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The ability to recognize the Visual Focus of Attention (VFOA, i.e. what or
whom a person is looking at) of people is important for robots or conversational
agents interacting with multiple people, since it plays a key role in turn-taking,
engagement or intention monitoring. As eye gaze estimation is often impossi-
ble to achieve, most systems currently rely on head pose as an approximation,
creating ambiguities since the same head pose can be used to look at differ-
ent VFOA targets. To address this challenge, we propose a dynamic Bayesian
model for the VFOA recognition from head pose, where we make two main
contributions. First, taking inspiration from behavioral models describing the
relationships between the body, head and gaze orientations involved in gaze
shifts, we propose novel gaze models that dynamically and more accurately
predict the expected head orientation used for looking in a given gaze target
direction. This is a neglected aspect of previous works but essential for recog-
nition. Secondly, we propose to exploit the robot conversational state (when
he speaks, objects to which he refers) as context to set appropriate priors on
candidate VFOA targets and reduce the inherent VFOA ambiguities. Experi-
ments on a public dataset where the humanoid robot NAO plays the role of an
art guide and quiz master demonstrate the benefit of the two contributions.

c© 2014 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Task and motivation

Endowing human-computer interaction (HCI) or human-
robot interaction (HRI) systems with social skills relies on ad-
vances of technologies in several areas including speech recog-
nition and synthesis, dialog and interaction modeling, and hu-
man behavior perception and situated scene analysis that go be-
yond people localization and speaking status determination.

In this paper, we address the recognition of gaze and more
precisely its interpretation in terms of VFOA in HRI or Em-
bodied Conversational Agent (ECA) settings. Amongst the be-
haviors exhibited during interactions, gaze is one of the most
important. It is a non-verbal cue which has many functions in
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communication such as establishing relationships, expressing
intimacy, or exercising social control; its role in discourse regu-
lation has been well documented (Kendon, 1967). In particular,
gaze is a good indicator of the addressee (to whom a person is
speaking) which is an important information to know for robots
or ECAs interacting with multiple people. Due to this impor-
tant role, gaze has often been used for turn-taking management
and at a higher level to recognize a user’s predefined interaction
state (Foster et al., 2012) or monitor people engagement and in-
tention (Bohus and Horvitz, 2009). Besides conversation, gaze
can be used as a social skill, for instance to assign importance
to different people and decide how to share the robot attention
on them (Bennewitz et al., 2007), or monitor the attention of
people towards objects related to the task they perform or ver-
bally referenced in the conversation (Cooper, 1974) and (re)act
appropriately. For instance, in ECA based city trip planning ap-
plications, the user’s gaze to different map locations can be used
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alone or in combination with other cues like nods to manage di-
alog content or the conversation state (Nakano et al., 2003). In
another direction, several works have proposed computational
model of the emergence and learning of shared attention mech-
anisms in human infants (Triesch et al., 2006). For instance,
(Nagai et al., 2006) implemented on a robotic platform a cogni-
tive model for the learning of visuomotor gaze following skills
based on the appropriate perception of head pose images of a
caregiver as well as adaptive feedback from this caregiver.

1.2. Approach and related work

Measuring and interpreting the gaze of people is however a
difficult task. Eye tracking devices can be used but are usually
expensive, considered as intrusive, or not applicable for natu-
ral interaction analysis. Some works successfully used simple
attentional cues like torso orientation (Bennewitz et al., 2007).
Nevertheless, benefiting from advances in computer vision, re-
searchers have mainly considered head pose as an approxima-
tion of the gaze (Nakano et al., 2003; Foster et al., 2012), a trend
that should increase with the new Kinect camera and API that
directly delivers this information. However, while this approach
is supported by both behavioral modeling (Langton et al., 2000)
and empirical evidence, interpreting the head pose as looking
at VFOA target remains ambiguous since in realistic scenarios,
the same pose can be used to look at different targets. Two
directions need to be explored in conjunction to solve this am-
biguity. We discuss both of them below, presenting relevant
related work and introducing then our contributions.

Head pose-VFOA gaze direction association. A central is-
sue when designing recognizers like Hidden Markov Models
(HMM) to decode the sequence of VFOA targets given the head
pose sequence is the following: what is the expected head pose
of a person who looks at a given VFOA target? Indeed, in gaz-
ing behaviors, the difference between a gaze direction and the
head pose used to look in that direction, which is due to the
missing eye information, can not be considered as a random
noise with zero mean. Rather, it is often biased, and the bias
depends on several factors related to the body, head and eye
dynamics, as discussed below. In spite of its importance, the
above issue has seldom been addressed in the past. Some meth-
ods rely on manual setting, potentially followed by adaptation
(Otsuka et al., 2005). Others like Foster et al. (2012) use train-
ing data to directly infer VFOA from head pose without defin-
ing gaze as an intermediate step. Learned parameters, how-
ever, are then specific to the geometric configuration between
the sensor (robot), person, and VFOA targets, and thus such an
approach is not suitable for robot dealing with moving people.

As one of the few works addressing this problem, Ba and
Odobez (2009) Exploited results on gazing behavior and head-
eye dynamics involved in gaze shifts (Langton et al., 2000;
Hanes and McCollum, 2006) and introduced a linear gaze
model relating the head pose, gaze direction, and body orienta-
tion through a head-to-gaze ratio (see Fig. 3). While the method
worked when applied to meetings, it suffered from two draw-
backs: the body orientation was assumed to be fixed and set
according to the setup, an assumption that might not hold in

a) b)
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Fig. 1. Vernissage scenario: a robot acts as an art exhibition guide, provid-
ing explanations about artworks placed around it, and giving a quiz about
these artworks and more general art and culture topics. a) Real ste-up. b)
Vernissage dataset considered for evaluation.

more dynamic settings from HCI or HRI where the robot is not
always the main focus and people are free to move and re-orient
themselves, as illustrated in Fig. 11. The second drawback,
pointed out in several psychovisual works, is that the mapping
not only depends on the the gaze direction and body orienta-
tion, but also on the head or gaze direction before the shift. To
overcome some of the above limitations, Voit and Stiefelhagen
(2008) who addressed VFOA recognition in a room from exter-
nal sensors, proposed ad-hoc differential head pose indicators
to select more appropriate head-to-gaze ratios and constrain the
succession of gaze shifts, but without accounting for the body
orientation or rely on documented human behavior models.

