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Abstract—Any biometric recognizer is vulnerable to spoofing
attacks and hence voice biometric, also called automatic speaker
verification (ASV), is no exception; replay, synthesis and conver-
sion attacks all provoke false acceptances unless countermeasures
are used. We focus on voice conversion (VC) attacks considered
as one of the most challenging for modern recognition systems.
To detect spoofing, most existing countermeasures assume explicit
or implicit knowledge of a particular VC system and focus on
designing discriminative features. In this work, we explore back-
end generative models for more generalized countermeasures.
Specifically, we model synthesis-channel subspace to perform
speaker verification and anti-spoofing jointly in the i-vector space,
which is a well-established technique for speaker modeling. It
enables us to integrate speaker verification and anti-spoofing
tasks into one system without any fusion techniques. To validate
the proposed approach, we study vocoder-matched and vocoder-
mismatched ASV and VC spoofing detection on the NIST
2006 speaker recognition evaluation dataset. Promising results
are obtained for standalone countermeasures as well as their
combination with ASV systems using score fusion and joint
approach.

Index Terms—speaker recognition, spoofing, voice conversion
attack, i-vector, joint verification and anti-spoofing.

I. INTRODUCTION

Biometric person authentication [1] plays an increasingly
important role in border control, crime prevention and personal
data security. While the main biometric techniques (e.g. face,
voice, fingerprints) can already handle noisy and mismatched
sample comparisons robustly, recognizer vulnerability under
malicious spoofing attacks remains a serious concern. Indeed,
any biometric system has several weak links [2], the most ac-
cessible ones being sensor- and transmission-level attacks. Our
application is text-independent speaker verification [3] that is
used, for instance, to verify customer’s identity in telephone
banking and in protecting personal data in smartphones.

Speaker verification systems can be spoofed by four ma-
jor types of attacks: replay, impersonation, speaker-adapted
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Fig. 1: (a) Traditional way to protect automatic speaker verification (ASV)
from spoofing attacks is to independently develop ASV and countermeasure
(CM) subsystems that are post-combined with score-level fusion. (b) Our
core contribution is a joint approach that uses same i-vectors for both speaker
verification and voice conversion attack detection. sx means a score produced
by system x.

speech synthesis and voice conversion [4]. Because of its
flexibility in direct transformation of speaker characteristics,
we focus on voice conversion (VC) attacks. VC involves
conversion of one speaker’s (attacker) utterances towards the
target speaker (client) having access to prior training utter-
ance pairs from both [5]. By now, it is well-known that
VC attacks pose a serious threat to any speaker verification
system. Early studies [6], [7], [8], [9] showed this to be the
case regarding traditional Gaussian mixture model (GMM)
recognizers. Recent studies involving both text-independent
[10], [11] and text-dependent [12] recognizers highlight that
the problem persists even with modern recognizers, including
i-vectors [13]. Interestingly, the quality of the converted voice
does not have to be particularly high; even artificial signal
attacks [14], [15] involving unintelligible speech can spoof
a recognizer. Even if the modern recognizers might provide
increased protection [10], [15], their false acceptance typically
increases by considerable amount. This is easy to understand,
remembering that speaker verification and VC methods use
matched front- and back-end models, namely, Mel-frequency
cepstral features and GMMs.

While the prior studies confirm the destructive nature of
VC spoofing, much less work exists in designing counter-
measures to safeguard recognizers from attacks. In principle,
this involves two different subproblems. Firstly, spoofing at-
tacks should be detected; while an ideal speaker verification
system measures the strengths of target (same speaker) and
non-target (different speaker) hypotheses, an ideal spoofing
attack detector would assess the strengths of human and
non-human hypotheses, where the latter refers to any tam-
pering/transformation of real human speech or generation
of synthetic speech. The second subproblem is to integrate
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the speaker verification and countermeasure opinions. In the
general literature on biometric anti-spoofing (including speaker
verification), this integration is usually achieved by cascading
the countermeasure and the biometric detector or by merging
their outputs by late (score) fusion. While this traditional
score fusion of speaker verification and spoofing detectors is
included in our experiments as a baseline, the core of our
contribution (Fig. I) is in integration at the model level.

Regarding detection of VC spoofing attacks, the current
solutions (Table I) are all based on feature design based on
prior knowledge about the synthesis artefact traces a VC attack
leaves to speech signals. For instance, [11], [19], [16] uses
phase information known to be absent in the used voice coder
technique while [20], [21] uses knowledge that dynamic vari-
ation in synthetic speech is reduced in comparison to natural
speech. Such hand-crafted low-level features are necessarily
designed to detect a particular attack which, however, can
never be exactly known in advance. Generalized countermea-
sures, a recent direction in biometric anti-spoofing research,
aim at detecting various types of attacks (e.g. synthesis, replay
or VC attacks), for instance by modeling only in-class data
or using enhanced features such cepstrogram texture [18].
Other biometric modalities, in fact, use also tailored front-
end features such as [22], [23] and [24] to detect spoofing
attacks.

In this work, we continue the quest for generalized counter-
measures with an important distinction from all the prior work:
rather than hand-crafting discriminative features to distinguish
synthetic and natural utterances, we use the same acoustic
front-end designed for automatic speaker verification, and
focus on generative modeling of spoofing attacks. To this
end, we assume that any speech utterance — irrespectively
whether a natural or synthetic one — can be presented as a
single feature vector φ (here, an i-vector [13]). We can think
a synthetic utterance as a distorted version of a natural human
speech passed through a very specific synthesis channel. Just
like conventional speaker verification systems need to cope
with speaker comparisons across varying channels (landline,
cellular, close-talking mic), the synthesis-channel adds up
another source of variation originating from spoofing attacks
that utilize varying analysis-synthesis vocoders or conversion
techniques. Even if all possible attacks cannot be known in
advance, it is reasonable to assume that they share some
common speaker-independent properties such as buzziness or
discontinuity of F0. Such speaker-independent properties will
be reflected in the cepstral features and the i-vectors derived
from them, enabling detection.

