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Abstract
Speaker diarization is the task of identifying “who spoke when” in an audio stream containing

multiple speakers. This is an unsupervised task as there is no a priori information about the

speakers. Diagnostical studies on state-of-the-art diarization systems have isolated three main

issues with the systems; overlapping speech, effects of background noise and speech/non-

speech detection errors on clustering, and signficant performance variance between different

systems. In this thesis we focuss on addressing these issues in diarization.

We propose new features based on structure of a conversation such as silence and speaker

change statistics for overlap detection. The features are estimated from a long-term context

(3-4 seconds) and are used to estimate the probability of overlap at a given instant. These

probabilities are later incorporated into acoustic feature based overlap detector as prior prob-

abilities. Experiments on several meeting corpora reveal that overlap detection is improved

significantly by the proposed method and this consequently reduces the diarization error.

To address the issues arising from background noise, errors in speech/non-speech detection

and capture speaker discriminative information in the signal, we propose two methods. In

the first method, we propose Information Bottleneck with Side Information (IBSI) based

diarization to supress artefacts of background noise and non-speech segments introduced into

clustering. In the second method, we show that the phoneme transcript of a given recording

carries useful information for speaker diarization. This obervation was used in estimation

of phoneme background model which is used for diarization in Information Bottleneck (IB)

framework. Both the methods achieve significant reduction in error on various meeting

corpora.

We train different artificial neural network (ANN) architectures to extract speaker discriminant

features and use these features as input to speaker diarization systems. The ANNs are trained

to perform related tasks such as speaker comparison, speaker classification and auto encod-

ing. The bottleneck layer activations from these networks are used as features for speaker

diarization. Experiments on different meeting corpora revealed that combination of MFCCs

and ANN features reduces the diarization error.

To address the issue of performance variations across different sytems, we propose feature

level combination of HMM/GMM and IB diarization systems. The combination does not

require any changes to the original systems. The output of IB system is used to generate

features which when combined with MFCCs in a HMM/GMM system reduce diarization error.

Key Words: Speaker diarization, meeting room conversations, conversational speech, over-

lapping speech, side information, phoneme background model, artificial neural networks,
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bottleneck features, system combination
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Résumé
La diarization – aussi appelée segmentation et regroupement – de locuteur est la tâche d’iden-

tifier "qui a parlé quand" dans un flux audio contenant plusieurs locuteurs. Il s’agit d’une

tâche non supervisée car il n’y a a priori aucune information sur les locuteurs. Des études diag-

nostiques sur l’état de l’art des systèmes de diarization ont isolé trois problèmes principaux

pour ces systèmes : la parole se recouvrant (chevauchement), les effets du bruit ambiant et

des erreurs de détection de parole/absence de parole sur le regroupement, et une variance des

performances des différents systèmes significative. Dans cette thèse, nous nous intéressons à

ces trois problèmes dans le contexte de la diarization.

Nous proposons de nouveaux paramètres basés sur la structure des conversations, comme les

silences et les statistiques de changement de locuteur pour la détection de chevauchement (de

locuteurs). Ces paramètres sont estimés en prenant en compte un contexte à long terme (3-4

secondes) et sont utilisés pour estimer la probabilité de chevauchement à un instant donné.

Ces probabilités sont ensuites incorporées en tant que probabilités a priori dans un détecteur

de chevauchement basé sur des paramètres acoustiques. Des expériences sur plusieurs corpus

de réunions révèlent que la méthode proposée améliore significativement la détection de

chevauchement et réduit par conséquent l’erreur de diarization.

Pour s’attaquer aux problèmes liés au bruit ambiant, erreurs de détection de parole/absence

de parole et pour capturer les informations discriminant les locuteurs dans le signal, nous

proposons deux méthodes. Dans la première approche, nous proposons un système de dia-

rization basé sur le principe du goulot d’étranglement de l’information avec information

additionnelle (IBSI pour Information Bottleneck with Side Information) pour supprimer les

artefacts de bruit ambiant et de segments sans parole introduits dans le regroupement. Dans

la seconde méthode, nous montrons que la transcription phonétique d’un enregistrement

donné contient des informations utiles pour la diarization de locuteurs. Cette observation per-

met d’estimer le modèle de fond basé sur les phonèmes, lequel est utilisé pour la diarization

dans le cadre du goulot d’étranglement de l’information (IB pour Information Bottleneck).

Ces deux méthodes résultent en une réduction significative de l’erreur sur différents corpus

de réunions.

Nous entraînons différentes architectures de réseaux de neurones artificiels (ANN pour Artifi-

cial Neural Network) pour extraire des paramètres discriminant les locuteurs. Ces paramètres

sont alors utilisés comme données d’entrée pour les systèmes de diarization de locuteurs. Les

ANNs sont entraînés pour effecteur des tâches liées comme la comparaison de locuteurs, la

classification de locuteurs et l’auto encodage. Les activations des couches d’étranglement de
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ces réseaux sont utilisées comme paramètres pour la diarization de locuteur. Des expériences

sur différents corpus de réunions ont montré que la combinaison de coefficients spectraux

MFCC (Mel-Frequency Cepstral Coefficients) avec les paramètres des ANN réduit l’erreur de

diarization.

Pour répondre au problème des variations de performances entre les différents systèmes, nous

proposons une combinaison des systèmes de diarization HMM/GMM et IB au niveau des

paramètres. La combinaison se fait au niveau des paramètres et ne requiert aucun changement

sur les systèmes originaux. La sortie du système IB est utilisée pour générer les paramètres

qui, une fois combinés avec les MFCCs dans un système HMM/GMM, réduisent l’erreur de

diarization.

Mots-clés : conversation en salle de réunion, parole conversationnelle, chevauchement de pa-

role, regroupement avec information additionnelle, modèle à base de phonèmes, paramètres

de réseaux de neurones artificiels, paramètres de goulot d’étranglement de l’information,

combinaison de systèmes.
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1 Introduction

We are witnessing an exponential growth in audio and video recordings being produced and

archived due to the availability of cheap and efficient storage and processing power. This

exponential growth in the audio and video data has created a necessity for technologies that

can facilitate efficient access to information present in these recordings. This data carries

various rich information sources such as lexical content (what is being spoken), speaker (who

is speaking), background scene and environment etc.,. Automatic methods to extract this

information pave way for large scale indexing of these data streams which facilitates efficient

browsing and information retrieval.

A significant portion of these recordings consist of television broadcast shows, telephone calls,

lectures and conference style meeting recordings. These recordings typically feature multiple

speakers and knowing who is speaking when is an useful information in this scenario. The

goal of speaker diarization is to provide such meta-information by identifying ‘who is speaking

when’ in a given audio recording containing multiple speakers [Tranter and Reynolds, 2006]. It

involves segmenting a given audio stream into speaker homogeneous regions and attributing

each region to the respective speaker by clustering. It is an unsupervised task as there is no

a-priori information about the speakers or the number of speakers present in a recording.

One of the main applications of speaker diarization is that it is used as a preprocessing step

before performing automatic transcription of multi-party conversations. In this application,

speaker diarization output is used to adapt the speaker independent acoustic models to

increase the accuracy of transcription. Apart from this, speaker diarization output adds

structure to a multi-party conversation by identifying the beginning and end times of different

speakers (speaker turns) in the conversation. This structure is very helpful in meaningful

indexing and is also useful in analyzing the conversation to infer various high level phenomena

such as group dynamics, co-operation and participation [Jayagopi et al., 2009b, Jayagopi et al.,

2009a, Jayagopi and Gatica-Perez, 2010].
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Chapter 1. Introduction

1.1 Motivations

The three main domains of application of speaker diarization which are broadcast shows,

telephone calls and meeting recordings vary in the nature of speech, recording equipment

used to capture the audio signal, and the typical number of speakers involved in a recording

[Tranter and Reynolds, 2006, Anguera et al., 2012].

In broadcast shows the speech is usually read or prepared, has very few disfluencies and the

signal is usually captured by close talking microphone in a studio environment. These shows

might also contain background music and advertisements.

Telephone calls are usually between two people and contain predominantly spontaneous

speech which might be corrupted by background noise or channel distortions.