Contextual recognition. A second way of resolving head pose
ambiguities is to rely on other social cues leveraging on the fact
that some behaviors provide context to others. In human in-
teractions, examples for VFOA recognition include speaker in-
formation (Stiefelhagen et al., 2002) or higher conversational
states (Gorga and Otsuka, 2010), that can be complemented
with group activity (Ba and Odobez, 2011). While in these
cases the context have to be inferred from the data and might
be noisy, in the robotic or ECA cases, the agent is fully aware
of its own conversational acts, allowing them to be conveniently
exploited to better interpret the non-verbal cues performed by
interacting people. For instance, in Morency et al. (2005), dif-
ferent types of features (lexical, timing, gesture displayed) per-
formed by an ECA are exploited within a supervised learning
framework to predict head nods and head shakes in combina-
tion with a vision-based head gesture recognizer. However, to
our knowledge, while estimating the VFOA is considered by
several systems (Bohus and Horvitz, 2009; Foster et al., 2012),
the use of the robot dialog context to improve the recognition
of a user attention (VFOA) has not been explored in the past.

1.3. Contributions
We propose a novel Input-Output HMM (IO-HMM) com-

bining the two above approaches to improve VFOA recogni-
tion. As for the first one, our model relies on a time-varying
and implicit estimation of the body orientation to implement
dynamic gaze-to-head mapping and gaze shift models inspired
by Hanes and McCollum (2006) which in our HRI scenario are
shown to considerably improve the accuracy of the predicted
head pose used to look at VFOA targets, and VFOA recogni-
tion as a consequence. As for the second one, we benefit from
the HRI context by exploiting two robot dialog act types that in-
fluence VFOA expectations: communicative acts (people look
more at speakers, including the robot) and verbal acts (refer-
ences to scene objects). Experiments on a large dataset (140
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minutes) featuring natural human robot interactions demon-
strate the complementary benefit of the two modeling steps.

The paper is organized as follows. Section 2 provides an
overview of the approach, while the Sections that follow de-
scribe the baseline algorithm (Sec. 3), the novel gaze dynamical
mapping (Sec. 4), and the contextual model (Sec. 5). Section 6
introduces the experimental set-up, while Sec. 7 discusses in
details the results. Section 8 concludes the paper.

2. Approach Overview

Our objective is to monitor the visual attention of people in
a given environment relying on head pose. We thus assume to
have a specific set of visual targets F which are of interest in
the given context, and would like to recognize which of these
targets a given person is looking at.

To illustrate the above, the main robotic setup which we have
considered is based on the Vernissage scenario shown in Fig. 1.
Recognizing what or whom people are looking at in this con-
text gives useful information about their attention to the robot or
paintings and hence whether they follow the explanation or not
which could be used to decide how to proceed in the conver-
sation. More specifically, our experiments will be conducted
on the Vernissage dataset (Fig. 1b). In this case we define F
as {Nao, partner, pai1, pai2, pai3, other}, where Nao refers to
the robot, pai j refers to painting number j and other stands for
VFOA that is not attributed to any other label (see Fig. 1b).

Fig. 2 illustrates the recognition approach. The middle part
(box) shows the main recognition process, which consists of
an HMM allowing to decode the sequence of head poses Ht

in terms of VFOA states Ft ∈ F. The head pose Ht =

(Hpan
t ,Htilt

t ) ∈ R2 is represented by the pan and tilt angles char-
acterizing the left-right and up-down head rotations, as illus-
trated in Fig. 3a. The roll angle was left-out since it does not
bring information regarding the gaze direction. This process is
affected in two ways. First, by the gaze-head mapping model
shown at the bottom, whose goal is to dynamically predict at
each instant t the expected head pose µh

t = (µh,pan
t , µh,tilt

t ) used
to look at each VFOA target, as addressed in Sections 3 and
4. It is designed to reflect the findings from studies on gaz-
ing behavior related to the coordination of the body, head and
eyes in gaze shift. Secondly, as shown at the top of Fig. 2, by
leveraging contextual information aiming at removing ambigu-
ities introduced by relying on noisy head poses measurements
rather than gaze. Given our robotics setup, contextual cues are
extracted from the robot’s conversational acts as discussed in
Section 5.

3. Baseline: HMM with Geometrical Mapping

We build our VFOA recognition model based on the HMM
illustrated in the middle part of Figure 2, without exploiting the
context at this stage. In this model, the distribution of head
poses associated to a given VFOA target is represented by a
Gaussian distribution, whereas transitions between VFOA tar-
gets are represented by a transition matrix A. More specifically,

C C +

+

+

+

Robot Context

VFOA

Head Pose

Gaussian Means:

dynamic gaze to head-to-gaze mapping

Fig. 2. VFOA recognition from head pose. The robot conversation
context Ct appears as an input observation and provides expectations
about which VFOA should be observed. At the bottom, a gaze-head
mapping module dynamically monitors the expected head pose asso-
ciated with each VFOA target.

a) b)

Fig. 3. a) Head pose euler angles. b) Geometrical Gaze Model. The person
is assumed to be looking at the reference direction, or midline (body orien-
tation). Then, looking at a gaze target is accomplished by rotating both the
head and eyes, the head part being a fixed fraction of the full gaze rotation.

let µh
t ( f ) ∈ R2 and ΣH( f ) ∈ R4 denote the mean and covariance

of the Gaussian associated with target f . The HMM equations
can be written as:

p(Ht |Ft = f , µh
t ) = N(Ht |µ

h
t ( f ),ΣH( f )) (1)

p(Ft = f |Ft−1 = f̂ ) = A f f̂ (2)

Parameter setting plays an important role for recognition. Fol-
lowing previous works, gaussian covariances can be set to re-
flect target sizes and/or head pose estimation variability. In ab-
sence of other information, the temporal prior p(Ft |Ft−1) can
be used to satisfy our expectation of having smooth VFOA se-
quences by setting in A large probabilities to stay in the same
state, and equal low probability to transit to other states.

