processed or when the language model is
considered. Thus the decoder can start building hypotheses of the most likely sequence of
words as the process evolves.

There exists a measure, called confidence measure (see chapter 3), to discard unlikely
hypotheses.

These components are explained more precisely in the following sections. But first, let’s look
more closely at the mathematical formulation of the recognition process:

2.1.2 Mathematical Formulation of Recognition Process

The continuous speech waveform is first divided into frames with constant length (∼ 25 ms).
Each frame gives features represented by discrete parameter vectors, by supposing that for
the duration of a single vector, i.e. one frame, the speech waveform can be regarded as being
stationary. Although this is not strictly true but it is a reasonable approximation.

For each spoken word, let O = o1o2 · · ·oτ be a sequence of parameters vectors, where ot
is observed at time t ∈ {1, . . . , τ}. Given a dictionary D with words wi ∈ D, the recognition
problem is summerized by

W̃ = arg max
W
P(W|O) (2.1)

where W̃ is the recognised word, P is the probability measure and W = w1 · · ·wk a word
sequence.

Bayes’ Rule permits to transform (2.1) in a suitable calculable form:

P(W|O) =
P(O|W)P(W)

P(O)
(2.2)

where P(O|W) represents the acoustic model and P(W) the language model; P(O) can be
unheeded. Thus, for a given set of prior probabilities P(W), the most probable spoken word
depends only on the likelihood P(O|wi).

It is important to note that the combination of the acoustic model probability and the lan-
guage model probability is weighted. The problem is that HMM acoustic models usually un-
derestimate the acoustic probability (due to independence assumption) giving to the language
model little weight. A solution for such problem is to add a weight to raise the language model
probability. Thus the LM is often scaled by an empirically determined constant, s, called lan-
guage model scale factor (LMSF). LMSF is determined empirically to optimize the recognition
performance. This weighting has a side effect as a penalty for inserting new words. That’s why
we add a scaling factor, p, that penalizes word insertions called word insertion penalty (WIP)
also calculated empirically. Thus (2.1) becomes

W̃ = arg max
W
P(O|W)P(W)s|W|p (2.3)

In the log domain, the total likelihood is calculated as

log|W| W̃ = log|W| P(O|W) + s log|W| P(W) + p (2.4)

21

where |W| is the length of the word sequence W, s is the language model scale factor (LMSF)
(typically in the range of 5 to 15) and p the word insertion penalty (WIP) (typically in the range
of 0 to -20).

Thus, if the language model probability decreases (large penalty), the decoder will prefer
fewer longer words. On the contrary if the language model probability increases (small
penalty), the decoder will prefer a greater number of shorter words. These weightings are
important in the experiment part to create the development data (see section 4.2.1).

Note 2. Different notations can be used depending on whether we speak about local or global
posterior probability. Here is the explanation of the difference between the local and global
posterior probability:

• Global posterior probability is P(M|O, θ) such that M is the model given the acoustic data
O and the parameters θ.

• It is possible to express the global posterior probability in terms of local posteriors
P(qnl |q

n−1
k ,on, θ) (where qnk denotes the specific state qk of M at time n) and language

model priors.

We have:

P(M|O) =

L∑
l1=1

L∑
lN=1

P(q1l1 , . . . , q
N
lN
,M|O)

here the posterior probability of the state sequence and the modal can be decomposed into the
product of an acoustic model and priors over models (language models):

P(q1l1 , . . . , q
N
lN
,M|O) = P(q1l1 , . . . , q

N
lN
|O)P(M|O, q1l1 , . . . , q

N
lN
) (2.5)

' P(q1l1 , . . . , q
N
lN
|O)︸ ︷︷ ︸

ac. model

P(M|q1l1 , . . . , q
N
lN
)︸ ︷︷ ︸

lang. model

. (2.6)

Note 3. (Explanation of Hybrid HMM/ANN)
With some modifications of equation (2.6), we arrive at

P(M|O) '
∑
l1,...,lN

[
N∏
n=1

P(qnln |o
n+d
n−c)

P(qnln |M)

P(qnln)

]
P(M). (2.7)

Then the hybrid HMM is based on local posterior probability, where on+dn−c is limited to local
context.
With the Bayes rule, we can show that:

P(on+dn−c |q
n
ln
)

P(on+dn−c)
=
P(qnln |o

n+d
n−c)

P(qnln)

Then we also have:

P(M|O) '
∑
l1,...,lN

[
N∏
n=1

P(on+dn−c |q
n
ln)
P(qnln |M)

P(on+dn−c)

]
P(M)

based on local likelihood, this is the standart HMM.

The difference between the hybrid and the likelihood approches lies at the local level. The
hybrid system estimates local posteriors and is then discriminant at the frame level. The likeli-
hood system estimates local probability density functions. Both system can give us an estimate
of the global posterior.

22

2.2 Features Extraction

Features extraction is done by a speech signal processing. Its aim is to provide a compact
encoding of the speech waveform. This encoding should minimize the loss information and
provide a good match with the distributional assumptions made by the acoustic models. The
final result is a feature vector in Rn whose dimensionality is typically around 40. Feature vectors
are typically computed every 10 [ms] using an overlapping analysis window of around 25 [ms].

Many features extraction techniques are available, these include:

• Linear predictive cepstral coefficients (LPCC)

• Mel-frequency cepstral coefficients (MFCCs)

• Perceptual linear predictive coefficients (PLP)

• etc.

Thus the kind of feature depends on the technique, for example PLP features. PLP features
are used in the experiment part (see section 4) that is why more informations are given in the
next subsection.

There exists an other kind of features, called posterior features, which is a transformation of
feature vectors by multilayer perceptron (MLP) (see section 2.2.2). They are presented in the
second subsection.

2.2.1 Perceptual Linear Predictive Coefficients (PLP)

The goal of the PLP model is to describe the psychophysics of human hearing more accurately in
the features extraction process. PLP is based on the short-term spectrum of speech. In contrast
to pure linear predictive analysis of speech, perceptual linear prediction (PLP) modifies the
short-term spectrum of the speech by several psychophysically based transformations.

First the signal is broken in regular frames (~10 ms) to obtain short time stationary. After
the speech signal is weighted by a window functions which are functions with zero-valued
outside of some chosen interval for example the Hamming window.