Following the successful path in subspace modeling of
inter-speaker and session/channel variations, it is natural to
assume the synthesis-channel variations to reside in a low-
dimensional subspace, too. Having a development pool of i-
vectors (different from target or test speakers) derived from
both natural and synthetic utterances, we can train independent
subspace models for the corresponding natural and synthesis-
channel variations. Specifically, inspired by the success of
probabilistic linear discriminant analysis (PLDA) [25] in
state-of-the-art speaker and face recognition, we adopt PLDA
for joint modeling of speaker and synthesis channel variations.

To the best of our knowledge, this is the first study to adopt
PLDA for this novel use1.

The proposed approach has several advantages. First, shar-
ing the same front-end, integrating speaker verification and
countermeasures is straightforward. Second, joint modeling
approach retains low computational complexity since sep-
arate speaker verification and countermeasure systems are
not required. Third, as a generative model, we expect good
generalization to detect attacks not presented in training data
— we provide a preliminary proof-of-concept utilizing a cross-
vocoder evaluation protocol. Fourth, back-end modeling is not
tied to a particular front-end or biometric modality; our hope
is that researchers working on other biometric modalities find
the general framework worth exploring in their application.

II. DATABASE AND PROTOCOLS

A. Dataset
In this work, we employ the spoofing attack dataset designed

in [10], [11]. It is based on the core task “1conv4w-1conv4w”
of the Speaker Recognition Evaluation 2006 (SRE06) corpus,
which is a widely used standard benchmark database for
text-independent speaker verification research. In the spoofing
dataset, there are 9,440 gender-matched trials for evaluation,
consisting of 3,946 genuine trials, 2,747 impostor trials, and
2,747 impostor trials after VC. We consider two different
voice conversion methods: the popular joint-density Gaussian
mixture model (JD-GMM) based method [27], and a simplified
frame selection (FS) method as detailed in [11]. More details
of the dataset design process can be found in [10], [11]. In

TABLE II: Statistics of the spoofing dataset used in this work. MCEP and
LPC refer to Mel cepstral based VC and linear predictive coding based VC.

Male Female Total
Target speakers 241 342 583
Genuine trials 1,614 2,332 3,946
Impostor trials 1,132 1,615 2,747
MCEP impostor trials 1,132 1,615 2,747
LPC impostor trials 1,132 1,615 2,747
FS impostor trials 1,132 1,615 2,747

the JD-GMM conversion, we consider two feature represen-
tations, namely Mel-cepstral analysis based features (MCEP)
and linear predictive coding based features (LPC), while in
the FS conversion, only MCEP features are considered. The
difference between JD-GMM and FS conversion is that JD-
GMM modifies source features to match that of a target
speaker, while FS uses the target speaker features directly to
generate converted speech. The repartition of trials for female
and male speakers are presented in Table II.

B. Conditions
To study the generalization ability of a countermeasure,

we define “matched” and “mismatched” spoof conditions as
follow:

1Preliminary results are presented in [26]. The current study extends
it by developing several new integrated PLDA variants, including a two-
stage strategy to train PLDA subspace parameters. The experiments include
additional VC technique, ASV systems and score fusion techniques and
extended analyses of the results. The theory part and literature review are
also expanded considerably to make a self-contained description.



SIZOV et al.: JOINT SPEAKER VERIFICATION AND ANTI-SPOOFING IN THE I-VECTOR SPACE 3

TABLE I: Summary of anti-spoofing approaches to voice conversion and speech synthesis spoofing in the literature. The results are not comparable, as
they are using different benchmarking dataset and different protocol. Most of the prior work uses matched conditions whereas this paper considers mismatch
conditions.

Countermeasure
Feature /

Model based
ASV system FAR(%)

Before spoofing After spoofing With CMs
Relative phase shift [16] Feature GMM-UBM 0.28 86 2.5
Relative phase shift [16] Feature SVM 0.00 81 2.5

Modified group delay [11] Feature JFA 3.24 41.25 1.71
Modified group delay [11] Feature PLDA 2.99 32.54 1.64
Local binary pattern [17] Feature FA 5.60 n/a 1.60
Local binary pattern [18] Feature PLDA 3.03 n/a 4.10

Proposed i-vector joint PLDA Model PLDA 0.55 14.17 2.97

- Matched spoof condition: This is the most studied case in
the literature. It assumes that the user has prior knowledge
about the vocoding technique of the VC attacks. For exam-
ple, if the test set contains trials with MCEP-coded VC, the
user may use MCEP-coded synthetic speech to design the
countermeasure.

- Mismatched spoof condition: This was usually neglected
in previous work [28]. It assumes that the system designer
is prepared to a specific type of spoofing, but the attacks
are from a different type.

Table IV presents the spoofing detection error on all possible
matched and mismatched conditions for both genders.

In practice, we use the SPTK toolkit2 to perform MCEP
and LPC analysis and synthesis. Similar to [19] and [21], a
copy-synthesis approach is employed to generate the MCEP-
and LPC-coded speech for training the spoofing detector
without undergoing any specific VC technique. That is,
we first decompose a speech signal into its Mel-cepstral
(or LPC) and fundamental frequency (F0) parameters and
then reconstruct an approximated signal directly from these
parameters. The reconstructed replica is the special version of
the orignal signal passing through synthesis-channel, and in
general will be close to the original signal but not exactly the
same due to the lossy analysis-synthesis model; perceptually,
a buzzy or muffled voice quality can be observed. Such
copy-synthesis is a straightforward way to generate training
samples for spoofing detection without, however, involving
the computationally demanding stochastic VC part, which
additionally requires selection of source-target speaker pairs
and parallel training set. The copy-synthesis speech of SRE04,
SRE05 and SRE06 is generated for both MCEP and LPC.
We name the generated corpus as “synthesis” training set, in
contrast to the original “natural” training set.