However, although they play the most important role in the
model, setting the Gaussians means µh

t is not easy. As discussed
in the introduction using training data is not an option since
annotation needs to be gathered for each configuration of the
observer, targets and settings. This is especially problematic if
people are free to move.

A solution to overcome the above difficulty is to use gaze
models derived from cognitive findings in gazing behavior
(Langton et al., 2000). Accordingly, gazing at a target is ac-
complished by rotating both the eyes (’eye-in-head’ rotation)
and the head as illustrated in Fig. 3b) for the pan. More pre-
cisely, as a first approximation, µhb

t ( f )1, the mean of the Gaus-
sian to look at target f can be set as a fixed linear combination

1We will denote by µhx the mean µh set using the model x.
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of the gaze and head reference directions:

µhb
t ( f )−R0 = α?(µt( f )−R0)⇒ µhb

t ( f ) = α?µt( f )+(12−α)?R0
(3)

where ? denotes the component wise product, 12 = (1, 1), α =

(αpan, αtilt), R0 ∈ R2 denotes the reference direction, and µt ∈

(R2)K the directions of the given K targets which are assumed to
be known. The head-to-gaze ratio for the pan, αpan, is usually
set between 0.5 and 0.7, and between 0.3 and 0.5 for the tilt.
Our baseline thus consists of the above HMM model where the
reference R0 is set to a constant value and the head pose mean
for looking at target f is set using Eq. 3.

4. Gaze to head dynamical mapping

The baseline geometrical model has been useful in static sce-
narios like meetings. There, since people are seated and do
not move their bodies extensively, setting the reference direc-
tion R0 as the middle of the target directions has been a good
solution (Ba and Odobez, 2009). When the participants upper
body and shoulders exhibit more dynamics, the baseline model
becomes inaccurate since having a static body reference be-
comes an unrealistic assumption. Furthermore, this head-gaze
mapping model was originally studied with discrete gaze shifts
when the person gazed intentionally at a given direction from
the reference (Langton et al., 2000) (cf. Fig. 3b). Therefore, it
might not be sufficient when the person is continuously look-
ing at different targets in a natural conversation. In this view,
exploiting past head poses or gaze directions could be useful
for obtaining dynamic and more precise predictions of the head
poses used to look at a given target at the current instant. In the
following, we introduce three models going in that direction.

4.1. Model G1: Dynamical Head Reference
Setting the Gaussians means using the geometrical model re-

quires the knowledge of R0 and of the target directions. Eq. 3
shows the importance of the reference: using a wrong value for
R0 shifts the mean values µh

t ( f ) for all targets f simultaneously,
which can have dramatic effects for head pose interpretations.
The importance of knowing the head reference (shoulder orien-
tation) is also illustrated in Fig. 11a). Unless it is constrained by
the setting (e.g. seated people), using a constant reference can
be problematic. More general interactions will result in more
variations and shifts in the reference as people are free to move,
motivating the need for setting the reference dynamically.

To accounting for a dynamic situations, an estimation of the
shoulder orientation is necessary. As this is difficult to extract
from vision, we rely on the following intuition. A person tends
to orient himself towards the set of gaze targets he/she spends
time looking at. Such a body position makes it more comfort-
able and less energy consuming to rotate his head towards dif-
ferent gaze targets. As a corollary, this means that his average
head pose over time is a good indicator of his reference direc-
tion. Therefore we set the reference value at frame t denoted by
Rt as the head pose average computed over the temporal win-
dow of duration WR preceeding the instant t:

Rt =
1

WR

t∑
i=t−WR

Hi

Hpr
2

Hpr
1

µ

µh1
Ref

Fig. 4. Gaze Model with Midline Effect (Hanes and McCollum, 2006) (pan
superscripts are dropped for simplicity). The target direction for the shift
is denoted by µ. When the gaze is moved to µ from the initial head pose
Hpr

1 , the head is rotated to µh1 according the geometrical model. However,
when the gaze shift is centripetal from Hpr

2 to µ, the head is moved to µ. For
initial head positions between µh1 and µ (red zone), an eye-only saccade to
µ is made (the head position remains the same).

This value can then be used as the substitute for the static refer-
ence in the baseline model of Eq. 3, leading to:

µ
hg1
t ( f ) = α?µt( f ) + (12 − α)?Rt (4)

We will denote this gaze model by G1.

4.2. Model G2: Midline Effect
Through a literature review and their own experiments,

(Hanes and McCollum, 2006) studied more thourougly the re-
lation between the reference, head, and gaze directions. The
resulting model is illustrated and explained in Fig. 42 One im-
portant point they showed is that, for gaze rotations towards the
side, while the proportion of gaze shift accomplished by the
head depends on the position of the head at the start of the gaze
(which in general is not aligned with the reference), the head
end direction is actually a constant proportion of the gaze when
measured from the reference, as given by the G1 model. This
indeed shows that the G1 model is valid for most gaze shifts
(except centripetal ones, cf Fig. 4).