Among all these domains, diarization of meeting recordings is the most challenging task

as it usually contains spontaneous speech with simultaneous speakers and short speaker

turns. Also the audio which is typically captured by distant microphones is often corrupted

by room reverberation and background noise. Due to this reason the most recent NIST-

RT evaluation campaigns have concentrated on diarization of meeting room conversations.

Studies [Huijbregts and Wooters, 2007, Shriberg et al., 2001, Knox et al., 2012, Huijbregts et al.,

2012, Sinclair and King, 2013] done on the state of the art speaker diarization systems in

NIST-RT evaluation campaigns have highlighted three main issues with these systems:

1. Overlapping speech: Systems are unable to handle simultaneous speakers resulting in

overlapping speech. Overlapping speech corrupts speaker clusters and also results in

missed speaker error when all the speakers in the overlapping region are not labelled

correctly. Studies on meeting recordings have shown that the error can be reduced by

around 40% relative by effective overlap handling.

2. Background noise and errors in speech/non-speech detection: Errors in speech/non-

speech detection introduce non-speech segments into speaker clusters which corrupt

the models and background noise effects the clustering in speech regions with low signal

to noise ratio.

3. Variations among different systems: The performance of the systems varies signifi-

cantly on the same set of data i.e., there is no single best system on all the recordings.

This shows that systems are modelling complementary information to each other and

diarization performance can be improved by combining different systems.

1.2 Objectives

The main objective of this thesis is to address the above mentioned shortcomings observed in

the state of the art speaker diarization systems. The objectives can be summarized as follows:
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1.3. Contributions of the thesis

• Propose novel features and methods for overlapping speech detection and diarization.

• Increase the robustness of the diarization system to effects of errors made in speech/non-

speech detection and background noise by proposing modifications to the clustering

framework and by the use of new features.

• Propose a novel combination method for different diarization systems such that the

combination exploits the complementary nature of the two diarization systems being

combined and does not require any modifications to the original systems.

Previous approaches in the literature have proposed methods using different features such as

time delay of arrival (TDOA) for the problem of overlapping speech diarization [Zelenák et al.,

2012] and to improve the robustness of clustering [Pardo et al., 2007, Anguera, 2006]. In this

thesis we mainly focus on leveraging the information present in the acoustic signal and the

structure of conversation to address these issues.

1.3 Contributions of the thesis

The contributions of this thesis can be summarized as follows:

• Overlapping speech detection to improve speaker diarization.

– We propose long-term conversational features derived from the structure of a

conversation to improve overlap detection. The features include silence and

speaker change statistics computed over a long-term window of 3–4 seconds.

These features are used to estimate the probability of occurrence of overlap in the

window. The estimated probabilities are used as prior probabilities in an acoustic

feature based classifier. Experimental results show that the proposed method

performs equally well on meetings from different corpora and significantly reduces

the diarization error rate (DER). Parts of this work have been published in [Yella

and Valente, 2012, Yella and Bourlard, 2013] and a comprehensive journal article

has been published in [Yella and Bourlard, 2014a].

• Use of auxiliary information sources for speaker diarization.

– To suppress the effects of background noise and errors due to speech/non-speech

detection, we propose Information Bottleneck with Side Information (IBSI) frame-

work for speaker diarization. The IBSI is a non-parametric clustering framework

that maximizes mutual information between the final clustering output and a rele-

vant variable set while minimizing the mutual information with irrelevant variable

set. In this framework, the relevant variable set is denoted by the components of

a Gaussian Mixture Model (GMM) based background model estimated from the

speech regions of a given recording and the irrelevant variable set is represented
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by the set of components of GMM estimated from the non-speech regions of a

given recording. Experiments on meetings from several corpora have shown that

the IBSI framework significantly reduces the diarization error. The findings of this

work have been published in [Yella and Bourlard, 2014b]

– We show that information from phoneme transcripts of a given recording are

useful for speaker diarization by performing experiments using oracle annotations.

Based on these observations, we propose a method to use the information from

phoneme transcripts to improve speaker diarization. This is achieved by estimating

a phoneme background model utilizing the information from phoneme transcript

of a given recording. Experiments on several meeting corpora have shown that

the use of PBM in the place of a normal background model improves speaker

diarization output. This work has been published in [Yella et al., 2014a].

• Artificial neural network (ANN) features for speaker diarization

– We propose the use of features extracted from three different ANN architectures

trained on related tasks to speaker diarization as features for speaker diarization.

The first network is trained to detect if two given input speech segments belong

to the same or different speakers. The second network is trained to classify the

input speech segment into one of the pre-determined set of speakers used while

training the network. The third network is an auto-encoder which is trained to

reconstruct the input at the output with as low reconstruction error as possible.

The hidden layer activations from a bottleneck layer of these networks are used

as features for speaker diarization. The rationale behind using the hidden layer

activations as features is that the initial layers of ANN would transform the input

features into a space more conducive for speaker discrimination. The neural

network features are evaluated on their own and in combination with traditional

Mel frequency cepstral coefficients (MFCCs) which are typically used as features

for speaker diarization. Experimental results have shown that, though the ANN

features do not decrease the diarization error when used on their own, they provide

complementary information to MFCCs and improve the diarization output when

combined with MFCCs. Part of this work has been published in [Yella et al., 2014b]

• Combination of diarization systems to capture their complementary characteristics

– We address the issue of performance variance between different diarization sys-

tems by proposing a new combination strategy for combining a HMM/GMM based

speaker diarization system and an Information Bottleneck (IB) based speaker di-

arization system. These systems vary in several aspects such as modelling and

distance measure used in clustering. Hence the combination of the two systems

captures the complementary nature. The combination takes place at the feature

level, where the output of IB system is used to generate features for HMM/GMM

system. The combination does not require any changes to the original system.

This work has been published in [Yella and Valente, 2011].
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1.4. Organization of the thesis

1.4 Organization of the thesis

The thesis is organized as follows:

• Chapter 2 (Background and resources): This chapter provides a brief overview of the

main components in a state of the art speaker diarization systems. It briefly explains

state-of-the-art speaker diarization frameworks based on HMM/GMM and IB which

are used in the current work. It also gives details of the various input features used for

speaker diarization along with the evaluation metrics used to evaluate the speaker di-

arization output. Finally, it provides details of various databases of multi-party meeting

recordings which are used in the current thesis.

• Chapter 3 (Overlapping speech detection and diarization): This chapter provides details

on the proposed long-term conversational features for overlapping speech detection.

It reports experiments done on several meeting corpora to evaluate the effectiveness

of the proposed features. It also explains the ways in which the detected overlaps can

be used to improve speaker diarization and reports speaker diarization experiments on

different meeting corpora.

• Chapter 4 (Auxiliary information sources for diarization): This chapter explains the

ways to use auxiliary information sources such as non-speech portions and phoneme

transcripts to help improve speaker diarization. It explains the IBSI based speaker di-

arization where non-speech regions are used as side information for clustering. It also

provides details on how to use the phoneme transcripts to improve speaker diariza-

tion by explaining the estimation of phoneme background model which is used in IB

diarization system.

• Chapter 5 (Artificial neural network features for diarization): This chapter explains

various neural network architectures explored to extract features for speaker diarization.

It provides details on the network training, feature generation and reports speaker

diarization experiments on HMM/GMM and information bottleneck systems.

• Chapter 6 (System combination): This chapter details the feature level combination of

HMM/GMM and IB systems.

• Chapter 7 (Conclusions): This chapter summarizes the conclusions of the thesis along

with possible future directions.
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2 Speaker Diarization: Background and
resources

The goal of speaker diarization is to partition a given speech recording into speaker-homogeneous

regions along with attributing these regions to the speakers in the audio stream [Tranter and

Reynolds, 2006] as shown in Figure 2.1. Most of the state-of-the-art speaker diarization systems

Figure 2.1: Speaker diarization segments the given audio stream based on speaker turns.
Segments of same colour belong to a single speaker.

are based on the agglomerative clustering framework [Tranter and Reynolds, 2006, Wooters

and Huijbregts, 2008, Vijayasenan, 2010]. The main steps involved in speaker diarization

are processing of the speech signals captured by single or multiple microphones, feature

extraction, speech/non-speech detection, segmentation and clustering.

In the preprocessing step, noise reduction methods such as Wiener filtering [Wiener, 1949,

Adam et al., 2002a] are applied to the signal captured to reduce the effects of background noise.