C. Evaluation metrics

We use the notion of false rejection rate (FRR) and false
acceptance rate (FAR) to build all our metrics. False rejection
happens when a target speaker is erroneously classified as
an impostor. False acceptance is the opposite case when an
impostor is misclassified as a target. The evaluation of the
ASV system is done in terms of both LICIT and SPOOF
protocols [29]. The LICIT protocol, involving zero-effort im-
postors, is the typical evaluation protocol used in verification

2http://sp-tk.sourceforge.net/

scenarios, whereas the SPOOF protocol contains only spoofed
impostors and is used to evaluate system performance when
spoofing attacks are present.

To evaluate the ability of the systems to resist attacks, we
put more emphasis on FAR. We use zero-effort FAR (ZFAR) as
a metric for the LICIT protocol and spoofing FAR (SFAR) [29]
for the SPOOF protocol. The only difference between them is
that the former considers zero-effort impostors while the latter
considers their spoofed versions. To make ZFARs and SFARs
comparable across different systems, we compute them at the
threshold when FRR of the system in question equals 1%. We
also compute equal error rate (EER) — when FRR is equal to
FAR — on all test trials pooled together as a single summary.

To independently evaluate the countermeasure performance
we use the spoofing detection error (SDE):

SDE =
FP+FN

P+N
, (1)

where FP is the number of samples erroneously classified
as positive (i.e. natural speech), FN the number of samples
erroneously classified as negative (i.e. spoofing attacks), P is
the total number of positive samples and N is the total number
of negative samples.

III. STANDALONE SPEAKER VERIFICATION SYSTEMS

During standalone automatic speaker verification (ASV) for
each test utterance O we compute two hypotheses: either O
is produced by the target speaker X — HX , or it is not —
HX . Usually the score of the system is the log-likelihood ratio
between the probabilities of both hypotheses:

sasv = log p(O|HX )− log p(O|HX ). (2)

Examples of this scoring rule would be given for the GMM-
UBM and PLDA systems.

In this paper we consider three systems for the ASV task:
GMM-UBM system based on the MFCC vectors [30], cosine
scoring [13] and Probabilistic Linear Discriminant Analysis
(PLDA) model [25] based on i-vectors.

A. GMM-UBM framework

The key component of the GMM-UBM system is the
Univeral background model (UBM) that is a large GMM
(Gaussian Mixture Model) trained on a diverse dataset to
be speaker- and text-independent. This UBM represents the
universal impostor. For each speaker in the enrolment set we
concatenate all the UBM mean vectors into a supervector

http://sp-tk.sourceforge.net/
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Fig. 2: Distribution of the different speech utterances in a PLDA model. Each
utterance is represented by a circle, each color represents a particular speaker.
The ellipse is a contour of the Gaussain distribution N (0,VVT+UUT+Σ)
from Eq. (10).

and adapt it to produce a target speaker model. During the
verification stage, we compute the score in the form of the log-
likelihood ratio (LLR) between hypothesized speaker model
and UBM model:

subm(Xtest) = log p(Xtest|θspk)− log p(Xtest|θubm) , (3)

where Xtest = {x1
test, . . . ,x

N
test} is a sequence of MFCC

features for the test utterance O, θspk and θubm are the GMM
parameters for the corresponding model. In this work, we use
linear approximation of Eq. (3) proposed in [31].

B. Total variability framework

The total variability paradigm is built upon GMM frame-
work and its aim is to extract a low-dimensional vectors, so-
called i-vectors, that are a compact version of the GMM mean
supervectors:

s = m + Tw , (4)

where m is a UBM mean supervector, s is a target GMM mean
supervector, T is a total variability matrix that encompass both
speaker- and channel-variability and w is a latent variable with
the standard normal distribution. For each speaker utterance O,
an i-vector φ is produced as a MAP (maximum-a-posteriori)
estimate of the variable w. Section VI presents the specific
parameter values used for the i-vector extraction.

To achieve a higher recognition accuracy we map i-vectors
into a more discriminative subspace with the following pre-
processing algorithms: (1) radial Gaussianization [32], which
consists of whitening and length-normalization, to reduce non-
Gaussian effects [33] as well as mismatch between training
and testing subsets, (2) linear discriminant analysis (LDA)
to learn a linear projection that maximizes between-class
variations while minimizing within-class variations.

The first i-vector based scoring system that we consider is
the cosine scoring. It is a very simple and fast method that
uses cosine kernel to compute the score between target and
test i-vectors:

s(φtarget,φtest) =
〈φtarget,φtest〉
‖φtarget‖ · ‖φtest‖

, (5)

where 〈·〉 is a dot product and ‖·‖ stands for the Euclidean
norm. The cosine scoring does not require any training data
and does not have any inter-speaker or intra-speaker variability

models. The next system that we consider — PLDA model —
is a more advanced generative parametric approach that needs
training with same versus different speaker labels.

PLDA is a probabilistic framework that models both
between- and within-speaker variability. In this study we
use several different PLDA variants due to their appealing
properties: they allow us to perform session compensation, to
regulate model complexity given the amount of training data,
and to naturally generate LLR scores.

The standard PLDA was introduced in [25]. It assumes that
the j-th i-vector φi,j of a client i is generated as

φij = µ+ Vyi + Uxij + εij , (6)
yi ∼ N (0, I) , (7)

xij ∼ N (0, I) , (8)
εij ∼ N (0,Σ) , (9)

where φij ∈ RD×1, µ is a mean vector, columns of the
matrices V ∈ RD×P and U ∈ RD×M span the between- and
within-speaker subspaces, yi and xij are their corresponding
latent variables, εij is a latent residual noise variable dis-
tributed with a diagonal covariance matrix Σ. Let us denote
the parameters of the PLDA model collectively as θ.