To implement this midline effect we need to know the head
pose before a potential gaze shift occurs. We thus introduced
the variable Hpr,pan

t defining the head pose pan angle prior to a
shift and estimated it as the average of the head poses computed
over a temporal window of size W p separated by a gap ∆p from
the current instant:

Hpr,pan
t =

1
W p

t−∆p∑
i=t−W p−∆p

Hpan
i (5)

The G2 gaze model was then implemented by setting the mean
µ

hg2,pan
t ( f ) of the head pose pan angle2 of target f using the

following rules (for µpan( f ) > 0 and omitting f for simplicity):

µ
hg2,pan
t =

µhg1,pan
t if Hpr

t < µ
hg1,pan
t

min
(
µ

pan
t , µ

hg1,pan
t + αH(Hpr,pan

t − µ
hg1,pan
t )

)
otherwise

The equations to be used when µpan( f ) ≤ 0 can be derived fol-
lowing the same principle. Fig. 5a shows the resulting proba-
bilistic graphical model G2. The factor αH indicates how much

2In (Hanes and McCollum, 2006), the reference is called midline. Note that
as the model was only studied for the pan variable, in the G2 model (and G3 as
well), the tilt gaussian means were set using the G1 model.
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a) 1
prpr

b)
Fig. 5. Probabilistic graphical models. (a) Model G2. The head reference
direction Rt and the mean head pose of the Gaussians µh

t are time depen-
dent variables, and the recent head pose Hpr

t can be exploited. (b) Model
G3. The mean head pose for looking at a target (µh

t ) depends on the gaze
target at the previous time step (Ft−1). Shaded nodes indicate that the cor-
responding random variables are set directly from observation, whereas
unshaded nodes denote hidden variables that need to be inferred.

we take into account the previous head pose in the estimate.
When αH = 0, we always have µhg2,pan

t = µ
hg1,pan
t , which means

that the head pose means are set using the G1 model. When
αH = 1, the implemented model is exactly the one proposed by
(Hanes and McCollum, 2006).

4.3. Model G3: implementing gaze shifts

When implementing the midline effect, the previous model
has one drawback: at each time step, a gaze shift is somehow
assumed. In other words, even if the person is focusing on target
f , the previous head pose Hpr,pan

t , estimated through recursion
over a short temporal window, evolves and as a consequence
may lead to an evolution of what the head pose for looking at
target f should be, especially when Hpr,pan

t is close to the ex-
pected head pose µhg1,pan

t , which might not be appropriate.

As alternative to the model G2, we define the gaze situation
prior to a visual attention shift by the actual gaze direction de-
fined by the (discrete) VFOA at the previous instant. We then
propose to define the mean of the head pan angle2 to look at
target f at time t, given the previous focus Ft−1 = f̂ , by:

µ
hg3,pan
t ( f ) = α1µ

pan
t ( f ) + α2µ

pan
t ( f̂ ) + (1 − α1 − α2)Rpan

t (6)

Thus, in absence of gaze shift (Ft−1 = Ft = f ), the head pose
mean is simply given by the geometrical model with αpan =

α1 + α2 and therefore the problematic pose evolution during
fixation described above does not exist. In case of a gaze shift
(Ft−1 , f ) the head pose pan angle is not only affected by the
reference and new gaze direction µpan

t ( f ) as in G1, but also by
the direction towards the VFOA target at previous instant (the
head will be closer to direction of the previous VFOA target
than what would be predicted by the model G1).

Fig. 5b) shows the new graphical model G3. The link be-
tween the hidden states Ft−1 and µh

t renders the inference more
complex than in a standard HMM. In practice, we conducted the
inference sequentially, using the estimated focus at time t−1 to
estimate the optimal focus at time t.

5. Context Modeling

We aim to leverage context cues to improve VFOA recogni-
tion from head pose. Contextual information could potentially
help in removing some of the ambiguities due to the limitations

Do you want me to give you some 
information about these paintings Alex? 

Good, I will do that. The first painting, that 
we will look at is there on the right side. 

 person 1 

Would you also like me to 
explain this painting Chris? 

 person 2  group 

 paints pai 1 pai 1 

 segment: 

 speaking: 

addressee: 

 topic: 

 seg 1  seg 2 seg 3 

Fig. 6. Illustration of the context assignments.

of our head pose based VFOA recognition models and to com-
pensate for noisy estimations of the head poses.

When interacting with a robot, its actions influence what peo-
ple would do in certain situations. Therefore, this information,
which the robot is aware of, can be used to predict and better
interpret people behavior. In the following, prior to describing
more precisely the recognition model, we first introduce in the
next section the contextual features that we have exploited.

5.1. Robot Conversation Context

Given our task, the question is which of the robot actions
affect people VFOA, and how? In interactions, these mainly
relate to the communication functions of gaze and their rela-
tionships with speaking turns (Kendon, 1967). However, it is
also known that objects playing a central role in conversation
may attract the attention and whereby overrule the natural com-
munication patterns (van Turnhout et al., 2005). In our art guide
scenario this corresponds to physical locations in the room and
particularly paintings. We thus defined the robot interaction
context, illustrated in Fig. 6, as described below.

Speaking context. Listeners are known to gaze more at speak-
ers than a non-speakers to show attention towards them. Thus
we defined a speaking context state variable st ∈ {0, 1} as
whether Nao speaks or not at time t.

Addressee context. It is known that speakers monitor their ad-
dressees’ attention by gazing at them, and expect gaze in re-
turn (Kendon, 1967). We thus defined the addressee context
a ∈ AC = {pers1, pers2, group} of a speech segment as the
cases when the robot addresses the first, the second, or both
persons. In our data, this context is automatically derived from
the dialog system, which is aware of who is addressed (either a
person or a group) along with the way to address them, which in
our set-up was accomplished for a given individual by naming
him and turning the head towards him, or by directing the head
in between participants when both persons were addressed.