Also, when the signal is captured by multiple distant microphones (MDMs), beamforming

methods could be applied to obtain an enhanced signal with high signal to noise ratio. These

methods have shown to be effective especially in diarization of meeting room conversations

and are explained in detail in Section 2.1.

The typical features used for speaker diarization are short-term spectrum based features which

represent the vocal tract characteristics of the speaker. When the audio is captured by multiple

distant microphones (MDM) like in a meeting room environment, the time delay of arrival

(TDOA) of the speech signal at different microphones carries useful information about spatial

location of the source speaker [Anguera et al., 2007]. Section 2.2 explains in detail the different

types of features used for speaker diarization.
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After feature extraction, speech activity detection is performed, and non-speech regions are

excluded prior to the initialization of clustering to prevent corruption of speech regions. The

non-speech class encompasses a broad range of signals such as background noise, silence,

vocal sounds like cough or laughter and other sounds like music, door slamming, or any other

ambient noises. These signals, if included in the clustering, add impurity to speaker clusters

and increase the clustering error. Several speech activity detection algorithms have been

proposed in the literature. They are presented in detail in Section 2.3.

The initialization of diarization is done by segmenting the speech regions identified by the

speech activity detector. The segmentation can be done either by speaker change detection or

by uniform segmentation. Several approaches for change detection have been proposed in lit-

erature which are based on different criteria like Bayesian information criterion (BIC), Kullback

Leibler (KL) divergence, generalized likelihood ratio (GLR) etc.,. Studies on meeting diarization

have shown that uniform segmentation based initialization followed by re-alignment after

each cluster merge yields similar diarization output to that of initialization based on speaker

change detection. Section 2.4 provides details of various segmentation methods proposed for

speaker diarization systems.

The agglomerative clustering is initialized by representing segments obtained from uniform

segmentation or speaker change detection as individual clusters. At each step clusters that

are closest to each other are merged based on a distance measure. After each cluster merge

the feature vectors are re-assigned to the cluster models to allow for corrections in any errors

committed in the previous segmentation steps. The clustering continues until no suitable

clusters are available for merging, which is decided based on a stopping criterion. Several

distance measures and stopping criteria have been proposed in the literature. Section 2.5

outlines these approaches. A block diagram of a typical agglomerative speaker diarization

system is shown in Figure 2.2.

2.1 Processing of multiple audio channels

Diarization of meeting room recordings typically uses audio captured by distant microphones

placed at different locations in the meeting room. Due to this, the audio captured in a meeting

room environment is far-field and is influenced by various factors such as background noise,

room reverberation and different qualities of microphones used for the recording [Janin et al.,

2003, Mccowan et al., 2005, Mostefa et al., 2007]. Several methods have been proposed in the

literature to handle these issues. For example the audio signals can be pre-processed using

Wiener filtering [Wiener, 1949] to attenuate the noise. Several works on speaker diarization use

the toolkit developed in [Adam et al., 2002a] to perform this and improvements are observed

over the systems that do not use noise reduction. The single channel speaker diarization

can be adapted to multi-channel speaker diarization in several ways. In [Fredouille et al.,

2004], speaker diarization is performed individually on each channel and the final output

is obtained by merging the outputs of the individual channels. In [Jin et al., 2004], speaker
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Figure 2.2: Block diagram showing agglomerative clustering framwork for speaker diarization:
The captured speech signals at Multiple Distant Microphones (MDMs) are enhanced by the
delay-sum beamforming followed by feature extraction and speech/non-speech detection.
Non-speech regions are ignored and speech portions are uniformly segmented and agglom-
erative clustering is initialized with each segment as a cluster. Multiple iterations of cluster
merging (based on a distance measure) and re-alignment are performed until the stopping
criterion is satisfied.

segmentation is performed individually on each channel and the final diarization output is

obtained by considering the channel whose segments have high signal to noise ratio (SNR).

Several methods have tried to combine multiple audio signals to obtain a single signal which

is used for diarization. In [Istrate et al., 2005] the signals captured by different microphones

are combined by a SNR based weighted combination. But this method has the disadvantage

that it does not consider the time delay of arrival at the multiple microphones which very

often leads to poor performance.

Recent approaches to multi-channel diarization [Anguera et al., 2005, Pardo et al., 2007,

Anguera et al., 2007] use acoustic beamforming as an important pre-processing step to speaker

diarization. Popular open source implementation of delay-sum beamforming method known

as BeamformIt [Anguera, X, ] is often used for this purpose. Here, signals captured by multiple

distant microphones are aligned to a reference channel by correcting for the time delay of

arrival at different microphones before obtaining a weighted combination of these signals to

get an enhanced signal. The weights for the combination are based on the individual channel

SNRs or on cross-correlation based metric. The time delay of arrival at different microphones

is obtained by using delay-sum beamforming which finds the location of peak in the cross-

correlation function between the reference channel and other channels. This procedure helps

speaker diarization in two ways, as it provides an enhanced signal and also as a by-product, the

TDOA values at multiple distant microphones, which carry spatial information on the sound

source are very helpful for speaker diarization. This method of beamforming is very useful

for speaker diarization as it does not need any prior information on microphone locations,

room architecture and ambient noise. Although several other sophisticated methods for

beamforming like maximum likelihood beamforming [Seltzer et al., 2004], generalized side
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lobe canceler (GSC) [Griffiths and Jim, 1982] and minimum variance distortion less response

(MVDR) [Woelfel and McDonough, 2009] are available they either need prior information or

are computationally very expensive.

2.2 Features for speaker diarization

This section gives an overview of different types of features that have been used for speaker

diarization. These features can be broadly classified into three categories; short-term spec-

trum based features, spatial features (based on time delay of arrival) and long-term features

(estimated from a longer context).

2.2.1 Short-term spectrum based features

Features extracted from the short-term spectrum are used in almost all speaker diarization

systems. The rationale behind this is that, the short-term spectrum based features carry

information about the vocal tract characteristics of individual speakers. These features are

extracted from either the short-term Fourier transform of the windowed speech signal or

from linear prediction (LP) analysis. These features are typically extracted for every 10 ms

from a window size of around 30 ms. Many systems [Ajmera et al., 2004, Ajmera, 2004,

Vijayasenan and Valente, 2012] use Mel frequency cepstral coefficients (MFCCs) as features

for speaker diarization. The dimensionality of MFCCs is around 20, which is higher than what

is typically used for automatic speech recognition (13). This helps in capturing the source

characteristics of the speech signal. Delta, delta-delta features which are used in ASR are

not used in speaker diarization as they mainly capture short-term dynamics that are mainly

useful for distinguishing phoneme classes rather than speakers. Other short-term spectral

features used for speaker diarization include line spectrum pair (LSP) features [Adam et al.,

2002b], perceptual linear prediction coefficients (PLP) [Sinha et al., 2005], and linear prediction

cepstral coefficients (LPCCs) [Ajmera and Wooters, 2003].

To improve the noise robustness of the features, several feature warping techniques have

been proposed [Peleconas and Sridharan, 2001], which basically gaussianize the feature

distribution prior to modelling. This has been shown to give significant improvements [Sinha

et al., 2005, Zhu et al., 2006]. Also, RASTA-PLP [Hermansky and Morgan, 1994] features which

are designed to deal with convolutive and additive noises have been used [van Leeuwen and

Huijbregts, 2006, van Leeuwen and Konecny, 2008].

2.2.2 Time delay of arrival

When the speech signal is captured by multiple distant microphones (MDMs), the Time

Delay of Arrival (TDOA) of the signal at MDMs carries useful information on speaker location.

TDOA features are estimated as a by-product of delay-sum beamforming performed as a
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preprocessing step. These features are very helpful for speaker diarization as they provide

information on speaker location which is complementary to the short-term spectrum based

features. The assumption here is that the position of the speaker remains more or less constant

through out the recording. Given multiple signals captured by microphones placed at different

locations in a room, the first step is to pick a reference channel. This can be done based on the

SNR or on cross-correlation metric. Then, the TDOA features are estimated by locating the peak

in the cross-correlation function between the reference channel and a microphone channel.