Because PLDA is a linear-Gaussian model, we can integrate
out its latent variables to receive another Gaussian distribution
[34, Chapter 12]:

p(φij |θ) =
∫∫

p(φij |yi,xi,j ,θ)p(yi)p(xij) dyi dxi,j

= N (φij |µ,VVT + UUT + Σ). (10)

The resultant distribution is depicted in Fig. 2.
Initially, PLDA was proposed for face recognition where

the input features are very high-dimensional and the training
datasets are not large enough to robustly estimate full within-
and between-individual subspaces (without dimensionality re-
duction). In speaker recognition the usual input features for
PLDA are 100 to 600 dimensional i-vectors, making it possible
to not apply any dimensionality reduction. The most popular
form of such PLDA variants is the simplified PLDA [33]:

φi,j = µ+ Vyi + ε
′
i,j . (11)

The only difference from the standard PLDA is that now the
channel subspace U is absorbed into a full covariance residual
noise matrix Σ′.

If we go even further and set both subspace matrices V
and U to have the full rank we get so called two-covariance
model [35]. Comparison of all three PLDA models as well as
the EM-algorithms to train them are presented in [36].

After we have trained the parameters of the PLDA model,
we perform a speaker verification task as follows: for a pair of
target and test i-vectors (φtarget,φtest), we compute LLR for the
probability that they share the same latent identity variable yi

and, hence, originate from the same person; and the probability
that they have different latent identity variables yt and yi and,
therefore, are from different persons:

ssv(φtarget,φtest) = log
p(φtarget,φtest|θ)

p(φtarget|θ)p(φtest|θ)
. (12)
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IV. STANDALONE ANTI-SPOOFING SYSTEMS

Spoofing detection is a binary classification task that aims
at isolating prepared attacks from natural zero-effort (both
genuine and impostor) trials. For each test utterance O we
compute two hypotheses: either O is a natural speech N —
HN , or it is not (i.e. synthetic speech) — HN .

When dealing with voice conversion (VC) attacks, one may
look at the problem from a low-level signal processing point
of view and solve it by using prior knowledge about the VC
technique (e.g. absence of the phase modeling) as detailed in
the introduction. In this study, however, we perform the VC
detection task directly in the i-vector space and evaluate four
different classification methods: the cosine scoring [13], the
simplified PLDA (11), support vector machines (SVM) with
linear kernel [37] and two-stage PLDA introduced in section
V-B.

To train these classification methods, we use the extended
“natural” + “synthesis” training set — every natural speech
utterance has its corresponding vocoded (synthetic) versions.
This way for every human speaker we create one or more
additional synthetic speakers who have simulated MCEP- and
LPC-vocoded versions of the original utterances. Fig. 3 shows
i-vectors for one typical speaker together with their vocoded
versions. It indicates that the MCEP-vocoded i-vectors are
much closer to those of natural speech in comparison to LPC-
vocoded i-vectors. This is reasonable since the MCEP vocoder
and the i-vector extractor (trained on MFCCs) have closely
matched signal processing steps.
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Fig. 3: (a) Natural and vocoded i-vectors for one speaker after whitening
and LDA projection into two dimensions. All of them are used to train both
countermeasures (section IV) and integrated PLDA systems (section V). (b)
The same i-vectors after length-normalization.

For the cosine-based classifier, first we compute cosine
scores (5) between test i-vector and every i-vector in the
training set. Then we select maximum scores among natural
and synthetic subsets of the training set. We use these two
numbers as the scores for the corresponding hypotheses.

We form natural and synthetic classes from the training
set to train both Simplified PLDA and SVM classifiers [37].
During the scoring stage of the Simplified PLDA we take the
average of both classes to form two i-vectors: one represents
natural utterances and the other represents synthetic utterances.
Then we take one of them at a time, add test i-vector and plug
them into the PLDA equation for the log likelihood ratio (12).
This way we get the scores for HN and HN hypotheses.

Two-stage PLDA and its training algorithm are described
in the subsection V-B and the Appendix. During the scoring

stage, for each test i-vector we calculate log likelihood ratio
between natural and synthetic hypotheses:

scm(φtest) = log
p(φtest|HN )
p(φtest|HN )

= log
N (φtest|µ1,V1V

T
1 + Σ)

N (φtest|µ2,V2VT
2 + U2UT

2 + Σ)
, (13)

where µ1 and µ2 are mean vectors of natural and vocoded
training data, matrices V1 and Σ are trained on the natural
speech and, thus, are used to estimate the probability of the test
i-vector under “natural” PLDA model, while matrices V2 and
U2 are trained on the vocoded speech and used to estimate the
probability under “synthesis” PLDA model. We use Eq. (10)
to compute these probabilities.

V. JOINT SPEAKER VERIFICATION AND ANTI-SPOOFING

Let us now consider the joint approach, which means that
we do speaker verification and anti-spoofing at once. In this
case, each test utterance O has two attributes: indicator of the
target speaker — X and indicator of the natural speech —
N . The null hypothesis H(X ,N ) is that the test utterance
is a natural speech utterance from the target speaker. The
complementary hypothesis H

(X ,N )
, in turn, is a union of the

other three classes:

H
(X ,N )

= H(X ,N ) ∪H(X ,N ) ∪H(X ,N ) , (14)

where the first term on the RHS corresponds to the zero-effort
impostor trial and the second term to a spoofed (dedicated)
impostor attempt. The class (X ,N ), referring to the case
when a cooperative genuine user would like to not authenticate
him/herself, is meaningless in an authentication context so we
do not consider it further.