VFOA statistics depending on the addressee status are shown
in Fig. 7, during the robot speech (x = 0) or x seconds after the
end of the speech. In spite of the noise, we can notice that
addressed people tend to stay more in visual contact with the
robot, while non-addressed people disengage quicker to look
at the other person or elsewhere. There is overall no strong
temporal variation of VFOA probabilities (after the utterance),
so to avoid overfitting, assuming a constant model for x > 0
is reasonable. We defined the addressee context state at at t as
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Fig. 7. VFOA statistics of an individually addressed person (left), a non-
addressed person (middle); an addressed person, when both persons are
addressed (right). The x axis denotes the time (in second) since the end of
the robot utterance. The statistics for x = 0 are collected during the robot’s
utterance.

the addressee context derived from the current (if st = 1) or
preceding (if st = 0) robot utterance.

Topic context. Given our scenario, the topic context set is de-
fined as OC = {pai1, pai2, pai3, paintings, none} corresponding
to whether the robot informs or refers to a specific painting, to
two or all paintings, or none of them. The topic context state
ot ∈ OC at time t is thus defined as topic context of the robot
utterance that precedes t.

Overall conversational context Ct. As a summary, at each
instant t, the different context states st, at and ot are automat-
ically assigned according to the spoken utterances and tempo-
ral segments, as illustrated in Fig. 6. The final context state
Ct is then defined as the Cartesian product of all contexts, ie
Ct = (st, at, ot), and will influence the VFOA recognition as
explained in the next Section.

5.2. Conversation Aware VFOA Recognition
To address VFOA recognition using head pose and context

information, we use the IOHMM graphical model of Fig. 2.
In this model, the VFOA is inferred by maximizing the poste-
rior probability of the sequence of VFOA states F1:t given all
observed variables: head pose Ht ∈ R2 and context Ct. The
posterior for the graphical model of Fig. 2 is expressed as:

p(F1:t |H1:t,C1:t, µ
h
1:t,R1:t)∝

∏
t=1:t

p(Ht |Ft, µ
h
t )p(Ft |Ft−1,Ct)

with p(Ht |Ft = f , µh
t ) = N(Ht |µ

h
t ( f ),ΣH( f )) (7)

and p(Ft |Ft−1,Ct) ∝ p(Ft |Ft−1)p(Ft |Ct) (8)

where the different terms are explained below.

Data likelihood. The term in Eq. 7 represents the likelihood of
an observed head pose for a given focus, and is modeled as in
Section 3, but here we integrate dynamic means µh

t which play
a crucial role for VFOA recognition as in Section 4.

Contextual prior. Eq. 8 denotes the prior on the focus, which
we assumed can be decomposed in two parts. The first one is
the temporal prior p(Ft |Ft−1) modeled as in Section 3 to allow
temporal smoothing. The second one p(Ft = f |Ct = c) = Bc f

denotes our robot context prior which affects recognition by al-
tering the expectations about what people look at depending on
the context. It is parameterized by the probability tables B.

Learning the context tables. There are several ways to set
the tables, depending on goals and assumptions. Here, we use a

Table 1. Sample context probability priors (using only the topic context)
showing parameter tyings.

Context Nao partner pai1 pai2 pai3 others
pai1 0.33 0.03 0.53 0.04 0.04 0.03
pai2 0.33 0.03 0.04 0.53 0.04 0.03
pai3 0.33 0.03 0.04 0.04 0.53 0.03

paints 0.32 0.14 0.16 0.16 0.16 0.06
none 0.58 0.17 0.04 0.04 0.04 0.12

a) b)
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Fig. 8. a) For the person on the right, there is a potential head pose am-
biguity between looking at painting 3 or at the partner. Note as well the
Vicon markers. b) VFOA targets to be recognized.

learning approach, with smoothing to handle the lack of data for
some contexts, and further assumptions to avoid data overfitting
and better capture the model generalization capabilities.

Given a training dataset, we gather the VFOA data Dc = { fi}
observed under each given context c. Then, using a Maxi-
mum A Posteriori approach with a conjugate Dirichlet prior
(i.e. maximizing p(Bc·|Dc) ∝ p(Dc|Bc·)Dir(Bc·|α)), the table
entries are defined as Bc f ∝ n f +α f , where n f denotes the num-
ber of occurences of the focus f in Dc, and the Dirichlet prior
parameters are set as α f = 0.1N f /(K×NC), where N f ,K and NC

denote the number of observation in the whole training set, the
number of VFOA targets, and the number of contexts, respec-
tively. In other words, the prior corresponded to the addition of
virtual observations equally spread amongst table entries and
amounting to 10% of the total number of real observations.

Priors learned using the above scheme might overfit the spe-
cific setup. In particular, the painting positions or the duration
of references and explanations about each of them lead to the
gathering of different statistics for each painting. To be more
general, we applied parameter tying, enforcing that all table en-
tries involving paintings which play the same role should be the
same, as illustrated in Table 1.

6. Experimental set-up and details

In this section we describe our experimental protocol: the
data we used, how we obtain the head pose and gaze directions,
the performance measures and our parameter setting strategy.

Set-up and scenario: We used the Vernissage dataset (D.
Jayagopi et al, 2013) to conduct our experiments, whose set-
up can be seen in Fig 1b. It contains 10 natural interactions
with a humanoid robot ”Nao”, realized using a Wizard of Oz
approach. Each interaction involves two participants standing
in front of Nao and free to walk around and look at different ob-
jects. In each recording (10 minutes on average), Nao first en-
gages with the participants and explains them three paintings.
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Table 2. VFOA statistics obtained from annotations

Label NAO Ptr Pai1 Pai2 Pai3 OT
Freq 0.43 0.11 0.06 0.14 0.06 0.20

Then, he gives them a quiz in which participants can discuss
before the person to whom a question was addressed gives the
answer. Both parts are approximately of equal duration. Some
questions (4 out of 10) referred to paintings in the room.