The cross-correlation is performed in the spectral domain after applying a Fourier transform

and magnitude normalization to improve robustness against noise and reverberation. The

technique is called generalized cross correlation with phase transform (GCC-PHAT) [Knapp

and Carter, 1976, Brandstein and Silverman, 1997]. The cross-correlation between two signals

xi (n) and x j (n) using GCC-PHAT is computed as follows:

GCC PH AT ( f ) = Xi ( f )[X j ( f )]∗

|Xi ( f )[X j ( f )]∗| (2.1)

where, Xi ( f ) and X j ( f ) are the Fourier transform of the two signals and []∗ denotes complex

conjugate. The TDOA estimates from the cross-correlation are obtained as:

t (i , j ) = argmax
d

I F T (GCC PH AT ( f )) (2.2)

where, t (i , j ) is the TDOA estimate between the two channels i , j and I F T () denotes inverse

Fourier transform.

Once the TDOA features are estimated, they can be used for speaker diarization on their

own or in combination with the short-term spectrum based features. Studies [Pardo et al.,

2007, Pardo et al., 2006] have shown that the combination of MFCC features and TDOA features

at the model level give significant improvements in speaker diarization output. The weights

of the combination can be estimated on a separate set of recordings or can be estimated

automatically using entropy based metrics [Anguera et al., 2007].

2.2.3 Long-term features

The short-term spectrum based MFCC features are used for both automatic speaker and

speech recognition tasks. The main motivation for using long-term features for speaker

diarization is that they can capture individual characteristics of a speaker’s voice and speaking

behavior which are not captured by short-term spectrum based features [Friedland et al., 2009].

In [Friedland et al., 2009] a systematic investigation of 70 long-term features which are mainly

pitch related prosodic features is conducted for their usefulness for speaker discrimination.

The combination of 10 top-rank long-term features with MFCCs has reduced the error in

diarization by about 30% relative. In addition to this, these features have also been successfully

used to initialize speaker clusters in an agglomerative clustering framework and have been

shown to work better than previous initialization methods.
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Modulation spectrogram features [Kingsbury et al., 1998] that depend on a long temporal

context were also used to complement short-term spectrum based features [Vinyals and

Friedland, 2008].

2.3 Speech/non-speech detection

The aim of a speech activity detection (SAD) system is to label speech and non-speech seg-

ments in a given audio stream. The errors made by a SAD system impact diarization in two

significant ways. The missed speech segments and false-alarm speech detections contribute

directly to the diarization error rate (DER) in the form of missed and false alarm errors. There-

fore, a poor SAD system will adversely effect the diarization evaluation metric DER (explained

in detail in Section 2.7.2). The other way in which the errors made by SAD system influence

speaker diarization is, that these false-alarm errors introduce impurities into acoustic models

of speaker clusters [Wooters et al., 2004]. The speech segments missed by a SAD system

reduce the speech data available for speaker clusters. Both phenomena result in an increase

of clustering error.

The problem of SAD has been well studied in speech processing literature in various contexts

such as speech coding, enhancement, recognition etc.,. Many approaches have been proposed

in the literature to solve this task [Lu et al., 2002]. Initial works on speaker diarization have

attempted to perform diarization without SAD with the a logical reasoning that this would

result in an extra cluster with non-speech regions. But it was observed that this adversely

effected the speaker diarization output. Therefore, a dedicated SAD system is used from then

on for this task. The main approaches used for SAD can be classified into three categories;

energy based, model based and hybrid approaches which are detailed below.

2.3.1 Energy based detectors

Energy based detectors typically use thresholds on short-term spectral energy to decide

whether a region contains speech/non-speech [Junqua et al., 1994, Lamel et al., 1981, Wooters

et al., 2004]. This class of methods are generally employed in telephone speech and do not

require any labelled training data. Since the channel, noise, and recording conditions vary

drastically from one meeting room to another these methods usually do not generalize well to

different meeting recordings [van Leeuwen and Huijbregts, 2006, Istrate et al., 2005].

2.3.2 Model based detectors

Model based detectors use pre-trained models on labelled data from speech and non-speech

classes to identify the classes in unlabeled data [Zhu et al., 2008, Anguera et al., 2005, Fredouille

and Senay, 2006]. The pre-trained models can also be adapted to the test data [Huijbregts and

de Jong, 2011, Fredouille and Evans, 2008]. Usually, Gaussian mixture models are estimated
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for each class and the detection is based on Viterbi decoding using these models. A minimum

duration constraint for each class (speech,non-speech) is applied while decoding to prevent

short segments. Apart from modelling speech and non-speech classes, several models can be

trained for more specific classes such as speech + noise, speech + music, music, silence, etc.,.

Works on broadcast news [Nguyen et al., 2002, luc Gauvain et al., 1998, Zhu et al., 2005] have

proposed using gender and: channel dependent models to improve the SAD output. Although

using more specific classes would result in improvements, its main disadvantages are the need

for sufficient amount of labelled data to train the models, and generalizability to new envi-

ronments. Discriminant classifiers based on linear discriminant analysis (LDA) [Rentzeperis

et al., 2006], support vector machines (SVMs) [Temko et al., 2007] and multi layer perceptrons

(MLPs) [Dines et al., 2006] have also been proposed in the literature. In the case of MLPs, the

class posterior estimates obtained at the output layer are used as scaled likelihoods in Viterbi

decoding to perform speech/non-speech detection.

2.3.3 Hybrid approaches

Hybrid approaches to SAD have been proposed to overcome the issue of generalizability of

the pre-trained models to new conditions [Anguera et al., 2006a, Sun et al., 2009, Nwe et al.,

2009, Wooters and Huijbregts, 2008, El-Khoury et al., 2009]. These approaches combine both

threshold based energy detectors and model based detectors to perform speech/non-speech

detection. In the first step, a threshold based energy detector is used to label unsegmented

audio and in the second step, the segments of high confidence in the labelled data are used

to train new models or adapt pre-trained models to current conditions. This method also

alleviates the need for labelled training data.

2.4 Segmentation

The goal of the segmentation step in speaker diarization is to segment the given audio into

speaker homogeneous segments which are used for clustering in the later stages. In other

words, the goal is to find all the speaker change points in the audio under analysis. The

most common approach to change detection is to perform hypothesis testing between two

adjacent windows of speech. The hypotheses that are tested for change detection are: speech

in the two windows is produced either by same speaker or different speakers. The windows

are shifted at regular intervals to detect all the change points. The hypotheses are tested

by estimating models over the speech data in the two windows and computing a criterion

based similarity/distance metric between these models. A threshold on the metric is used to

determine the change point. Several different criterion have been proposed in the literature

and they are presented below.
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2.4.1 Bayesian information criterion

The Bayesian Information Criterion (BIC) is a model selection criterion [Schwarz, 1978] used

to determine which model best explains the given data. It has been used for acoustic change

detection in [Chen and Gopalakrishan, 1998]. The BIC value of a model M representing data

X is given by:

B IC (M) = logL (X |M)− λ

2
#(M) log(N ) (2.3)

where, L (X |M) is the likelihood of data X given the model M , N is the number of data points

in X , #(M) is the number of parameters in the model M , and λ is a trade-off between the

model complexity and how well the model fits the given data.

For change detection between two segments Xi and X j this criterion is computed for the two

hypotheses H1 and H2:

• H1 : The data is generated by a single speaker, in which case a single model best explains

the data

• H2 : The data is generated by two different speakers in which case two models (one for

each segment) best explain the data.

The difference in the BIC values of these two hypotheses is denoted as ∆B IC (i , j ) and is given

by:

∆B IC (i , j ) = logL (Xi j |Mi j )− [logL (Xi |Mi )+ logL (X j |M j )]− λ

2
δi j log(N ) (2.4)

where Xi j denotes the data resulting from combination of segments Xi and X j , Mi j denotes

the model estimated over the combined data, and δi j is the difference in the number of

parameters in models representing H1 and H2. A change is detected when the value of

∆B IC (i , j ) is less than zero. In practice, the two windows Xi and X j are slid along the input

audio stream at regular intervals to compute (2.4). The local minima in this sequence of ∆B IC

values whose value is below zero are detected as change points. Whenever a minimum is

observed, the windows are re-adjusted to start from the detected change point and when there

is no change detected between two windows, the window size is increased to encompass both

the windows and the computation is repeated. The trade-off parameter λ has to be tuned on a

separate development data to get optimal change detection. To avoid this, a modification to

the ∆B IC has been proposed [Ajmera et al., 2004] in which the number of parameters before

and after the merge are made equal i.e., #(Mi j ) = #(Mi )+#(M j ). This makes the term δi j in

(2.4) equal to zero which gets rid of the last term. This modification is referred in literature as

modified ∆B IC and has been shown to work very well for diarization [Ajmera, 2004, Wooters

and Huijbregts, 2008].