Definition 22. Generalized Hamming windows are of the form

h(n) = α− βcos

(
2πn

N− 1

)
where α and β are parameters and N the number of samples. The particular Hamming window,
proposed by Richard W. Hamming, has coefficients α = 0.54 and β = 1− α = 0.46.

Then discrete Fourier transform (DFT) changes the windowed speech segment into fre-
quency domain. We obtain the short-term power spectrum:

p(h) = Re[S(h)]2 + Im[S(h)]2

where S(h) is the short-term speech spectrum and h the angular frequency in [rad/s].
Finally the PLP technique uses three psychophysically concepts whose we do not explain in
details:

• the critical-band spectral resolution,

• the equal-loudness curve,

• and the intensity-loudness power law.

23

2.2.2 Posterior Features

Figure 2.1: Graphical representation of PLP and MLP features.

A multilayer perceptron (MLP) is a feedforward artificial neural network (see section 1.3.4)
model that maps sets of input data onto a set of appropriate outputs. Recall the three mains
components of an ANN: the activation function, the architecture and the learning process. MLP
has the same properties except that the information always moves in one direction (property of
feedforward), thus the learning process is carried out through backpropagation.

The architecture of multilayer perceptron consists generally of three layers. The input layer
is PLP feature and the output layer gives the MLP features (see figure 2.1), which are in our case
phoneme scores.

2.3 N-Gram Language Models (LM)

Remember (equation 2.2) that language model is described mathematically by P(W), where
W = w1 · · ·wK is a sequence of words. This priors are given by

P(W) = P(w1 · · ·wK) =
K∏
i=1

P(wi|wi−1 · · ·w1). (2.8)

The conditioning word history is usually truncated to N − 1 words, where N is generally in
the range of 2 to 4, to form a N-gram language model

P(W) =

K∏
i=1

P(wi|wi−1 · · ·wi−N+1). (2.9)

These conditional probabilities can be estimated from N-gram frequency counts, i.e. maximum
likelihood parameter estimates,

P(wi|wi−1 · · ·wi−N+1) ≈
C(wi · · ·wi−N+1)

C(wi−1 · · ·wi−N+1)

where C(·) represents the number of occurences of the word sequence.
Thus statistical language model (LM) are known asN-grams, where a 1-gram is an individual

word, a 2-gram is a sequence of two words, and so on. Typically a statistical LM will contain
probabilities for 1-grams, 2-grams and 3-grams, the probabilities of appearance of words and
their dependence.

24

2.4 Pronunciation Dictionary / Lexicon

Pronunciation dictionaries play an important role in guiding the predictive powers of the ASR.
A pronunciation dictionary or lexicon created for a specific language is a mapping of words to
their corresponding pronunciation forms in terms of the phoneme sequences.

Consonants and vowels are used as the phonemes set for the creation of the dictionary. A
sorted wordlist of the data is creating; then to each word from the wordlist is assigned a pro-
nunciation. Afterward the audio version of the pronunciation is played back and the dictionary
developer acts as a verifier to provide a verdict in the context of the accuracy of the word-
pronunciation pair (correct, invalid, ambiguous or unsure). The developer removes or replaces
phonemes in the predicted pronunciation until all word-pronunciation pairs are declared cor-
rect. For each adjustement, the system’s learning algorithm extracts set of rules which would
help to predict the next pronunciation. More there are rules, more accurate is the system.

2.5 Acoustic Models’ Architectures

There exists different structures of acoustic model (AM). We are going to use hidden Markov
model/Gaussian mixture model (HMM/GMM) and HMM tandem, both based on HMM (see
section 1.2.1). The only difference between HMM/GMM and HMM tandem model is the input,
i.e. the features, which is combined for the HMM tandem (see figure 2.2).

Figure 2.2: Architecture of the acoustic model (AM).

Acoustic Model (AM) is represented by the likelihood P(O|W) as explained in equation (2.2).
This probability is obtained by compiling audio speech and text transcriptions to establish sta-
tistical representations of the sounds of each word (process called training). Then the best
representation is chosen to identify the searched word (process called recognition). But before
explaining HMM process, we need some tools.

Tools

Thanks to the dictionary, we have a list of words found in our data. Each word is decomposed
into a sequence of basic sounds called phonemes to create different pronouciations. Thus the
likelihood P(O|W) can be computed over multiple pronounciations

P(O|W) =
∑
Q

P(O|Q)P(Q|W), (2.10)

25

where Q is a sequence of word pronounciatons Q1 · · ·QK. Therefore each pronunciation can be
decoded as if they were alternative word hypothese.

Each pronouciation Qi is a sequence of independant phonemes Qi = qi1q
i
2 Whence

P(Q|W) =

K∏
i=1

P(Qi|wi), (2.11)

where P(Qi|wi) is the probability that word wi is pronounced by the phonemes sequence Qi. In
practice, there is a very small number of possible Qi for each wi it implies that (2.10) is easily
tractable.

Each phoneme q is represented by a continuous HMM (see section 1.2.1) with transition
parameter aij, i, j ∈ N, and output observation distributions bj(·), j ∈ N, (see figure 2.3). Thus
we have context-dependent phonemes, i.e. triphones.

Since there is a large number of triphones, and each triphone has several HMM states, and
each state has many parameters, there ends up being too many parameters to efficiently work
with. However, many triphone states represent a similar sound enough that they can be tied
together to share the same set of parameters. These are called tied-triphone states.

Figure 2.3: The illustration of the form of the hidden Markov model (HMM).

The output distributions (probability density function), bj(·), are represented by Gaussian
Mixture densities

bj(o) =

M∑
m=1

cjmN(o;µjm, Σjm), (2.12)

where cjm is the weight of the mth component, M the number of components (typically in the
range of 10 to 20) and N(·;µ,Σ) denotes a normal distribution with mean µ and covariance
matrix Σ, that is

N(o;µ,Σ) =
1√

(2π)n|Σ|
e

1
2
(o−µ)TΣ−1(o−µ) (2.13)

where n is the dimensionality of o. The parameters can be calculated by applying the Baum-
Welch algorithm (see section 1.2.2).