VFOA statistics: The VFOA labels, given in Section 2, are
recapitulated in Fig. 8. The ground truth was annoted by several
people and the resulting statistics are shown in Table 2. As can
be seen, looking at Nao is dominating, while the remaining gaze
are relatively well spread on all other targets3.

Recorded Data. Different synchronized information streams
were recorded for each interaction. This comprised the robot
state (including the dialog information which was useful for
defining the context) and the video stream at VGA resolution
captured by a camera located in Nao’s head (Fig. 8 and 11
show sample frames). In addition, a Vicon motion capturing
system was deployed, with markers placed on the participant’s
heads (they are visible in Fig. 8a), Nao’s head, and near painting
locations. To allow 3D reasoning from Nao’s perspective, all
3D location and poses (in Vicon reference system) were trans-
formed into location and head pose measurements defined in
the local coordinate system of the Nao camera view, which is
time-dependent since Nao sometimes rotates its head.

Head poses. As input head poses, we used both poses derived
from the Vicon system and pose estimates obtained by apply-
ing to Nao’s camera view (see above) a particle filter tracker
performing the joint head tracking and pose estimation with ap-
pearance head pose modeling (Khalidov and Odobez, 2013).
After inspection of the data, the head pose Vicon measures of
one sequence happened to be inconsistent in time (the head-
bands attaching the Vicon markers to people head might have
moved), and we dropped it. Furthermore, since Nao is per-
forming head gestures -pointing to paintings, rotating the head
to address people, nodding- that greatly affects the video qual-
ity (with people disappearing from the field of view, lighting
changes, etc.) video tracking results were not very accurate.
Since our goal is to evaluate VFOA performance under reason-
able head pose estimation, the tracker output was filtered by
keeping only track segments that matched the (sparse) ground
truth location available in the dataset, and results with too large
average pose errors or no sufficient tracker recall were removed.
Ultimately, this resulted in a dataset of 14 persons, amounting
to around 140 minutes of data for our experiments. On these
sequences, the tracker could achieved an average recall (per-
centage of frames with an estimate) of 80.7%, (min: 48 and
max:92), with average pose errors shown in Fig. 9.

3Note: the statistic for “other” comprises 6% of frames when the people
were not visible, and 5% where the annotator could not tell the VFOA label.

Fig. 9. Tracker head pose errors on the 14 interactions: minimum, maxi-
mum, mean and standard deviations.

Gaze directions: VFOA recognition algorithms also require
to know for each participant the gazing directions for differ-
ent targets in terms of pan and tilt angles. As people are free
to move in our recordings, these directions are not fixed and
change over time. These values were obtained from the Vicon
sensors placed on Nao’s head, participant’s head and on each
of the paintings. However, for a more general application, we
assume that Nao knows the room’s geometry and can localize
itself in the room (Fojtu et al., 2012). By tracking the partici-
pants and knowing its location regarding to the other objects in
the room, it is capable of measuring these directions and using
them for the recognition task.

Performance measure: As performance measure we use
“Frame based Recognition Rate (FRR)” which corresponds to
the percentage of frames during which the VFOA has been cor-
rectly recognized.

Parameter Setting: For both Vicon and tracked head pose
data, the reference direction for the baseline was set as looking
at Nao, which is a reasonable choice in an HRI scenario. Stan-
dard deviations of Gaussian were set to 20 and 10 for pan and
tilt. The remaining parameters (including context tables) were
adjusted by leave-one-out cross-validation separately for each
of the models i.e. considering the rest of the all participants
as the training set while testing on each participant. Table 3
summarizes the parameters of the gaze-head pose mappings ob-
tained in majority for each of the dynamic model. We can notice
that the selected value of αpan (amongs values ranging from 0.4
to 0.9) corresponds to numbers reported in the literature4. W.r.t.
the size WR of the window used to average head poses and an
approximation of the body orientation, we can see that a rather
short size of 20 second was selected (amongs values ranging
from 20s to 50s). Indeed, while larger windows provide more
stable results, they also introduce more lag to adapt to new sit-
uations in case of strong body shifts which occurs for instance
when people look at painting pai3 (Fig. 8a) and then switch to
painting pai1 (Fig. 8b).

7. Results

7.1. Head pose-gaze correspondence models

As first experiments, we evaluate and compare the different
head pose-gaze dynamical mapping approaches (Baseline, G1,

4A value of αtilt = 0.5 was used in all experiments.
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Table 3. Parameters of the dynamical model obtained in majority through
cross-validation on Vicon data. WR, W p and ∆p are expressed in seconds.

Parameters αpan WR W p ∆p αH α1 α2

Baseline 0.7 - - - - - -
G1 0.6 20 - - - - -
G2 0.6 20 1 0.4 1 - -
G3 0.7 20 - - - 0.22 0.07

Table 4. Recognition rates of head-gaze mappings methods.

Vicon head poses Tracker head poses
Full Explain Quiz Full Explain Quiz

Baseline 53.8 52.4 54.6 57.3 59.3 57.4
G1 65.5 68.8 64.2 59.1 61.7 58.7
G2 66.6 69.9 65.3 59.8 62.3 59.3
G3 64.3 66.7 63.3 56.7 60.2 56.0

G2 and G3), leaving aside the context part. We first consider the
results obtained using head poses given by the Vicon system,
and then using poses estimated from the video tracker (see the
corresponding paragraphs in Sec. 6). Table 4 summarizes the
obtained results.