The BIC based change detection has two main drawbacks [Tranter and Reynolds, 2006]. First,
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it misses changes occurring in a short time span i.e., around two seconds and secondly, the

sliding window based search for change point detection is computationally very expensive. To

overcome the computational complexity, many systems [Delacourt and Wellekens, 2000] use

a computationally less expensive distance measure like KL divergence to detect initial change

points and these points are then refined in the second stage using BIC. Some works [Zibert et al.,

2009] adapt the window length used to compute∆B IC to reduce the number of computations.

2.4.2 Generalized likelihood ratio

The generalized likelihood ratio (GLR) [Jin et al., 2004, Gish et al., 1991, Han and Narayanan,

2008, Gangadharaiah et al., 2004] is similar to ∆B IC except that it does not take into account

the model complexity factor. Given two segments Xi and X j , the GLR computes the likelihood

ratios of the two hypotheses similar to ∆B IC . In the first hypothesis, it is assumed that the

data in the two segments is generated by a single model and in the second hypothesis, the

data in each segment is assumed to be generated by a separate model. The GLR is computed

as follows:

GLR(i , j ) = L (Xi j |Mi j )

L (Xi |Mi )+L (X j |M j )
(2.5)

where L (X |M) denotes the likelihood of data X given a model M , Xi j and Mi j denote the

data and model resulting from the combination of segments Xi and X j . When the number

of parameters in Mi j is made equal to Mi +M j , the GLR boils down to the modified ∆B IC

criterion.

2.4.3 KL divergence

Kullback Leibler (KL) divergence is used to measure the dissimilarity of two probability dis-

tributions. In the case of change detection, the KL divergence between the distributions of

the data in two segments can be used to decide whether there is a change or not [Siegler et al.,

1997, Zochová and Radová, 2005, Zhu et al., 2006]. The changes are detected by setting a

threshold on the divergence value. The KL divergence is computed between the two segments

Xi and X j by modelling them with corresponding Gaussian distributions Ni and N j . The

divergence can be obtained in closed form as:

K L(Xi ||X j ) = 1

2
tr [(Σi −Σ j )(Σ−1

j −Σ−1
i )+ (Σ−1

j −Σ−1
i )(µi −µ j )(µi −µ j )

′
] (2.6)

where, µk , Σk denote the mean and covariance of data Xk . The symmetric form of KL diver-

gence (KL2) is also used for change detection. It is computed as:

K L2(Xi , X j ) = K L(Xi ||X j )+K L(X j ||Xi ) (2.7)
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As no closed form expression for KL divergence exists for mixture models, Gaussian distri-

butions are used to model individual segments. This limits the modelling capacity but it is

computationally inexpensive to compute. For this reason, KL based measures are used in the

first step of change detection which is later refined by more sophisticated measures such as

BIC [Zochová and Radová, 2005, Delacourt and Wellekens, 2000].

2.5 Clustering and re-alignment

The clustering step takes the speaker homogeneous segments obtained from the segmentation

step and clusters them until there is only one cluster for each speaker. The cluster similari-

ty/distance measures used for clustering can be the same as those used for segmentation. The

BIC measure [Chen and Gopalakrishan, 1998], KL divergence [Siegler et al., 1997, Zochová and

Radová, 2005], KL2 distance [Zhu et al., 2006], and GLR [Jin et al., 2004, Gish et al., 1991] are

used as distance measures for clustering.

When the segmentation and clustering steps are performed sequentially, the errors made in

the segmentation step are passed on into the clustering step with no chance of correcting

them. Due to this, most diarization approaches use iterative clustering and re-alignment steps

to reduce the errors made during initial segmentation step. In this method, after merging two

clusters, a few iterations of Viterbi re-alignment and model re-estimation steps are performed

to reduce errors in the segmentation and to stabilize the cluster models. The Viterbi re-

alignment is done with a minimum duration constraint to avoid spurious short speaker turns.

The stopping criterion for clustering is usually based on a threshold over the distance measure

used for clustering. When the distance between any two clusters is greater than a certain

threshold, the clustering stops.

2.6 Speaker diarization systems

This section provides a detailed description of some of the state-of-the-art speaker diarization

systems proposed in the literature. The main focus is on the parametric HMM/GMM based

system which has been shown to achieve state of the art performance in NIST-RT [National

Institute of Standards and Technology, 2003] evaluation campaigns and a non-parametric

system based on an information bottleneck framework [Vijayasenan, 2010] which gives com-

parable performance to that of the parametric system but has a significantly lower running

time [Vijayasenan and Valente, 2012].

2.6.1 HMM/GMM system

A HMM/GMM based speaker-diarization system represents each speaker by a state of an

HMM and models the state emission probabilities using GMMs. The clustering is initialized

by uniform segmentation of detected speech regions in a given recording, which generates
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a set of segments {Xi }. The agglomerative clustering is initialized by treating each segment

as a cluster and is represented by a state in the HMM. Let ci denote the i th speaker cluster

(HMM state), bi denote the emission probability distribution corresponding to speaker cluster

ci and st denote a feature vector at time t . Then, the log-likelihood logbi (st ) of the feature st

for cluster ci using a GMM is obtained as:

logbi (st ) = log
∑
(r )

w (r )
i N (st ,µ(r )

i ,Σ(r )
i ), (2.8)

where N () is a Gaussian pdf and w (r )
i , µ(r )

i and Σ(r )
i are the weights, means and covariance

matrices respectively of the r th Gaussian mixture component of cluster ci . Figure 2.3 outlines

the HMM/GMM based diarization framework. Clustering in an agglomerative framework

starts by over-estimating the number of speaker clusters. At each iterative step, the clusters

that are most similar to each other based on a distance measure are merged. The similarity

between two clusters is measured using a modified delta Bayesian information criterion

(modified ∆B IC ) [Ajmera et al., 2004]. In modified ∆B IC , the complexity term in the standard

BIC [Schwarz, 1978] cancels out because the total number of model parameters before and

after merging is kept constant. The modified ∆B IC criterion ∆B IC (ci ,c j ) for two clusters ci

and c j is given by:

∆B IC (ci ,c j ) =
∑

st∈{ci∪c j }
logbi j (st )−

∑
st∈ci

logbi (st )−
∑

st∈c j

logb j (st ) (2.9)

where bi j is the probability distribution estimated over the combined data of cluster ci and c j .

The clusters that produce the highest ∆B IC score are merged. After each merge step, a Viterbi

decoding pass realigns the speech data to the new speaker clusters. A minimum duration

constraint on each state prevents rapid speaker changes. The clustering stops when no two

clusters have a ∆B IC score greater than zero.

When multiple feature streams are present, they can be combined by simply appending the

synchronized feature vectors of the individual feature streams and running diarization over

the appended feature vector stream. Alternatively, a separate set of GMMs for each feature

stream is estimated, and a weighted combination of the individual stream log-likelihoods

gives the combined log-likelihood. For the case of two feature streams p and q , let b(p)
i , b(q)

i

denote the probability distributions estimated from streams p, q respectively for cluster ci .

The combined log-likelihood for cluster ci is given by:

logbi (s(p)
t , s(q)

t ) = w (p) logb(p)
i (s(p)

t )+w (q) logb(q)
i (s(q)

t ), (2.10)

where s(p)
t , s(q)

t are the feature vectors corresponding to feature streams p, q respectively,

w (p), w (q) are the weights of the feature streams, such that w (p) +w (q) = 1. The weights w (p),

w (q) are typically optimized on a held out development data set. This type of combination

has been shown to be very effective in combining MFCC features and TDOA feature streams.

The multi-stream HMM/GMM diarization framework is depicted in Figure 2.4. The baseline
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Figure 2.3: HMM/GMM speaker diarization system.

HMM/GMM diarization system used in the current study is modelled after the state-of-the-art

system developed by ICSI [Wooters and Huijbregts, 2008].