26

Figure 2.4: Illustration of the training and recognition processes in the AM.

Training (see figure 2.4)

An HMM Mi is created for each word using a number of examples of that word, thanks to the
speech transcriptions and dictionary. Thereby, each word wi has a corresponding model Mi

which contains all triphones of wi. We speak about training because the speech transcriptions
represent training examples used to derive the best models.

Recognition (see figure 2.4)

The joint probability that O is generated by the model M, moving through the state sequence
X = X1 · · ·XT is calculated simply as the product of the transition probabilities and the output
probabilities

P(O|M) =
∑
X

P(O, X|M) =
∑
X

P(O|X,M)P(X|M) (2.14)

where

P(O|X,M) =

T∏
t=1

P(ot|Xt,M) = bX1
(o1), . . . , bXT

(oT)

and
P(X|M) = P(X0 = X1)aX1X2

aX2X3
. . . aXT−1XT

.

However, only the observation sequence O is know and the underlying state sequence X is
hidden (this is why it is called a hidden Markov model). Given that X is unknown, the required
likelihood is computed either by summing over all possible state sequences X = X1X2 · · ·XT , i.e.

P(O|M) =
∑
X

aX0X1

T∏
t=1

bXt(ot)aXtXt+1
, (2.15)

27

or by the most likely state sequence

P̂(O|M) := max
X

{
aX0X1

T∏
t=1

bXt(ot)aXtXt+1

}
(2.16)

where we fix that X0 is the entry state and XT+1 the exit one.
Equations (2.15) and (2.16) are not directly tractable because they require (2T − 1)NT

multiplications and NT − 1 additions but simple recursive procedures, called forward algorithm
(see section 1.2.3), exist to calculate efficiently.

Finally given a set of models Mi corresponding to words wi, the equation (2.2) is solved
assuming that

P(O|wi) = P(O|Mi). (2.17)

2.6 Decoder

Figure 2.5: Overview of the ASR system.

Remember (see section 2.1.2) that the goal of the decoder is to search, given some observed
acoustic audio O, the most likely words sequence W so that

Ŵ = arg max
W
P(O|W)P(W), (2.18)

transformed as
Ŵ = arg max

W
P(O|W)P(W)s|W|p (2.19)

where s is the language model scaling factor and p the word insertion penalty (see equation
(2.4)).

To do it, we define a search space which is defined by a finite state automata where the states
are the phonemes and the transitions are defined in the acoustic models. The combination of the
language model with the acoustic models produces an HMM that models all acceptable sequence
of words (see figure 2.5). Given the search space, the most likely word sequence can be found
by using the Viterbi algorithm (given in section 1.2.4).

The Viterbi algorithm is a dynamic programming algorithm for finding the most likely se-
quence of hidden states, noted δt(i), which depend on a sequence of observed events, i.e.

δt(i) = max
X1X2···Xt−1

P(X1X2 · · ·Xt−1, Xt = i,o1o2 · · ·ot|M)

28

All paths through the search space are followed in parallel and are gradually pruned away
using threshold such as the best path (minimum cost) emerges. For every time t, all the states
are updated by the best score from all states in time t − 1 for having only one best predecessor.
By tracking back the best predecessors until the end of the search, the algorithm can determine
the best state sequence for the entire search.

The complexity of the decoder is highly dependent on the complexity of the search space. In
the case of phonemes, each word is obtained by concatenating sub-word models. So the search
span can go from thousands of states to millions of states. The problem with Viterbi algorithm is
when the search space contains a massive number of states because it becomes computationally
infeasible. The complexity of the Viterbi algorithm is O(N2T) with the assumption that every
state can transition to every state at each step, where N is the number of state and T the length
of the sequence. A solution, called N-best or multipass search, is to divide the decoding process
into stages.

Multipass Search and N-best Paradigm

As the decoding progresses through the stages, the set of hypotheses is reduced so that more re-
fined and computationally demanding knowledge sources can be used to produce the most likely
sequence. This processing strategy is referred to as multipass search (i.e., cascaded decoding).

N-best paradigm is the most known multipass search strategy. The basic idea is to use com-
putationally inexpensive knowledge sources to find N alternative sentence hypotheses. Then,
each of these hypotheses is rescored with more expensive and more accurate knowledge sources
in order to determine the most likely utterance.

The N hypotheses can be represented by a word graph, which edges are labeled by words,
because it provides an explicit specification of word connections. Edges can also carry score
information such as the acoustic and language model scores.

2.7 Evaluation of the Performance

A commonly metric used to evaluate the performance of ASR systems on the test data, i.e., not
seen by the training process, is the word error rate (WER). For simple recognition systems, i.e.
isolated words, the performance is simply the percentage of misrecognized words. However, in
continuous speech recognition systems, such measure is not efficient because the sequence of
recognized words can contain this three kinds of errors:

• the word substitution which happens when an incorrect word is recognised in place of the
correct spoken one,

• the word deletion which corresponds to a spoken word not recognised,

• and the word insertion which occurs when extra words are estimated by the recognizer.

To estimate the word error rate (WER), the correct and the recognized sentence must be first
aligned. Then the number of substitutions S, deletions D and insertions I can be estimated. The
WER is defined as

WER =
S+D+ I

|W|
(2.20)

where |W| is the number of words in the sequence of word W. Multiplied by 100, this gives the
percentage of success.

29

Chapter 3

Confidence Measures (CM)

Since every speech recognizer will inevitably make some mistakes during recognition, the out-
puts from any automatic speech recognition (ASR) systems have some variety of errors. Thus, in
any real-world application, it is extremely important to be able to make an appropriate and reli-
able judgement based on the error of ASR results. This problem requires to automatically assess
reliability or probability of correctness for every decision made by the systems. This indicative
score (preferably between 0 and 1) is called confidence measure (CM).

To resume we define confidence measures (CM) as a function which quantifies reliability
of ASR results. It can be implement in different ASR processing levels as a basis for deciding
the acceptance or rejection of specific hypotheses. These measures are based on one or more
criterions.

These confidence measures (CM) are presented below:

• Acoustic CM derived exclusively from acoustic model (AM);

• CM as statistical model, here utterance verification is presented;

• Confidence estimation methods for neural network;

• Confidence Measures for Hybrid HMM/ANN.