Natural 
speech

Vocoded 
speech

Simplified or 
two-cov PLDA

Simplified 
PLDA

Synthesis 
subspace

scores

scores

a)

b)

Fig. 4: This scheme shows the allocation of the training data for the
integrated PLDA models: (a) one-stage PLDA, (b) two-stage PLDA.

The systems that we evaluate can be broadly classified into
two groups: (1) Score fusion of two separate blocks: automatic
speaker verification (ASV) and countermeasure (CM) systems.
(2) Integrated approach in which we model both natural and
synthetic variability at once. We divide the latter further into
one-stage and two-stage models. The difference (see Fig. 4)
is that during two-stage approach we have separate steps for
natural and vocoded datasets so that we are able to infer
synthesis channel variability during the second step. This
variability corresponds to some speech artifacts induced by
the vocoders.
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A. Score fusion

Score fusion aims at combining the output scores from
both ASV and CM systems. In this approach, ASV system
compares positive hypothesis H(X ,N ) against negative hypoth-
esis H(X ,N ) and CM system compares positive hypothesis
H(X ,N ) ∪ H(X ,N ) against negative hypothesis H(X ,N ). The
positive hypothesis for the joint system is the intersection of
the positive hypotheses for both subsystems — (X ,N ).

To fuse the scores we compute a weighted sum, where
the weights are estimated using logistic regression. Logistic
regression is one of the most powerful score fusion techniques,
which has been successfully employed for combining hetero-
geneous speaker classifiers [38], [39]. Given a pair of target
and test i-vectors (φtarget,φtest) and output scores from ASV
and CM systems — sasv(φtarget,φtest) and scm(φtest) — we
fuse those scores inside the logistic function:
sf (φtarget,φtest|β) = g (β0 + β1sasv(φtarget,φtest) + β2scm(φtest)), (15)

where g(x) = 1/(1 + exp(−x)) is a logistic sigmoid
function and β = [β0, β1, β2] are the regression coefficients,
determined by maximum likelihood estimation on a subset of
1000 utterances (+ their synthetic versions) randomly selected
from the SRE06 background training set. The optimization is
done using the conjugate-gradient algorithm [40].

B. Integrated systems

All experiments with the integrated systems are carried out
in the i-vector space (see subsection III-B).

One-stage PLDA system has the same structure as the
baseline simplified PLDA system but it uses the extended
“natural” + “synthesis” training set (section IV).

The score of the one-stage integrated system is the standard
PLDA log-likelihood ratio (12) but this time we compare
H(X ,N ) hypothesis against H

(X ,N )
. We are able to check both

zero-effort impostor and spoofed impostor hypotheses at once
because, after we have added the vocoded data to the training
set, the model is able to create more adequate within- and
between-speaker variability subspaces. This way we increased
the number of impostors that the system can handle. Now the
spoofed utterance will be treated as an impostor.

Two-stage PLDA system. In [33], P. Kenny faced the
problem how to robustly estimate parameters of the PLDA
model when data involves both telephone and microphone
speech utterances. For this reason he first estimated PLDA
parameters on the telephone dataset and then trained additional
channel subspace on the microphone data only. Inspired by
this strategy, we propose to train PLDA in two stages as well.
Instead of telephone and microphone channels, however, we
make a distinction between natural and synthetic speech. At
the first stage, we train a simplified PLDA model only on the
natural speech:

φi,j = µ1 + V1yi + εi,j , (16)

then, on the second stage, we estimate new mean vector and
add a synthesis channel subspace U2 and train it only on the
re-synthesized speech (matrix V1 is also changed to the V2

during the optimization of the U2, the details can be found
in the Appendix). The final model, therefore, has the same

form as a standard PLDA with the difference that the residual
covariance matrix Σ is now full:

φi,j = µ2 + V2yi + U2xi,j + εi,j . (17)

Two-stage PLDA allows us to explicitly check both zero-
effort impostor hypothesis H(X ,N ) and spoofed impostor
hypothesis H(X ,N ).

Zero-effort impostor hypothesis H(X ,N ) assumes that the
target and the test utterance i-vectors originate from different
speakers — they have different latent speaker variables — but
they both are natural speech utterances. In this case, we should
use the parameters computed during the first stage:

[
φtarget
φtest

]
=

[
µ1

µ1

]
+

[
V1 0
0 V1

] [
y1

y2

]
+

[
ε1
ε2

]
. (18)

Spoofed impostor hypothesis H(X ,N ) also assumes that the
target and the test i-vectors originate from different speakers3.
But the difference is that now we consider the test utterance
to be a result of a spoofing attack. Thus, we expect them to
have a mismatch in the synthesis channel subspace U2:[
φtarget
φtest

]
=

[
µ2

µ2

]
+

[
V2 0 U2 0
0 V2 0 U2

]
y1

y2

x1

x2

+

[
ε1
ε2

]
.

(19)
The positive hypothesis H(X ,N ) assumes that both utter-

ances belong to the same target speaker:[
φtarget
φtest

]
=

[
µ1

µ1

]
+

[
V1

V1

]
y +

[
ε1
ε2

]
. (20)

The overall score of the two-stage PLDA model is similar
to the score of the standard PLDA model (12). It is also a log-
likelihood ratio between probabilities for positive and negative
hypotheses. The difference is that now we have two negative
hypotheses: H(X ,N ) and H(X ,N ), so we use max(·) operator
to select the most likely one:

s(φtarget,φtest) = (21)

log
p(φtarget,φtest|H(X ,N ))

max(p(φtarget,φtest|H(X ,N )), p(φtarget,φtest|H(X ,N )))
.