2.6.2 Information bottleneck (IB) system

The information bottleneck (IB) diarization system [Vijayasenan et al., 2009, Vijayasenan and

Valente, 2012, Vijayasenan, 2010] is a non-parametric system based on the IB clustering frame-

work [Slonim et al., 1999]. The method has been shown to give similar performance to that of

parametric systems based on the HMM/GMM framework [Wooters and Huijbregts, 2008] with

the advantage of a significantly lower running time [Vijayasenan et al., 2009, Vijayasenan and

Valente, 2012]. The IB method of clustering is a distributional clustering algorithm that clusters
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Figure 2.4: HMM/GMM speaker diarization system using multiple feature streams.

items with similar distributions over a set of variables known as relevance variables. It was

initially applied to the task of document clustering, using the set of words in the documents

as a relevance variable set [Slonim et al., 1999]. In this application, documents containing

similar distributions over words were clustered together. In the case of speaker diarization,

components of a background GMM estimated over speech regions of a given multi-party

speech recording are used as a set of relevance variables. This is motivated from state-of-the-

art methods in speaker identification where GMMs are used as universal background models

(UBMs). Let X = {x1, x2, . . . , xM } denote the set of input variables that need to be clustered and

let Y = {y1, y2, . . . , yN } denote the set of relevance variables that carry meaningful information

about the desired clustering output C = {c1,c2, . . . ,cP }. The IB method aims to find the optimal

clustering by maximizing the function below:

F = I (C ,Y )− 1

β
I (C , X ) (2.11)

where β is a Lagrange multiplier, I (C ,Y ) denotes mutual information between the set of

relevance variables Y and the clustering output C , and similarly I (C , X ) denotes mutual

information between the input variables set X and the clustering output C . By maximizing F
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in (2.11), the clustering algorithm aims at preserving as much information as possible about

the relevance variables in the final clustering i.e., maximizing I (C ,Y ) while being as compact

as possible by minimizing mutual information I (C , X ) between the input variable set X and the

clustering output C . The maximization is perfomed w.r.t the stochastic mapping P (C |X ). The

IB function F can be maximized in several ways. The current system [Vijayasenan and Valente,

2012] uses a greedy agglomerative solution to the optimization. The clustering starts with a

uniform (over) segmentation of speech regions, which are treated as set of input variables X .

The set of relevance variables Y is formed by components of background GMM estimated

over these speech regions. The posterior distribution of the relevance variables (components

of background model) given the input segment xi , P (Y |xi ) is obtained by applying Bayes rule.

The agglomerative clustering is initialized with each member of set X as an individual cluster

and then at each clustering step of the IB method, the two clusters that have most similar

distributions over the relevance variables are combined. The similarity is obtained in the form

of loss in the IB function F , resulting due to the merge of two clusters ci ,c j as,

∇F (ci ,c j ) = JS(P (Y |ci ),P (Y |c j ))− 1

β
JS(P (X |ci ),P (X |c j )) (2.12)

where JS() stands for the Jensen-Shannon divergence between two distributions, and is given

by,

JS(P (Y |ci ),P (Y |c j )) =πi K L(P (Y |ci ),P (Y |ci j ))+π j K L(P (Y |c j ),P (Y |ci j )) (2.13)

where KL() stands for Kullback-Leibler divergence between two distributions, πi = P (ci )
P (ci )+P (c j ) ,

π j = P (c j )
P (ci+P (c j )) and ci j is the cluster formed after the merge of the clusters ci and c j . The

relevance variable distribution of the cluster formed due to the merge is obtained by averaging

the relevance variable distributions of the individual clusters in the merge. At each step, the

two clusters that result in the lowest value of ∇F are merged into one cluster. The stopping

criterion is based on a threshold over the normalized mutual information I (C ,Y )
I (X ,Y ) . Once the

final clusters have been obtained, a re-alignment step is performed by estimating a GMM

from the data assigned to each cluster and using these cluster models to perform Viterbi

decoding with a minimum duration constraint. This step is intended to correct the errors in

the segmentation introduced in clustering initialization by uniform segmentation of speech

regions. Figure 2.5 depicts the agglomerative IB diarization framwork.

When multiple feature streams are given as input, the agglomerative IB diarization framework

can be extended using aligned background GMMs for the feature streams. The background

models for the feature streams have the same number of components. The parameters of

components in the GMMs of feature streams are estimated using feature vectors from the same

time indices in the respective feature streams. For example, if the r th component parameters

in the GMM of feature stream p are estimated from a set of features {sp

t ′
}, the r th component

parameters in GMM of feature stream q are estimated from the set of features {sq

t ′
} that have the

same time indices {t
′
}. The set of these aligned mixture components represents the relevance
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Figure 2.5: Agglomerative Information Bottleneck speaker diarization system.

variables. The estimation of the posterior distribution of the relevance variables P (Y |xp
i ),

P (Y |xq
i ) is similar to the single feature stream case which is based on using Bayes’ rule. The

estimation of P (Y |xp
i , xq

i ) is obtained as a weighted average of the individual distributions

given by:

P (Y |xp
i , xq

i ) = w p P (Y |xp
i )+w q P (Y |xq

i ) (2.14)

where w p and w q represent respective feature stream weights such that w p +w q = 1. These

weights are optimized on a separate development set of meetings. In the IB system, the

combination of feature streams happens in the relevance variable space by taking a weighted

average of posterior distributions of relevance variables given individual feature streams. This

is depicted in Figure 2.6.
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Figure 2.6: Agglomerative Information Bottleneck (aIB) speaker diarization system with multi-
ple feature streams.

2.6.3 Other Approaches

The two approaches, HMM/GMM and IB based speaker diarization, are based on an agglom-

erative clustering framework. Several other approaches to speaker diarization have also been

proposed in the literature. This section gives a brief overview of this type of methods.
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Top down system

The top down/divisive clustering framework [Meignier et al., 2001, Fredouille and Evans,

2008, Fredouille et al., 2009] starts with a single model for the entire audio and progressively

adds new speaker models until the optimal number of speakers is reached. This is done via

selecting speech segments based on some criterion such as segment length. The segments

that are obtained based on such criterion are used to represent new speaker clusters. After

increasing the number of models, several iterations of Viterbi re-alignment and model re-

estimation are performed to stabilize the speaker models. This process is repeated until no

new speaker models need to be added. The top down approaches have not been as successful

as the agglomerative clustering systems. But, recent works have shown that improvements in

the top down approach can be obtained by cluster purification [Bozonnet et al., 2010b]. One

advantage of using top down approaches is that they are computationally more efficient than

the bottom up approaches.

Subspace methods for speaker diarization

Factor analysis based approaches [Kenny et al., 2008, Castaldo et al., 2007, Vogt and Sridharan,

2008] have been very successfully applied to tasks like speaker verification and identification

and language recognition. Recently these methods have been adapted for speaker diariza-

tion [Kenny et al., 2010, Shum et al., 2011]. In these approaches, the goal is to separate the

speaker and channel variabilities to determine the low dimensional speaker identity vector,

referred to as the i-vector. This is performed using GMM supervectors, which are constructed

by appending the means of a GMM components. The speaker and channel dependent super-

vector S is defined as:

S = m +T v +ε (2.15)

where m is the speaker and channel independent supervector computed from a Universal

Background Model (UBM) which is a GMM; T is a rectangular, low rank matrix of the total

variability subspace, v is a low-dimensional vector, referred to as an i-vector, and ε is residual

noise. Once the i-vectors of two speech segments Xi and X j are obtained, their similarity is

measured using the cosine distance between the respective i-vectors vi and v j as follows:

cos(vi , v j ) =
vT

i v j

||vi ||.||v j ||
(2.16)

The i-vectors are computed over short segments of around one second in duration. In [Shum

et al., 2011], the i-vectors are extracted and the number of speakers is determined via spectral

clustering. Then, k-means clustering based on the cosine distance is used to cluster the

i-vectors (and their corresponding segments). After clustering, a number of post-processing

steps are performed before obtaining the final segmentation.
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Fast diarization

Fast diarization systems with low computational complexity are desired for some applications

like meeting summarization and analysis in real time. This would enable realization of several

applications (meeting browsing, speaker retrieval) on normal desktop machines. However,

conventional diarization systems depend on parametric models to compute the BIC distance

measure for diarization and require the re-estimation of parametric models for every pos-

sible cluster pair merge. This is computationally very expensive and requires considerable

optimization to make it feasible for real time speaker diarization.