3.1 Acoustic CM

Our approach to generate CM is based upon local estimates of posterior probabilities produced
by a HMM system (see section 1.2.1).

The frame-based entropy is calculated with the results of the lattices with the function

H(X,ML) = −

NL∑
i=1

P(qi|X,ML)logNL
(P(qi|X,ML))

where NL is the number of phonemes for language L, X=observation, qi = phonemes and
ML=model. The logarithm in basis NL is choosen to ensure that H(X,ML) ranges from 0 to 1
regardless of the size of the phonemic inventory language L.
The higher the entropy, the higher the uncertainty of the model in describing the observation X.

To estimated CM per utterance, we calculate the average of this entropy per utterance with-
out the silent results.

30

3.2 Utterance Verification

Both out-of-vocabulary (OOV) word and unclear acoustics (accented or noisy speech) are a
major source of recognizer error and may be detected by employing a confidence measure (CM)
as a statistical hypothesis testing problem. Utterance verification is a post-processing stage to
examine the reliability of the recognised hypothesis.

As before, we denote O a speech segment and we assume that the ASR recognizes it as a
word W̃ which is represented by an HMM MW̃ . The null hypothesisH0 = {θ0} and the alternative
hypothesis H1 = {θ1} are defined as follows

H0 : O is correctly recognized and comes from model MW̃ . (3.1)

H1 : O is wrongly classified and is not from model MW̃ . (3.2)

O is distributed according to Pθ0 or Pθ1 , so that the parameters space is shrinked to Θ =
{θ0, θ1}. H0 is tested against H1 to determine whether or not we should accept the recognition
result. According to Neyman-Pearson Lemma, the optimal solution to the testing (3.1) and (3.2)
is based on a likelihood ratio testing (LRT), i.e.

LRT =
P(O|H0)

P(O|H1)

H0

≷
H1

α (3.3)

where α is the critical decision threshold.

Theorem 6. (Neyman-Pearson Lemma)
Let α ∈ (0, 1) be given. Then

1. We can find constant k, γ such that the following test φ∗ has the required level α =
Eθ0(φ∗(O)). This test has the form

φ∗(O) =

1 when Pθ1(O) ≥ kPθ0(O),
γ when Pθ1(O) = kPθ0(O),
0 when Pθ1(O) ≤ kPθ0(O).

(3.4)

2. φ∗ is the most powerful among all tests of level smaller that α.

3. Let φ be a test of level ≤ α, if φ has maximal power, it is necessary of the form given by
1., ∀O ∈ {O|Pθ1(O) 6= kPθ0(O)}. Moreover, φ is of level α unless there exists a test of level
< α and of power 1.

3.3 Confidence Estimation Methods for Neural Network

Neural Network predictions suffer from uncertainty sources due to

• inaccuracies in the training data,

• limitation of the model and training algorithm.

This uncertainties involve two different noises: data noise variance, σ2ν, and model uncertainty
variance, σ2m. This two are independent but confidence estimation takes into account both
sources. The total prediction variance is σ2TOTAL = σ

2
ν + σ

2
m.

The problem is to estimate an unknow function f(X) given a set of input-target pairs D =
{Xn, tn}, ∀n = 1, . . .N. The targets are corrupted by additive noise tn = f(Xn)+ εn where εn are
modelled as Gaussian i.i.d. with zero mean and variance σ2ν.

Two main approaches to predict the data noise variance, σ2ν:

31

Maximum Likelihood (ML) Approach:

Aim. Predict σ2ν.

Method: the traditional network architecture is extended by a new split-hidden-unit
architecture. Only inputs and structure are in common.

We have

s2(Xn) = exp

[∑
k

ukh
s2

k (Xn) + β

]
,

where s2 is the approximation of σ2ν, β is the bias of the s2 unit and hs
2

k (Xn) is the activation
funtion of hidden unit k for input Xn in the hidden layer feeding directly into the s2 unit.

All initial weights are drawn from an uniform random distribution ∈ [−1, 1] scaled by the
reciprocal of the number of incoming connections.
Warning: we do not update the weights, u, of the variance network until y(X) (the linear acti-
vation function which approximates f(X)) is somewhat close to f(X).
Thus, after each pattern n is presented, all the weights in the network are adapted to minimize
some cost function C (see definition 21). We obtain a form for C by maximize

∑
n lnP(tn|Xn,N)

where N is the network.
The least-squares regression techniques can be as maximum likelihood with an underlying Gaus-
sian error model. We have:

P(tn|Xn,N) =
1√

2πσ2ν(Xn)
exp

(
−[tn − y(Xn)]

2

2σ2ν(Xn)

)
.

After taking the natural log of both sides, some approximation and adding penalty terms, we
obtain this cost function

C(w,u) =
1

2

N∑
n=1

(
[tn − y(Xn,w)]2

σ2ν(Xn,u)
+ ln[σ2ν(Xn,u)]

)
+
αw

2

W∑
i=1

w2i +
αu

2

U∑
j=1

u2j

where αw and αu are the regularisation parameters for weight w (the regression hidden layer
connections) and u (the variance connections) respectively. Using this equation, we obtain our
weight-update equations.

Bayesian Approach

Aim. Predict σ2ν.

Method: we also extend split-hidden network but we obtain regression and variance
estimates by using the bayesian approach with Gaussian approximation to the posterior.

First level: The starting point is the likelihood function P(D|w,u) which we combine with
prior P(w|αw) using Bayes’ rule to obtain:

P(w|D,u, αw) =
P(D|w,u)P(w|αw)

P(D|u, αw)
.

By using generalised linear regression (GLR), this likelihood is a Gaussian with mean centred at
the most probable weights w̃ which can be found from minimising the error:

Cr(w) =
1

2

N∑
n=1

[tn − y(Xn,w)]2

σ2ν(Xn,u)
+
αw

2

W∑
i=1

w2i ,

32

Second level: Aim: Define P(w|D, ũ, α̃w) which requires the knowledge of ũ and α̃w.
In this level, we want to find ũ. We begin from:

P(u|D,αw, αu) =
P(D|u, αw)P(u|αu)

P(D|αw, αu)
.