To compute the probabilities in Eq. (21), we use composite
matrices to rewrite Eq. (18) -(20) in a form of a factor analysis
models [41]:

φ′ = µ′ + Az + ε′ , (22)

and then apply Eq. (10).
To help the reader re-produce this procedure, we provide

an open-source reference implementation (see Conclusions for
the pointer).

3We also tried the case of a “perfect” spoofing, when it is so good that the
latent speaker variables are the same, but it has not worked out for our setup.



SIZOV et al.: JOINT SPEAKER VERIFICATION AND ANTI-SPOOFING IN THE I-VECTOR SPACE 7

VI. EXPERIMENTAL RESULTS

The full experiments were carried out using the open-
source speaker recognition toolbox4 which is a modification
of the toolbox Spear5 [42]. Acoustic features are extracted at
equally-spaced time instants using a sliding window approach.
First, a simple energy-based voice activity detection (VAD)
is performed to discard the non-speech parts. Second, 19
MFCC and log energy features together with their first- and
second-order derivatives are computed over 20 ms Hamming
windowed frames every 10 ms. Finally, utterance-level cepstral
mean and variance normalization (CMVN) is applied on the
resulting 60-dimensional feature vectors.

After feature extraction, the training of the UBM, the T
subspace and the whitening matrix is done once for all sys-
tems, using Fisher, Switchboard, SRE04, SRE05 and SRE06
corpora (from which the enrolment and test data used in our
experiments were excluded). The UBM model is composed of
2048 Gaussian components and the rank of the total variability
matrix T is set to 600. It is worth noting that both natural
and synthetic speech utterances undergo exactly the same
procedure of feature and i-vector extraction.

A. Standalone speaker verification results

TABLE III: Performance summary of the standalone speaker verification
systems on SRE06 speech conversion database. For evaluation we use the
following metrics: equal error rate (EER, %) and zero-effort false acceptance
rate (ZFAR, %) on LICIT protocol. To make ZFARs comparable with the
following experiments we compute them at the threshold when false rejection
rate of the particular system is equal to 1%.

Female Male
EER ZFAR EER ZFAR

GMM 13.38 60.37 12.64 66.61
Cosine 3.42 14.99 4.59 18.82
Simplified PLDA 0.81 0.62 0.54 0.44

In this experiment, we evaluate three automatic speaker
verification (ASV) techniques: GMM-UBM system and two
i-vector systems: cosine scoring and simplified PLDA. The
PLDA model is trained only on SRE04, SRE05 and SRE06
corpora, without considering the synthetic speech. Table III
shows the results on the LICIT protocol, while Fig. 5 illustrates
DET plots on both LICIT and SPOOF protocols for both
genders. These results clearly show that the simplified PLDA
system (Simp-PLDA) is superior to the other two speaker
verification systems in all cases: EER is at least four times
lower compared to the cosine scoring for both genders and
there is a considerable gap between DET curves on both
protocols. In the remaining experiments, this baseline Simp-
PLDA system will be used for score fusion and as a reference
for system comparison.

B. Standalone anti-spoofing results

In this experiment, we evaluate four back-end countermea-
sure (CM) techniques: Cosine, linear SVM, Simp-PLDA and

4https://pypi.python.org/pypi/xspear.fast plda
5https://pypi.python.org/pypi/bob.spear
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Fig. 5: DET curves of the speaker verification systems. Results are for both
female and male trials, and on both LICIT and SPOOF (pooled MCEP- and
LPC-vocoded trials).

two-stage PLDA. The training set consists of positive samples
(synthetic speech) and negative samples (natural speech).

Table IV reports the spoofing detection error (SDE) on all
possible matched and mismatched conditions and for both fe-
male and male trials. Clearly, the LPC-coded voice conversion
(VC) attacks are easy to detect even in the mismatch case
(MCEP vs LPC) where the SDE rates for all systems are less
or equal than 1.98% and 3.22% on female and male trials,
respectively. In contrast, as illustrated in Fig. 3, MCEP-coded
attacks are relatively difficult to detect, especially for mismatch
case (LPC vs JD-MCEP), where cosine scoring shows the best
results for both genders (14.83% and 14.86%). Both SVM and
Simp-PLDA systems failed to generalize for mismatch cases
and would not be considered in the following experiments on
score fusion.

C. Joint speaker verification and anti-spoofing results

To evaluate our proposed integrated systems, we compare
them with the traditional score fusion that combines the scores
provided by both ASV and CM systems. Fig. 6 illustrates
the scatter plot of the scores of the genuine accesses, zero-
effort impostors and spoofing attacks. The three classes are
fairly well separated which suggests that score fusion is a good
candidate for joint operation of verification and spoofing.

Table V reports the performance of several joint systems for
all training conditions and all attack methods. We observe the
following:

1) The baseline system always reaches the best performance
on the LICIT protocol: the corresponding ZFARs for both
genders are the lowest ones. This is not surprising since

https://pypi.python.org/pypi/xspear.fast_plda
https://pypi.python.org/pypi/bob.spear
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TABLE IV: Comparison of stand-alone countermeasures. This table shows the spoofing detection error rate SDE (%) on both female and male trials for
cosine, SVM, Simplified PLDA (S-PLDA) and two-stage PLDA (2-stg PLDA) classifiers. The second column of the table shows the type of the features we
used for the copy-synthesis approach to get vocoded speech for training. They are either Mel-cepstral analysis features (MCEP) or linear predictive coding
features (LPC). The third column specifies the attack: we consider two voice conversion techniques, namely, joint-density Gaussian mixture model (JD-GMM)
and simplified frame selection (FS). JD-GMM is applied for both MCEP and LPC features. The corresponding methods are called JD-MCEP and JD-LPC.
We use only MCEP features for FS conversion.