Apart from the IB system explained in Section 2.6.2, several other methods have been proposed

in the literature to achieve fast speaker diarization. The speaker binary keys [Anguera and

Bonastre, 2010] based framework was used for speaker diarization in [Anguera and Bonastre,

2011]. This method achieves a significant reduction in running time with comparable perfor-

mance to state-of-the-art systems. Speaker binary keys are small binary vectors computed

from the acoustic data using a Universal Background Model (UBM). Once they are computed

all the processing takes place in the binary domain. Other works concerned with speeding

up the speaker diarization systems include [Huang et al., 2007]. This system achieves faster

than real-time processing through the use of several processing tricks applied to a standard

agglomerative clustering approach. In [Friedland et al., 2010] the speed-up is achieved by

parallelizing most of the processing in a GPU.

2.7 Resources for speaker diarization

Growing interest in automatic processing of natural multi-party conversations has resulted in

a number of efforts to create resources for such tasks. Specifically, large scale efforts [Mccowan

et al., 2005, Janin et al., 2003, Mostefa et al., 2007] were invested by multiple institutions in

collection of natural multi-party conversations in a conference style meeting room environ-

ments. These conversations were collected in specially equipped meeting room environments

with different types of microphones (both close talking and distant) to capture the audio. In

some scenarios, videos of these conversations were also recorded to faciliate the analysis of

non-verbal behavior of the participants. In this scenario, focussed efforts were applied to

drive state-of-the-art in tasks like automatic speech recognition, speaker recognition and

diarization, and detecting topic boundaries which result in generating rich transcription of

the audio captured. To benchmark various algorithms proposed to solve these problems,

evaluation campaigns with standardised data sets were conducted by NIST [National Institute

of Standards and Technology, 2003]. The campaigns defined the task scenarios and evalution

metrics used to compare different systems on these tasks.

For the experiments in the present work, we use meeting room recordings from three different

corpora namely, AMI, NIST-RT and ICSI. The details of all the three data sets are summarized

in Tab. 2.1.
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2.7.1 Multi-party meeting corpora

AMI meeting corpus

The AMI corpus [Mccowan et al., 2005] consists of about 100 hours of meeting recordings

recorded at multiple sites (Idiap, TNO, Edinbrough). The corpus contains both natural and

scenario based meetings. The corpus is annotated at multiple levels with several low-level and

higher-level information such as word transcripts, speaker segments, summaries, dialogue

acts, topic changes etc.

NIST RT meeting corpus

The NIST RT meeting corpus [National Institute of Standards and Technology, 2003] consists

of meetings belonging to NIST RT speaker diarization evaluation campaigns of 2005, 2006,

2007 and 2009. Each set consists of meeting recordings from multiple sites and varying

number of speakers. The corpus also contains ground-truth speaker segmentation obtained

by force-aligning the manual transcripts of individual head-microphone channels.

ICSI meeting corpus

The ICSI meeting corpus [Janin et al., 2003] contains 75 meetings comprising on the whole

around 72 hours of spontaneous multi-party conversation recordings recorded at ICSI, Berke-

ley. All meetings were recorded by both close talking and distant microphones and contain

word level orthographic transcription and speaker information along with other annotations

like dialogue acts, hotspots and topic changes.

Table 2.1: Details of meeting room conversations corpora.

Name Size No. of speakers per meeting Microphones used Meeting rooms

AMI 100 hours 4 circular array 3
ICSI 72 hours 3-10(on avg. 6) 4 table top 1

NIST-RT 15 hours 4-11(on avg. 5) ad-hoc 8

2.7.2 Evaluation Metric

The evaluations campaigns organized by NIST have defined a metric known as use Diarization

Error Rate (DER) to measure the performance of speaker diarization systems. This metric

makes use of a ground-truth reference segmentation to evaluate system generated diarization

output. It is measured as the fraction of time that is not assigned correctly to a speaker or

nonspeech. The computation of this metric is detailed below.

Since the sets of speaker labels provided by reference and hypothesis from the system are

arbitrary, an optimal mapping between the two sets is first constructed such that the overlap
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2.7. Resources for speaker diarization

time between corresponding speakers is maximum. The DER is then calculated as:

DER =
Σal l seg {dur (seg )[max(Nr e f (seg ), Nhy p (seg ))−Ncor r ect (seg )]}

Σal l seg dur (seg )Nr e f (seg )
(2.17)

where Nr e f (seg ) and Nhy p (seg ) denote the number of speakers in reference and hypothesized

(system generated) segmentation for speech segment seg with duration dur (seg ). Ncor r ect

denotes the number of speakers that are correctly mapped between reference and hypoth-

esized segmetations. Sements that are labelled as non-speech are considered to have zero

speakers. When all speakers are correctly matched between the reference and hypothesized

segmentation for a segment, the corresponding DER is zero. The three main components in

DER are:

• False-alarm error: This is the percentage of time that a hypothesized speaker is labelled

as non-speech in the reference. It can be expressed as:

EF A =
Σseg :Nhy p>Nr e f {dur (seg )[Nhy p (seg )−Nr e f (seg )]}

Σal l seg dur (seg )Nr e f (seg )
(2.18)

• Missed speech error: This is the percentage of time that a reference speaker segment is

mapped to no hypothesized speakers. Missed speech thus includes undetected speakers.

It is given by:

EM I SS =
Σseg :Nhy p<Nr e f {dur (seg )[Nhy p (seg )−Nr e f (seg )]}

Σal l seg dur (seg )Nr e f (seg )
(2.19)

• Speaker error: This represents the percentage of time the hypothesized speaker label is

mapped to a wrong speaker label in the reference segmentation. This is given by:

ESPK R =
Σal l seg {dur (seg )[mi n(Nr e f (seg ), Nhy p (seg ))−Ncor r ect (seg )]}

Σal l seg dur (seg )Nr e f (seg )
(2.20)

Given these three types of errors, the DER shown in (2.17) can be re-written as:

DER = EF A +EM I SS +ESPK R (2.21)

The segment boundaries are evaluated upto an accuracy of a predefined collar that accounts

for the inexact boundaries in the labelling. This value was fixed by NIST at 0.25s.

DER for a dataset with multiple meetings is computed from individual meeting DER values by

performing a linear combination of individual DER values. The weight for each meeting is

proportional to the total scored time (Σal l seg dur (seg )Nr e f (seg )) of the meeting.
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3 Overlapping speech handling for
Speaker diarization

3.1 Introduction

Overlapping speech occurs when there is more than one speaker speaking at any given in-

stant of time in an audio recording. This is a very common phenomenon in spontaneous

conversations like meeting room discussions, telephone conversations, television chat shows

and other similar media [Shriberg, 2005, Adda-Decker et al., 2008]. The factors causing over-

lapping speech in a multi-party conversation are diverse [Cetin and Shriberg, 2006b, Cetin

and Shriberg, 2006a, Schegloff, 2000, Kurtic et al., 2013]. It can occur when listeners use back-

channels to show their involvement and also to convey their agreement with the foreground

speaker. It also most commonly occurs when one or more participants try to interrupt the

foreground speaker and take the conversation floor. In informal conversations among multiple

participants, there are situations where multiple parallel conversations (schism) [Sacks et al.,

1974] take place involving several participants in each sub-conversation. Also, it has been ob-

served that overlaps are a common phenomenon during conversation floor exchanges among

speakers. Apart from the above mentioned broad patterns of occurrences of overlaps, there

are always some idiosyncrasies specific to a particular conversation or participant that can

cause overlapping speech at any place during the conversation. Previous studies have shown

that the error rates of automatic speech processing systems increase when processing speech

from multiple simultaneous speakers [Shriberg et al., 2001, Cetin and Shriberg, 2006b]. Several

diagnostical studies on speaker diarization systems have also shown that overlapping speech

is one of the main sources of error in state of the art speaker diarization systems [Huijbregts

and Wooters, 2007, Huijbregts et al., 2012, Knox et al., 2012].