Like for first level, we finally arrive to find ũ by minimising:

Cν(u) =
1

2

∑
n

[
[tn − y(Xn,w)]2

σ2ν(Xn,u)
+ ln[σ2ν(Xn),u]

]
+
1

2
ln | H | +

αu

2

U∑
j=1

u2j ,

where H is the exact Hessian of error Cr(w).
Therefore the network is trained in two phases by minimising Cr(w) and Cν(u) alternatively.

If either ML or Bayesian approach is used the model uncertainty variance σ2m can be es-
timated using the delta estimator, a variant of the linearization method which is used for con-
structing confidence regions and confidence intervals. This method assumes that the nonlinear
function can be adequately approximated by an affine or linear approximation to the function
at the solution. The delta estimator gives

σ2m(X) = gT (X)V−1g(X)

where g(X) is a vector whose kth element is ∂ŷ(X)/∂ŵk and V is the covariance matrix of
weights w. We can estimate the covariance matrix by the exact Hessian matrix

H =

N∑
n=1

1

σ2ν(Xn; û)

∂2En

∂w2
+ αwIn,

where In is the unitary matrix and En = 1/2(tn − ŷn)
2 is the least-square error for data point

Xn.
Or the outer product approximation to the Hessian

H̃ =

N∑
n=1

1

σ2ν(Xn; û)
g(Xn)g

T (Xn) + αwIn.

3.4 Confidence Measures for Hybrid HMM/ANN

See the note 3 in section 2.1.2 to have the explanation of an hybrid HMM/ANN. In the same sec-
tion, recall the equation (2.7) by taking the maximum depending of the state sequence instead
of the sum over it, we obtain

P(M|X) ' max
stat−seq

[∏
n

P(qnk |Xn)
P(qnk |M)

P(qk)

]
P(M). (3.5)

We present three confidence measures that can be derived from equation (3.5).:

• Scaled likelihood:

CMsl(qk) =

ne∑
n=ns

log
(
P(qk|Xn)

P(qk)

)
=

ne∑
n=ns

log
(
P(Xn|qk)

P(Xn)

)
,

where phone qk has a hypothesised start time ns and end time ne.

33

• Posterior:

CMpost(qk) =

ne∑
n=ns

log(P(qk|Xn)).

CMpost(qk) is computed by rescoring the optimal state sequence using the local posterior
probability estimates.

CMpost(qk) can be normalised by the duration of the phone in frames:

CMnpost(qk) =
1

ne − ns

ne∑
n=ns

log(P(qk|Xn)).

• Entropy:

CMent(qk) = −
1

ne − ns

ne∑
n=ns

K∑
k=1

P(qk) log(P(qk)).

CMent(qk) is the entropy (see below) of K posterior phone probability estimates output
by the ANN averaged over the duration of the phone.

Definition 23. The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑
X

P(X) log(P(X)).

All these CMs may be applied at both the phone and word levels. The scaled likelihood and
posterior CM are based on the most probable state sequence obtained by the Viterbi algorithm
(see section 1.2.4).

34

Chapter 4

Experiments

This chapter presents three months trainee work in 2013 on development of German automatic
speech recognition (ASR) system using a German part of multilingual database Mediaparl. The
purpose of this chapter is exemplify the theory by training and testing the ASR with specific
database. Both presented methods (see section 2.5), HMM/GMM and HMM tandem, are used
in this experiment.

4.1 Mediaparl’s Database

Mediaparl is a project developed by Idiap Research Institute, based in Martigny, which is a
non-profit foundation that conducts basic research and development in the area of multimedia
information management and it is affiliated with Ecole Polytechnique Fédérale de Lausanne.
The goal of Mediaparl is to develop in parallel two distinct tools designed to help the Valaisan
parliament in his process towards a parliament without paper. On one hand, an indexing and
retrieval system that uses automatic speech recognition to index words pronounced by deputies
during political debates. On the other side, an advanced automatic speech recognition tran-
scription system that is able to identify spoken language and automatically transcribe French
and German speech.

Mediaparl databases are french and german deputies interventions in the Valaisan parlia-
ment taken from Canal 9, a local TV company. There are now 4 years of raw data. Each sound
file is associated with a .txt and .lab files. For training, we used the .lab files as it as been pre-
pared using Gwenole’s scripts for French and German tokenisation and normalisation. During
data preparation, segments of less than three seconds or more than 50 seconds have been dis-
carded. In addition end silence has been trimmed to not have more than one second at the end
of the wav file. Finally, language identification has been done automatically, because speakers
can switch language at any time. Here are some additional statistics:

• French:

– 76’414 audio files or 170hours 38min 21sec,

– 239 speakers.

• German:

– 29’354 audio files or 73hours 30min 56sec,

– 150 speakers.

Database’s folder: The folder is divided into languages and years. Each folder name (speaker
intervention) contains some meta data in it: i.e. 283 truetime2010september07 416 614F:

35

• 283 is the speaker id,

• truetime2010september07 map to ../database/sessions/2010/09/07,

• 416 start time in seconds,

• 614 end time in seconds,

• F is for French.

Folder content includes .wav (audio files), .txt (transcription files) and .lab files (prepared files
using Gwenole’s scripts). The .lab is normalised and ready for training (it is generated with the
Mediaparl decoder and it’s accuracy is around 90% until 2012, as sentences are included in the
language model, and then 80%).

4.1.1 Preparation of Data

Lists: For this experiment, we used the german part of the Mediapal’s database that is 150
speakers. The list of speakers has been split up into 3 files: training list, development list and
test list (see section 2.7). The choosen distribution is 80% for training, 6% for development and
14% for testing.

Dictionaries: The first step in building a dictionnary is to create a sorted list of the required
words. Each word must be associated with its own phonetic, for this step we used the German
dictionary. Phonemes in the dictionaries are represented using the speech assessment methods
phonetic alphabet (SAMPA) which is based on the international phonetic alphabet, but features
onlay ASCII characters.

Two dictionaries are required for training, flat (basic) and main (alternative entries with sil
and sp final phones) for alignment. These contains three columns, first is the word, second in
bracets is the written word and the last column is the phonetic transcritption.

The entire data is divided into 3:

• 80% of training data (see section 2.5, the training part) for the models’ creation.