Vicon head poses. The baseline relying on the geometrical
model to set the head pose means has only a 53.8% recognition
accuracy, which is mainly due to the wrong predictions of the
Gaussian means (head directions). In particular, as can be seen
from typical confusion matrices5 of the baseline (left matrices
in Fig. 10a) and 10b)) for a person located on the right or left in
Fig. 1b, the main source of confusion is between Nao and the
painting pai2. This is not surprising given their proximity in the
gaze space, where they mainly differ in the tilt angular space.
Similarly, as expected given the setup, confusion between look-
ing at the third painting (pai3) and partner can be seen for the
VFOA of person 2 (see Fig. 1b or Fig. 8a) and between the
first painting and partner for person 1. Moreover, although the
Gaussians standards deviations in the HMM are relatively large,
several labels are wrongly recognized as looking at other.

Among the different dynamic models, G2 which implements
the midline model is the best, leading to an average gain of 13%
over the baseline. Notice that the gain is more important in the
explanation part (17.5%) where people do not face the robot
all the time, but orient their bodies towards the paintings (see
Fig. 8a) for instance), rather than in the quiz part (10.7%) where
people mainly stay oriented towards the robot. The confusion
matrices on the right of Fig. 10a) and 10b) obtained with G2,
compared to those from the baseline clearly show that the gain
is due to a reduced confusion between Nao and painting pai2,
a reduction of the misclassifications between partner and the
confusing painting (either painting pai3 for person 2, or paint-
ing pai1 for person 1), and less recognition as others.

The VFOA recognition is due to a better prediction of the ex-
pected head pose for looking at the different targets. To quan-

5For space reasons, VFOA targets in the legend of confusion matrices are
denoted by N for Nao, pr for partner, pi for painting paii, and O for other.

a) b)
Fig. 10. Confusion matrices (rows are ground truth, columns denote the
recognized labels) for (a) a person located in position ’person 1’ in Fig. 1b)
and (b) a person located in position ’person 2’. In (a) and (b), the matrices
on the left result from the Baseline model, whereas the matrices on the
right are computed from the G2 results.

Table 5. For each target, means of the errors in degrees between the head
pose actually used to look at the target, and the prediction made either by
the baseline or the G2 models.

Pan angle Tilt angle
Target Baseline Model G2 Baseline Model G2
Nao 7.5 4.4 5.8 3.8

partner 10.6 9.9 5.0 5.0
pai1 21.6 14.1 11.9 13.1
pai2 38.6 30.3 7.2 4.6
pai3 47.4 39.5 8.0 4.8

tify this, we used the ground truth VFOA, and compared at any
given instant the participants’ head poses used for looking at the
targets with their predicted value as given by the baseline of the
model G2. Mean errors are shown in Table 5, where the smaller
the error, the better the predicted head pose is. As can be seen,
the pan angle errors are smaller for all VFOA targets when the
dynamic model G2 is used, and in all but one cases for the tilt
angle. This is particularly important for Nao and pai2 which
differ only slightly in their tilt angle.

Given the small gain obtained by G2 over G1, we can con-
clude that the dynamic mapping (through the estimated body
orientation) is what contributes the most to the improvement.
Qualitatively, its effect is illustrated in Fig. 11. Nevertheless,
the midline effect (centripetal movement) is also useful as it
provides better recognition results in 13 out of 14 sequences.
However, since this effect is happening rarely in the data its
effect on performance is also small.

Finally, the model G3 performs much better than the base-
line, but a little worse than G1 and G2. However, applied to
meeting data, G3 was shown to outperform them (Sheikhi and
Odobez, 2012), indicating that it might be more appropriate in
presence of more frequent and shorter gaze shifts.

Head Pose tracker data: With these data, the main conclu-
sions (ranking of the dynamical models) drawn using Vicon
head poses hold. However, here the baseline already gives good
recognitions as compared to the Vicon data, and the improve-
ment is smaller (2.5%). This situation can be understood by
looking at the average confusion matrices shown in Fig. 13,
comparing them with those of the Vicon data. As can be seen
from the diagonal elements, the higher accuracy in the baseline
is mainly due to a higher recognition for the Nao class, which,
given its predominance in the data, results in a higher frame-
recognition rate. A potential explanation for the bias towards
Nao can be understood by looking at the tracker estimation re-
sults in Fig. 12 which displays estimated values for ground truth
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Fig. 11. (a) Left: during frames 1700-2200, Nao is the main speaker, par-
ticipants tend to look straight at him. Right: afterwards (quiz part) par-
ticipants discuss together, alternatively look at the robot and the second
person (amongst others). Their reference direction is thus different, and so
are the poses for looking at Nao. (b) Head pose (pan angle) of the person
on the right in image (a). The ground truth VFOA is displayed in the top
bar, with color codes below. The head pose pan data is displayed in the
graph. It is black when the recognition is correct, and in the color of the
wrongly recognized VFOA otherwise. Dashed lines indicate the pan pose
mean for looking at each target for the baseline geometric model (left), or
dynamic model G1 (right). In this later case, the black line shows the head
reference. With the dynamic reference, head poses for looking at each of
the target are better predicted, like for looking at Nao (pan near 0 at frame
2150, near -17 at frame 2550).

Fig. 12. Tracker vs Vicon head poses (the pan angle is shown). Differ-
ent quantiles of the distribution of estimated pose pan values for a given
ground truth pose (as given by the Vicon measurements). For instance, the
50% quantile corresponds to the median value. The tracker is relatively
accurate up to 40 degrees, but with a tendency for underestimation. This
is accentuated for poses beyond 40 degrees.

head poses given by the Vicon. These curves suggests an un-
derestimation of the pose in general, with the effect of favoring
the recognition of Nao as compared to painting 2 for instance.
In addition, the underestimation for larger poses leads to head
poses that do not match well any of the predicted VFOA targets,
and result in a higher recognition of the other label (right col-
umn). The dynamical model G2 (most right matrix of Fig. 13)
tends to reduce the later aspect in certain situations, and to in-
crease the recognition of some targets like painting pai3, in-
cluding looking at Nao.