Conditions
Attacks

prepared for Test attacks
Female Male

Cosine SVM S-PLDA 2-stg PLDA Cosine SVM S-PLDA 2-stg PLDA

Matched
conditions

MCEP JD-MCEP 3.18 6.9 8.24 3.52 3.69 1.80 2.70 2.13
MCEP FS-MCEP 1.81 0.55 0.29 1.14 3.28 0.98 0.61 1.72
LPC JD-LPC 0.64 0.55 0.35 0.70 1.11 0.66 0.37 1.19

MCEP+LPC JD-MCEP 3.09 12.76 20.54 3.00 4.14 4.18 6.92 2.83
MCEP+LPC JD-LPC 1.54 0.55 0.57 1.19 3.15 1.23 0.57 2.21
MCEP+LPC FS-MCEP 1.95 0.73 0.32 1.25 3.52 1.39 0.70 2.17

Mismatched
conditions

MCEP JD-LPC 1.98 1.98 1.19 1.17 3.32 0.86 0.66 1.76
LPC JD-MCEP 14.83 46.55 46.55 16.96 14.86 39.56 44.96 19.7
LPC FS-MCEP 10.14 31.84 30.15 6.26 14.62 29.07 32.97 11.92

TABLE V: Performance summary of the joint authentication and anti-spoofing systems. In this table we evaluate attacks performed by two voice conversion
techniques: joint-density Gaussian mixture model (JD-GMM) and simplified frame selection (FS). For JD-GMM we consider two feature representations:
Mel-cepstral analysis features (MCEP) and linear predictive coding features (LPC). The corresponding methods are called JD-MCEP and JD-LPC. We use
only MCEP features for FS conversion. Vocoded speech for training is produced by copy-synthesis approach. We use the following metrics for evaluation:
equal error rate (EER, %) on all test trials pooled together as a generalized estimator of the system, zero-effort false acceptance rate (ZFAR, %) on LICIT
protocol and spoofing FAR (SFAR, %) for each attack method on SPOOF protocol. To make ZFARs and SFARs comparable across different systems we
compute them at the threshold when false rejection rate of the particular system is equal to 1%. We use two-stage PLDA as the second score fusion method.
The baseline systems are the same for all three training cases. We reproduce them for the sake of convenience. The integrated systems are highlighted in gray.

Female Male

Joint system EER ZFAR
SFAR

EER ZFAR
SFAR

JD-MCEP JD-LPC FS-MCEP JD-MCEP JD-LPC FS-MCEP
Training on natural and MCEP-vocoded speech

Baseline 3.72 0.62 7.12 10.65 33.93 5.39 0.44 7.51 8.66 46.29
Score fusion (cosine) 2.66 1.05 2.85 4.40 20.43 4.22 0.88 3.09 4.06 37.72
Score fusion (PLDA) 0.94 1.05 0.31 0.06 1.24 1.29 1.33 0.35 0.00 4.59
Simplified PLDA 2.65 0.68 4.03 4.40 17.28 4.54 0.44 4.51 4.33 34.28
Two-cov PLDA 2.28 0.87 3.28 3.53 14.37 4.33 0.88 5.48 4.95 35.25
Two-stage PLDA 1.06 2.29 0.5 0.12 1.3 1.91 2.12 1.24 0.44 11.13

Training on natural and LPC-vocoded speech
Baseline 3.72 0.62 7.12 10.65 33.93 5.39 0.44 7.51 8.66 46.29
Score fusion (cosine) 2.96 0.93 3.59 5.68 23.34 4.33 0.71 3.27 4.68 38.78
Score fusion (PLDA) 1.73 0.93 1.86 0.00 9.85 2.99 0.71 2.74 0.00 19.79
Simplified PLDA 3.38 0.87 7.25 3.90 29.97 5.31 0.53 9.19 3.98 46.73
Two-cov PLDA 3.00 1.18 6.07 2.72 25.33 4.95 0.71 10.25 3.98 47.26
Two-stage PLDA 1.51 2.79 2.66 0.00 7.06 3.19 2.03 5.92 0.00 22.62

Training on natural, MCEP- and LPC-vocoded speech
Baseline 3.72 0.62 7.12 10.65 33.93 5.39 0.44 7.51 8.66 46.29
Score fusion (cosine) 2.83 1.05 3.22 5.02 22.10 4.28 0.88 3.18 4.33 38.25
Score fusion (PLDA) 0.99 1.18 0.62 0.00 2.11 1.54 0.97 0.44 0.00 6.89
Simplified PLDA 2.53 0.99 5.20 2.79 19.26 4.40 0.53 4.77 2.83 36.48
Two-cov PLDA 2.23 1.12 3.65 1.73 13.50 4.22 0.71 5.30 2.65 36.40
Two-stage PLDA 1.03 2.35 0.43 0.00 1.42 1.91 2.21 1.24 0.00 12.10

the baseline is trained only on the natural data, which
makes it tuned to the LICIT protocol. As a downside, its
performance dramatically degrades on the SPOOF protocol.
Fig. 7 illustrates this further.

2) Comparing the two score fusion variants, cosine scoring and
two-stage PLDA, the latter is considerably better in terms of
both pooled EERs and SFARs. This might look surprising
as they performed comparably with the standalone coun-
termeasures (Table IV). A possible reason is that the log-
likelihood ratio scores produced by two-stage PLDA are
better calibrated and hence fuse better.

3) Comparing the three integrated systems (highlighted in
gray), the one-stage systems are behind the two-stage sys-
tem on the SPOOF protocol (SFAR) and in terms of EER.
Only the two-stage PLDA demonstrates decent generaliza-

tion abilities in the most challenging conditions, when only
LPC-vocoded speech is available for training (the middle
part of the Table V). It decreases SFARs of the previously
unseen MCEP-based FS attacks by factors of 5 and 2 for
female and male trials, respectively. Similar findings are
depicted in Fig. 7.