• 6% of development data to estimate parameters (see section 2.1.2 about language model
scale factor (LMSF) and word insertion penalty (WIP))

• and 14% of test data to evaluate the performance.

The distribution varies according to the amount of data, here is the one that we used for
experiment (see section 4).

4.2 HMM/GMM Method

Summarize of supervised, unsupervised and semi-supervised models (see section 1.3):

• Supervised models:

1. Train supervised acoustic models with transcribed audio;

2. Tuning of the supervised models with the development list;

3. Test of the supervised models with the test list.

• Unsupervised models: decode new untranscribed audio with supervised AM for obtaining
decoded transcription.

• Semi-supervised:

36

1. Train semi-supervised acoustic models with “truth” transcribed audio and decoded
transcribed audio;

2. Pruned and test the semi-supervised models.

4.2.1 Supervised Models

The data used for supervised models is ’true’ manual transcription with their corresponding
audio.

Training Part

Training of acoustic models (AMs) (see section 2.5) was performed using the HTS tools, wrapped
into Idiap Speech Scripts 1. We used perceptual linear prediction (PLP) features (see section 2.2)
which we extracted from the database.

The training program first aligns the words and its pronunciations, it’s mean that a matching
is create between the word and its phonemes. Then, an estimation of each phoneme (mono-
phone) is given by a single Gaussian. After a list of triphones is created and a reestimation is
done, having still single Gaussian distributions. The HMM is trained to have in each state a
statistical distribution that is a mixture of 16 Gaussians, which will give a likelihood for each
observed vector. Finally to tie rare states, the program apples a minimum description length
(MDL) decision trees. The set of Gaussian’s means and variances in each HMM state forms the
AMs.

Tuning Part

Aim. Find out, using the development list, optimal decoding parameters like word transition
penalties and language model scales (see section 2.1.2).

The effect of the word transition penalty is to modify the language model log probability
according to the equation

P̃(W) ′ = sP̃(W) + p

where p is the word transition penalty when it is negative, and word confidence when it
is positive (in the logatithmic domain), s is the language model probability scale factor and
P̃(W) = log(P(W)). In general, when unknown speech is given as input to the recogniser, the
number of insertions tend to increase and the number of deletions decrease, as p is increased
(more positive and less negative) and s decreased. Alternatively, the number of insertions tend
to decrease and the number of deletions increase, as p decreases (more negative and less pos-
itive) and s increases. This can be explained due to the fact that the token log-likelihood is
decreased when p is a negative number, penalising transitions between words (phonemes), re-
sulting in a decrease in the number of insertions and an increase in the number of deletions.
The optimal values for s and p are usually found by maximising the recognition accuracy on a
development set, for both of these parameters.

Tuning Results

We have

% of Correct Words =
#phoneme correcty recognised

#total labels
,

Accuracy =
#phoneme correcty recognised − #insertions

#total labels
.

1github.com/idiap/ssp

37

github.com/idiap/ssp

• Pruning of LM Scale, s, :

Development List
Word Transition Penalty LM Scale % of Correct Sentences % of Correct Words Accuracy

0 19 15.00 81.55 76.15
0 17 16.36 82.27 76.51
0 15 16.14 82.44 76.22

Table 4.1: Different results obtained in decoding the development list by varying the language
model scale.

• Pruning of Word Transition Penalty, p,:

Development List
Word Transition Penalty LM Scale % of Correct Sentences % of Correct Words Accuracy

0 17 16.36 82.27 76.51
-3 17 15.91 81.98 76.50
-7 17 16.14 81.94 76.92
-9 17 16.14 81.93 77.13

-11 17 16.36 81.86 77.19

Table 4.2: Different results obtained in decoding the development list by varying the word
transition penalty.

Thus the parameters are worth 17 for LM scale and -11 for word transition penalty (see
tables 4.1 and 4.2).

Testing Part

After the language model (LM) (see section 2.3) was trained from all transcriptions belonging
to the training part of AMs, we can test the ASR with adjusted parameters.

Test List
Word Transition Penalty LM Scale % of Correct Sentences % of Correct Words Accuracy

-11 17 17.29 78.54 75.11

Table 4.3: Results obtained for the test list with the pruned LM scale and word transition penalty.

We obtained a result of 75.11 % of accuracy for the ASR with supervised learning (see table
4.3).

4.2.2 Unsupervised Models

The aim of unsupervised model is to decode new audio (here 52hours08) which don’t have
transcriptions files. This model uses the AM of the supervised models obtained in section 4.2.1
to get decoded transcriptions. We created a new dictionary and language model depending
on the new audio data. We had to restrict the dictionary to 60’000 words because of HTK
capacities. Unsupervised learning allows to expand the amount of data which will be use for
semi-supervised model.

38

4.2.3 Semi-Supervised Models

Training Part

The training procedures for semi-supervised model is the same as supervised, the only differ-
ence resides in the data. For semi-supervised learning, we use merged data which are data
used to supervised (in section 4.2.1) and those used to unsupervised (in section 4.2.2). There-
fore there are audio with “truth” transcription plus audio with decoded transcriptions thanks to
unsupervised model.

Testing Part

After pruning in the same manner as section 4.2.1, i.e. by testing different values, we obtained
19 for the LM scale and -9 for word transition penalty. The same test list as supervised testing is
used to test the model.

Test List
Word Transition Penalty LM Scale % of Correct Sentences % of Correct Words Accuracy

-9 19 16.22 76.78 73.68

Table 4.4: Results obtained for the test of the semi-supervised models with the test list.

The result is 73.68% of accuracy (see table 4.4) which is less than supervised model. This
can be explained by the fact that the transcriptions in supervised model are correct instead of
semi-supervised which has decoded transcriptions with errors. So we need to prune decoded
transcriptions to sort out bad ones.

Pruned New Audio

Aim. Application of a CM threshold to set ’pruned new audio’ and retraining semi-supervised
models.

First HTK calculate the lattices which is a partially ordered set in which every two elements
have a unique supremum and a unique infimum. The output is a folder containing each sen-
tences in a file.

Secondly we calculate the frame-based entropy (see section 3.4) using the results of the
lattices. The higher the entropy, the higher the uncertainty of the model in describing the
observation. The output is also a folder containing each utterances in a file.