7.2. Exploiting dialog context

To evaluate the contribution of the different contexts, we con-
sidered different settings: No context, one single context cue

a) b)
Fig. 13. Vicon vs Tracker data. (a) average confusion matrices obtained
using either the Vicon (left) or tracker data (right). (b) confusion matrices
for Vicon (left) vs tracker (right) data using the dynamic model G2.

Table 6. Recognition rates using dialog act contexts - Vicon head poses

Baseline Model Model G2
Context Full Explain Quiz Full Explain Quiz
None 53.8 52.4 54.6 66.6 69.9 65.3

Speak. 60.9 58.3 62.1 70.2 72.3 69.4
Addr. 61.4 59.8 62.2 70.8 73.1 69.9
Topic 63.4 62.2 64.0 72.1 75.3 70.9
All 64.2 63.3 64.7 72.6 75.9 71.3

(speaking, addressee, or topic), and all cues together. Further-
more, we experimented the use of the context with both the
baseline (static geometrical model) and the best dynamic gaze
prediction models (G2) to investigate whether the context is still
useful when more accurate gaze-to-head pose predictions are
exploited. Tables 6 and 7 show the results when using Vicon
and tracked head poses.

When using Vicon data and the baseline dynamical model,
we see that the performance improves whatever individual cue
we consider. The increase is larger when we use the topic con-
text. Altogether, the use of all context cues brings a consid-
erable improvement of more than 10%. This improvement is
valid for all of the 14 sequences, and is illustrated for 2 persons
in Fig. 14. As suggested by the shown confusion matrices, the
context improves the recognition of all targets simultaneously,
and is particularly helpful for removing ambiguities between
Nao and pai2, partner and pai1 and other for most cases.

Looking at the combination of context with the dynamical
model G2, we can first notice that the context alone (i.e. with
the geometric model and static body reference) does not reach
the accuracy of the dynamical setting (64.2% with context vs
66.6% with G2). Still, the effects of both approaches are com-
plementary, as the addition of context improves the results of
G2 with a gain of 6% when using all cues, and further decreases
the confusion between VFOA targets similarly to what is ex-
plained above (i.e. between Nao and pai2, partner and pai1 or
pai3). The improvement due to context is observed for 12 out
of 14 sequences, and the degradation for the other 2 sequences
is very small (2.0% and 0.1%).

Interestingly, the results with individual cues exhibit differ-
ent behaviors depending on the interaction phase. As can be
seen, the communication cues (speaking, addressee) which em-
phasize Nao or people as VFOA prior make a bigger increase
in performance during the quiz, which is more interactive, and
lower increase during the painting explanations, whereas the
topic context improves almost equally on both parts. Finally,
using all cues, the performance is higher in all situations.

Considering the results on the tracked head poses, shown in
Table 7, we can see that the main conclusions still hold. Indi-
vidual cues are all useful, the topic cue is more beneficial es-
pecially on the explanation part. Combined with the baseline,
the context and dynamical model lead to a total improvement
of 5%, a gain that is smaller than with Vicon due less accurate
head poses and thus more ambiguous situations.
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Table 7. Recognition rates using dialog act contexts - tracked head poses

Baseline Model Model G2
Context Full Explain Quiz Full Explain Quiz
None 57.3 59.3 57.4 59.8 62.4 59.3

Speak. 59.1 61.5 59.1 61.0 63.1 60.9
Addr. 59.5 62.2 59.3 61.3 63.7 61.0
Topic 60.1 64.2 59.5 62.0 65.6 61.4
All 60.6 65.4 59.8 62.4 66.4 61.7

a) b)
Fig. 14. Context effect (Vicon data) (a) the image on the left shows the con-
fusion matrix for a given participant when context information is not used
while the right one shows the matrix when using the context. (b) shows the
same matrices for another participant.

8. Conclusion

In this paper we addressed improving VFOA recognition
from head poses in an HRI context using two different solu-
tions. First, we proposed algorithms inspired from body, head
and gaze behavioral models to improve the dynamic prediction
of the head pose used to look at different VFOA targets. Our
experiments on a challenging dataset showed that these mod-
els indeed generated more accurate predictions, improving head
pose-gaze direction association for all VFOA targets, resulting
in a performance increase of more than 10%. Secondly, we
proposed a contextual VFOA recognition approach to exploit
the robot’s gaze-related conversational context (communicative
cues, topical cues). It was shown to greatly improve results, and
to be complementary to the head-pose dynamical model. Alto-
gether, the combination of the two approaches led to an increase
close to 20% in VFOA recognition.

The experiments also showed that obtaining unbiased and ac-
curate head pose is important, as the improvement was smaller
using head poses derived from our vision tracker than with the
Vicon ones. Such pose estimation improvements come from ad-
vances in sensing, and in particular the use of RGB-Depth cam-
era like Kinect. In practice, given the availability of real-time
head pose tracking with such device6, we expect our model to
be directly usable by researchers and developers in the HRI or
ECA field. Furthermore, the most effective part in our dynam-
ical gaze-to-head prediction approach relies on the use of the
body orientation. Hence it would be interesting in the future to
test our method on a dataset with available RGB-D dataset that
would provide a more direct and more accurate way of estimat-
ing it than what we propose. In another direction, with higher
definition images, using image-based gaze directions (Gorga
and Otsuka, 2010) would be beneficial, and could be combined

6http://msdn.microsoft.com/en-us/library/jj130970.aspx

with our approach. Our prediction model could provide priors
on the gaze and be fused with actual image measurements even
in noisy conditions.

On the context side, since the dialog act information required
by the method is directly incorporated in the dialog system and
used at runtime, the model can be exploited for any interactions
and in any other scenarios implying objects with the robot is
aware of. Finding more systematic ways of setting appropriate
VFOA statistics is an avenue for future work, as well as the
addition of timing information (how long is a dialog act active?)
as well as the use of other cues that can affect the attention of
interacting people, like the robot’s gestures.
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