4) Fig. 7 illustrates the best that, for female trials, both the
two-stage integrated system and the two-stage fusion system
show almost equal performance, while the latter is a clear
leader among all the systems for male trials.

5) Comparing the differences between genders, we see that it
is much easier for male trials to spoof the systems. In the
middle part of the Table V even the best countermeasure
cannot reduce SFAR of FS attacks below 19.79%. Similar
findings were recently reported in another work [43]. Based
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Fig. 6: Scatter plot for male trials. In this example, cosine scoring counter-
measure is trained using MCEP-coded speech.

on our experience with voice conversion, we can say that
usually male-to-male conversion is much easier than female-
to-female conversion. At the same time, vocoders usually
work better for males than females. This might explain the
observed differences.
Last but not least, Fig. 8 displays the score distributions of

both the initial baseline system and the best integrated system
(two-stage PLDA) for female trials. The scores of the spoofing
attacks are generally shifted to the left by the two-stage PLDA
system, leading to increased separation between genuine and
impostors trials. The red DET curves in Fig. 5 also confirm
this finding: for the SPOOF protocol, the curves are shifted
towards the bottom left (i.e. lower error rates). On the LICIT
protocol, the curves of both baseline and integrated-system
are close to each other although the baseline results are often
slightly better.

VII. CONCLUSIONS

All the existing literature on voice conversion and synthetic
speech detection focuses on designing discriminative features.
In this study, we have shown that the problem can be tackled
in the space of speaker models, too. Specifically, we suggested
using i-vectors and PLDA back-end not only for speaker verifi-
cation but for spoofing detection and joint modeling of speaker
and spoof hypotheses. Besides presenting this novel frame-
work, our evaluation protocol involved mismatched vocoder
training-test conditions not considered in most earlier studies.

We separately evaluated the accuracy of speaker verifica-
tion, spoofing detection and the joint systems. Concerning
standalone speaker verification, the i-vector PLDA approach
(EER = 0.81% for female and EER = 0.54% for male) out-
performed the two other techniques on the LICIT protocol as
expected. Under spoofing, however, its overall FAR increased
by a factor of 28 for female subset and a factor of 47 for
male subset, confirming that i-vector PLDA systems without
countermeasures are vulnerable to voice conversion attacks.
Concerning standalone spoofing detector, we found cosine
scoring of i-vectors and two-stage PLDA systems to be the
most stable across different conditions. Regarding the two
types of attacks, LPC-coded attacks were easy to detect even
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Fig. 7: Overall SFARs on both female and male trials for all joint systems
and for all prepared conditions (i.e. MCEP, LPC, MCEP + LPC). The test
attacks include both MCEP- and LPC-coded VC speech.
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Fig. 8: Score distribution for female trials. This figure shows the score
distribution for both baseline and two-stage PLDA system trained on MCEP-
and LPC-coded speech.

in the mismatched case while MCEP-coded attacks were more
challenging. This result is understandable in the light of i-
vector distributions graphed above.

Concerning the experiments on joint speaker verification
and anti-spoofing, the new joint approach of modeling ad-
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ditional synthesis-channel subspace outperforms other consid-
ered methods by a large margin and shows promising abilities
of generalization to the unseen cases. We expect further
improvements by combining it with spoofing-specific features
to replace MFCCs, for instance, with existing custom features
(modified group delay, local binary pattern) or some new
features derived through feature learning techniques. Whether
such a complete system will generalize well to unseen attacks
remains to be seen in future work.

Our study has a few limitations as well. We considered
only two different voice conversion techniques: joint-density
Gaussian mixture model (JD-GMM) based on MCEP and LPC
features and a simplified frame selection (FS) method based on
MCEP features. We used the same features to produce vocoded
speech for training. These are similar techniques originating
from the same software package, SPTK. Thus, further ex-
periments involving more severely mismatched spoofing tech-
niques is required to claim truly generalized countermeasures.
Nevertheless, the promising experiments here suggest that the
general framework of joint modeling of synthesis channels and
natural utterance variations is worth for further exploration. In
fact, it would be a possible candidate as a baseline technique
for voice anti-spoofing. To help other researchers re-produce
our results, we share both the i-vectors6 and the program
codes7 used in this study.
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APPENDIX

Here we present the EM-algorithm to train the synthesis subspace
matrix U2 for the two-stage PLDA model. This algorithm is a
modification of the EM-algorithm for the standard PLDA model
[44], [36]. First, we subtract synthesis data mean vector µ2 from
the data. The E-step is the same as in the standard PLDA; during it,
we compute the following matrices:

Tx =
∑
ij

E[xi,j ]φ
T
i,j , (23)

Ryx =
∑
ij

E[yixi,j ] , (24)

Rxx =
∑
ij

E[xi,jx
T
i,j ] . (25)

At the M-step we update the matrix U2 as follows:

U2 = (TT
x −V2Ryx)R

−1
xx , (26)

where matrix V2 is initialized with V1.
To speed up convergence we apply so-called minimum-divergence

(MD) step [45], [46]. During this step we do not restrict the latent
variables xi,j to have a standard normal prior, then we maximize w.r.t.
prior hyper-parameters and find equivalent representation but with a
standard normal prior. This step is efficient in escaping saddle-points.
For the MD-step we need a number of auxiliary matrices:

GT = R−1
yyRyx , (27)

Z =
1

N
(Rxx −GRyx) . (28)

After that it is sufficient to apply the following transformations:

U2 ← U2chol(Z) , (29)
V2 ← V2 +U2G , (30)

where chol(Z) is the Cholesky decomposition of the matrix Z .
Modification of the matrix V2 is due to the potential shift of the
mean value (U2yi) that we absorb into the matrix V2.
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