Then we estimate CM per utterance, i.e. we do the average of the entropy measure per
utterance without the silent results. We remove the silence results; it means we take the length
of the frame where the speech start until it ends so we remove the silence of the beginning and
the silence of the end. This permits to have a representative average.

Finally we set a threshold which applies between 10% and 30% less sentences. Thus we
obtain new pruned references.

Results with pruned new audio

We train the semi-supervised audio with the “truth” transciption and the pruned references
following multiple thresholds always by adjusting parameters. Here are the results:

The threshold 0.2 gives 74% of untranscribed audio (whether 39 hours), 0.15 83% (whether
44 hours) and 0.3 54% (whether 28 hours). We increase the “unpruned” semi-supervised result
(73.68% of accuracy see table 4.5) but it is always less than the supervised (75.11% of accuracy).

39

Test List
Threshold WTP LM Scale % of Correct Sentences % of Correct Words Accuracy

0.2 -13 17 16.09 77.04 74.16
0.15 -11 17 16.09 77.34 74.29
0.3 -3 17 16.36 77.96 74.33

Table 4.5: Results obtained for the test list of the retrain semi-supervised models with different
threshold.

4.3 HMM Tandem

The difference with the HMM/GMM model is that PLP features are transformed with MLP of 3
layers (here we obtained dimension 351x1565x57). The same 3 different lists: 80% for training,
6% for development and 14% for test sets and the same dictionary are used.

4.3.1 Supervised Tandem Models

The output of the training supervised MLP is a .mat file of posteriors. After reducing dimention-
ality with the principal component analysis (PCA), we reduce the dimension of 57 into 42. The
model is train with the same HMM/GMM but with posterior features.

Results

After pruning the parameters we obtain a result of 76.74% of accuracy (see table 4.6), more
than supervised training with PLP features.

Test List
Word Transition Penalty LM Scale % of Correct Sentences % of Correct Words Accuracy

-11 19 17.82 81.06 76.74

Table 4.6: Results obtained for the test of the supervised tandem model with the test list.

4.3.2 Semi-Supervised Tandem Models

After using unsupervised learning to obtain decoded transcription of the unlabelled audio, we
train the semi-supervised model with “truth” and decoded transcription. The same as in section
4.2.3 but with MLP features instead of PLP. The dimension of the 3 layers MLP is 351x3231x57.
We observe the same phenomenon as for HMM/GMM model, the result, 75.89% (see table 4.7),
decreases compare to supervised learning.

Test List
Word Transition Penalty LM Scale % of Correct Sentences % of Correct Words Accuracy

-11 19 17.15 79.78 75.89

Table 4.7: Results obtained for the test of the semi-supervised tandem model.

40

4.4 Conclusion of the Experiment

In conclusion, first we use HMM/GMM model for training supervised models with PLP features,
used unsupervised learning for more data and we retrain the model with merged data. The
semi-supervised result being worse, we try to pruned the decoded transcriptions which doesn’t
give significant improvement.

Secondly we use the MLP method with 3 layers. With this method, we can see a small
improvement (see table 4.8).

Type of Model Audio Accuracy
Supervised transcribed audio 75.11

Semi-Supervised transcribed + decoded audio 73.68
Semi-Supervised transcribed + 83% decoded audio 74.29
Semi-Supervised transcribed + 74% decoded audio 74.16
Semi-Supervised transcribed + 54% decoded audio 74.33

Supervised Tandem transcribed audio 76.74
Semi-Supervised Tandem transcribed + decoded audio 75.89

Table 4.8: Summarize of results obtain in the experiment.

Finally, time doesn’t allow us to test MLP method with 5 layers which should promise better
performance, and apply CMs of section 3.

41

Conclusion

Through this work, I discovered mathematics in a practical field such as artificial intelligence.
Courses taken at the university allowed me to understand the subject although it was sometimes
difficult to link theory to practice. I learned with this work to juggle with different experience
papers on which the theory was often summarized.

I enjoyed my 3-month internship at Idiap Research Institute which allowed me to touch the
area of research and bring about a practical side. During this internship I was able to improve
my computer skills and I realize that without this, the practice goes not very far. One major
difficulty I encountered was in the differences between computer scientists’ and mathematicians’
appellations. Recognize known methods through experiments was not easy. Another difficulty
was the time because it taked long to run experiments.

The writing of this work has allowed me to better understand each step of speech processing
and do not mix them. This is a subject that I found very interesting by mixing the different areas
and the fact that it is current though it is dated 1956.

To conclude, the main thing learned is that there is still much to discover whether mathe-
matics, computer sciences, or neurosciences and with my studies I simply learned the tools to
try to get to do it autonomously.

42

Acknowledges

I would like to thank Idiap to permit me to do this master subject and therefore permit me to
discover mathematics in the field of artificial intelligence. It was really interesting to deal with
informatic, mathematics and neurosciences.

I thank Milos Cernak, my supervisor at Idiap, which helps me for all my trainee work and
for understanding of ASR model. Experiment would not exist without him. Thank you for your
time and your help.

I thank Christian Mazza, my supervisor at university of Fribourg, who accepted to follow me
for this subject. He was valuable for understanding mathematical concepts.

43

References

Figures and Tables

• Figures 1.1, 1.2 and 1.3: taken from the paper: Couvreur C.; Hidden Markov Models and
their Mixtures; 1996; Université catholique de Louvain.

• Figures 1.4, 2.3 and 2.4: taken from the book: Young S., Evermann G., Gales M., Hain T.,
Kershaw D., Liu X., Moore G., Odell J., Ollason D., Povey D., Valtchev V. and Woodland P.;
The HTK Book (for HTK Version 3.4); 1999; Cambridge University.

• Figure 1.5: taken from https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.

svg.

• Table 1.1: taken from the book: Wasserman Larry; All of Statistics: A Concise Course in
Statistical Inference; 2005; Springer.

Books

• Wasserman Larry; All of Statistics: A Concise Course in Statistical Inference; 2005; Springer.

• Young S., Evermann G., Gales M., Hain T., Kershaw D., Liu X., Moore G., Odell J., Ollason
D., Povey D., Valtchev V. and Woodland P.; The HTK Book (for HTK Version 3.4); 1999;
Cambridge University.

• Huang X., Acero A. and Hon H.; Spoken Language Processing: A Guide to Theory, Algorithm,
and System Development; 2001; Prentice Hall.

• Rabiner L. and Juang B.-H.; Fundamentals of Speech Recognition; 1993; Prentice Hall.

• Young S.; HMMs and Related Speech Recognition Technologies.; 2007; Springer Handbook
of Speech Processing. J. Benesty, M. Sondhi and Y. Huang, Springer.

• Cover T.M. and Thomas J.A.; Elements of Information Theory; 1991; John Wiley & Sons.

Papers

• Hwang J.T.G. and Ding A.A.; Prediction Intervals for Artificial Neural Networks; 2012; Jour-
nal of the American Statistical Association; DOI: 10.1080/01621459.1997.10474027

• Mazza C.; Decision Theory; Course Summer Semestre 2008, Department of Mathematics;
University of Fribourg.

• Revaz S. and Cernak M.; Baseline System for Automatic Speech Recognition with French
GlobalPhone Database; 2012; Idiap Research Institute.

44

https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg
https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg

• Faria A.; An Investigation of Tandem MLP Features for ASR; 2007; TR-07-003.

• Couvreur C.; Hidden Markov Models and their Mixtures; 1996; Université catholique de
Louvain.

• Nkosi M.C., Manamela M.J.D and Gasela N.; Creating a Pronunciation Dictionary for Auto-
matic Speech Recognition: a Morphological Approach; 2003; Private Bag X1106.

• Adami A.G.; Automatic Speech Recognition: From the Beginning to the Portuguese Language;
RS 95070-560.

• Gandrabur S., Foster G. and Lapalme G.; Confidence Estimation for NLP Applications; pub-
lished in ACM Transactions on Speech and Language Processing (TSLP); 2006.

• Hermansky H., Ellis D.P.W. and Sharma S.; Tandem Connectionist Feature Extraction for
Conventional HMM Systems; 2000; ICASSP-2000.

• Akamine M. and Ajmera J.; Decision Tree-Based Acoustic Models for Speech; EURASIP Jour-
nal on Audio, Speech, and Music Processing 2012; Springer.

• Bernardis G. and Bourlard H.; Improving Posterior Based Confidence Measures in Hybrid
HMM/ANN Speech Recognition Systems; 1998; IDIAP-RR 98-11.

• Jiang H.; Confidence Measures for Speech Recognition: A Survey; 2005; doi:10.1016.

• Tibor F.; Confidence Measurement Techniques in Automatic Speech Recognition and Dialog
Management; 2008; Technische Universität München.

• Willett D., Worm A., Neukirchen C. and Rigoll G.; Confidence Measures for HMM-Based
Speech Recognition; Gerhard-Mercator-University Duisburg, Germany.

• Papadopoulos G., Edwards P.J. and Murray A.F.; Confidence Estimation Methods for Neural
Networks: A Practical Comparison; 2000; ISBN 2-930307-00-5.

• Williams G. and Renals S.; Confidence Measures Derived from an Acceptor HMM; University
of Sheffield.

• Williams G. and Renals S.; Confidence Measures from Local Posterior Probability Estimates;
University of Sheffield.

• Nix D.A. and Weigend A.S.; Estimating the Mean and Variance of the Target Probability
Distribution; 1994 IEEE; 0-7803-1901-X/94.

• Williams D.A.G.; Knowing What You Don’t Know: Roles for Confidence Measures in Auto-
matic Speech Recognition; 1999; University of Sheffield.

• Wang D., Tejedor J., Frankel J., King S. and Colás J.; Posterior-Based Confidence Measures
for Spoken Term Detection; 2005; TIN2005-06885.

• Wessel F., Macherey K. and Ney H.; A Comparison of Word Graph and N-Best List Based
Confidence Measures; University of Technology Aachen, Germany.

• Hennebert J., Ris C., Bourlard H., Renals S. and Morgan N., Estimation of Global Posteriors
and Forward-Backward Training of Hybrid HMM/ANN Systems; 2007.

• Qazar C.S.; Bayesian Error Bars for Regression; 1996; PHD thesis, Aston University.

• Hermansky H.; Perceptual Linear Predictive (PLP) Analysis of Speech; 1990; Acoustical So-
ciety of America.

45

• Rabiner L.R.; A Tutorial on Hidden Markov Models and Selected Applications in Speech Recog-
nition; 1989; IEEE.

• Cheng B. and Titterington D.M.; Neural Networks: A Review from a Statistical Perspective;
1994; Statistical Science.

• Wessel F. and Ney H.; Unsupervised Training of Acoustic Models for Large Vocabulary Con-
tinuous Speech Recognition; 2002; IEEE.

• Weintraub M., Beaufays F., Rivling Z., Konig Y. and Stolcke A.; Neural-Network Based
Measures of Confidence for Word Recognition.

46

	Introduction to Machine Learning in Mathematics
	Basic Definitions
	Hidden Markov Models (HMMs) and Speech Recognition
	Hidden Markov Models
	Learning Problem
	Evaluation Problem
	Decoding Problem

	Machine Learning
	Learning Models
	Supervised Learning - Regression Problem
	Unsupervised Learning - Cluster Analysis
	Artificial Neural Networks (ANN)

	Components of Automatic Speech Recognition Systems
	Fundamentals of Automatic Speech Recognition
	Main Components
	Mathematical Formulation of Recognition Process

	Features Extraction
	Perceptual Linear Predictive Coefficients (PLP)
	Posterior Features

	N-Gram Language Models (LM)
	Pronunciation Dictionary / Lexicon
	Acoustic Models' Architectures
	Decoder
	Evaluation of the Performance

	Confidence Measures (CM)
	Acoustic CM
	Utterance Verification
	Confidence Estimation Methods for Neural Network
	Confidence Measures for Hybrid HMM/ANN

	Experiments
	Mediaparl's Database
	Preparation of Data

	HMM/GMM Method
	Supervised Models
	Unsupervised Models
	Semi-Supervised Models

	HMM Tandem
	Supervised Tandem Models
	Semi-Supervised Tandem Models

	Conclusion of the Experiment