3.2 Previous approaches for overlap detection

Several previous works have proposed methods to detect overlapping speech in meeting room

conversations. Earlier works have concentrated on detecting overlapping speech in audio

captured using head/lapel microphones worn by the participants in the conversation [Wrigley
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Chapter 3. Overlapping speech handling for Speaker diarization

et al., 2005, Pfau et al., 2001, Laskowski and Schultz, 2006]. These works have focussed on

issues arising from cross-talk, breath noise and channel variations across different close

talking microphones used to capture the audio. Pfau et al. [Pfau et al., 2001] have proposed a

hidden Markov model (HMM) based approach to infer the sequence of hidden states speech

and non-speech in each participant’s channel. They have also proposed a method to detect

overlapping speech segments by putting a threshold on the cross-correlation value between

speech signals of multiple channels.

Wrigley et al. [Wrigley et al., 2005] proposed a more generalized approach to multi-channel

speech activity detection, where a HMM with four states, single-speaker speech, cross-talk,

overlapping speech and non-speech was used. They explored various acoustic features useful

for this task and found kurtosis, ‘fundamentalness’ and cross-correlation related features to be

most effective. Laskowski et al. [Laskowski and Schultz, 2006] have proposed a method to im-

prove multi-channel speech activity detection in overlapping speech regions by modelling the

turn taking behavior of participants in the conversation. These works were mainly concerned

with improving speech activity detection on the meeting room data captured by close-talking

microphones with an aim to facilitate reliable automatic speech recognition (ASR). Speaker

diarization in its standard setup is evaluated on distant microphone speech where there is no

one-to-one correspondence between the speakers and the channels used in the recording.

So, recent works on overlap detection and speaker diarization have focussed on detecting the

overlapping speech in recordings captured using distant microphones.

Otterson et al. [Otterson, 2008] trained overlapping speech models using synthesized overlap-

ping speech obtained by adding multiple single-speaker speech utterances. But, experiments

revealed that though the trained models were effective in detecting artificially synthesized

overlaps, they did not generalize well to naturally occurring overlaps in meeting conversa-

tions. The same authors [Otterson and Ostendorf, 2007] proposed a two step method to

handle overlapping speech in speaker diarization assuming oracle overlap detection. Boakye

et al. [Boakye et al., 2008, Boakye et al., 2011, Boakye, 2008] explored various acoustic features

for overlapping speech detection in distant microphone audio. They found features such

as Mel-frequency cepstral coefficients (MFCC), energy, spectral flatness as being the most

useful features for overlap detection. Experiments on meeting recordings from AMI meeting

corpus [Mccowan et al., 2005] have shown that overlap detection is possible with reasonable

accuracy which in turn reduced the diarization error rate (DER).

Huijbregts et al. [Huijbregts et al., 2009] proposed a method for overlapping speech detection

in a two pass speaker diarization system by training overlapping speech models from speech

surrounding speaker changes hypothesized by an automatic speaker diarization system. The

trained overlap model was used in the second pass along with speaker models in Viterbi

decoding to identify overlapping speech segments. Zelenak et al. [Zelenák et al., 2010, Zelenák

et al., 2012, Zelenák, 2011] have proposed the use of time delay of arrival (TDOA) based

features extracted from the cross-correlation of speech signals captured by multiple distant

microphone channels to improve short-term spectral feature based overlap detection. The

28



3.3. Motivation for the proposed features

cross-correlation based features were used along with short-term spectrum based features

as two parallel feature streams in a multistream overlapping speech detection system. To

reduce the dimensionality of the cross-correlation based feature vector, and also to make it

independent of the number of distant microphone channels used for the recording, they have

proposed a way to transform these features to a fixed dimension feature space by applying

principal component analysis (PCA) or artificial neural networks (ANNs). Experiments have

shown that the cross correlation based features improve the overlapping speech detection.

Zelenak et al. [Zelenák and Hernando, 2011] have also shown improvements in overlapping

speech detection by the use of prosodic features. More recently, convolutional non-negative

sparse coding based approaches have been successfully applied to the problem of overlap

detection [Vipperla et al., 2012, Geiger et al., 2012].

3.3 Motivation for the proposed features

All the methods described above rely directly on features computed from the acoustic signal

captured by distant microphones. However, in the recordings of meeting room conversations

by distant microphones, the speech signal is often corrupted by background noise resulting

in a recording with low signal to noise ratio (SNR). In such scenarios, it is important to

explore higher level information present in the structure of a conversation which carries

useful cues in modelling the occurrence of overlapping speech. Such information if captured

effectively, could potentially be more robust to noisy conditions in the recording. It can also

be easily transferred across different corpora of multi-party conversations irrespective of the

recording conditions and meeting room setup, which have a direct influence on acoustic

features. Studies on conversational analysis have shown that overlaps are more likely to

occur at specific locations in a conversation such as speaker turn changes [Shriberg et al.,

2001, Cetin and Shriberg, 2006a] and have also shown that single-speaker speech, silence

and overlapping speech patterns are related to each other [Laskowski et al., 2008, Laskowski

et al., 2007, Laskowski, 2010]. This phenomenon is illustrated in Figure 3.1 which shows the

speaking status of four speakers in a meeting snippet.

Motivated by these studies, the present work proposes the use of features that can be easily

extracted automatically from conversations such as silence [Yella and Valente, 2012] and

speaker change statistics [Yella and Bourlard, 2013] to capture higher level information in a

conversation that is relevant for overlap detection. These features are extracted from a long

context of about 3–4 seconds surrounding a given time instant and are used to estimate the

probability of occurrence of overlap at that instant. We also explore methods to combine the

complementary information present in the two features, silence and speaker change statistics,

to improve upon the probability estimates obtained from either of the individual features.

These probability estimates are incorporated into the acoustic feature based classifier as prior

probabilities of the overlapping and single-speaker speech classes. We report experiments

on the AMI [Mccowan et al., 2005], NIST-RT [National Institute of Standards and Technology,

2003] and ICSI [Janin et al., 2003] meeting corpora to validate the generalizability of the
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Figure 3.1: Speaker vocalizations from a snippet of multi-party conversation. The fixed length
segments (a) and (c) are in regions of speaker change and contain overlap as well as less
amount of silence whereas segments (b) and (d) contain single speaker speech, are reasonably
away from any speaker changes, and also contain more silence.

Table 3.1: Number of meetings used as part of train, development and test sets in each data set.

Corpus Train Dev Test
AMI 35 10 25
ICSI 35 - 15
NIST-RT 27 - 7

proposed method in overlap detection. In these experiments, we demonstrate that the model

that is trained to estimate the probability of occurrence of overlap using the meetings from

AMI corpus generalizes to other meeting corpora such as the NIST-RT and the ICSI. We also

report speaker diarization experiments on the three data sets to evaluate the subsequent

improvements in speaker diarization achieved due to improvements in overlap detection.

3.4 Data-sets used

For the experiments in the present work, we used meeting room recordings from three different

corpora namely, AMI [Mccowan et al., 2005], NIST-RT [National Institute of Standards and

Technology, 2003] and ICSI [Janin et al., 2003]. The train and test set splits are described in

Table 3.1.

The train and test splits in AMI and ICSI corpus were obtained by random selection. As

described earlier, AMI data set contains meetings recorded at three different locations. The

train, dev and test sets of AMI corpus contain meetings from all these three sites. For the

experiments on the ICSI data set, we used meetings from the groups Bmr, Bro, Bed. In the

NIST-RT corpus, RT-05, RT-06, RT-07 data sets are used as part of train set, while RT-09 data

set is used for testing. The meetings from the training set of each corpus are used to train the

acoustic feature based overlap detector, which was later used for overlap detection on the

respective test sets. The ground-truth segmentation obtained by force-aligning the manual
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transcripts with close talking microphone audio is used to get the overlap and single-speaker

speech boundaries.

3.5 Overlap speech diarization

This section presents the ways in which overlapping speech effects diarization output and

reviews methods proposed in the literature to handle overlapping speech in diarization. It

also provides details of acoustic feature based HMM/GMM overlap detector.

3.5.1 Overlap handling for speaker diarization

Overlapping speech causes errors in speaker diarization systems in two ways. First, it intro-

duces impure segments containing speech from multiple speakers into the clustering process.

Secondly, the overlap segments are scored n times, where n is the number of speakers in the

overlap, which increases the missed speech error even if one of the speakers is not assigned

correctly. To avoid these errors, Otterson et al. [Otterson and Ostendorf, 2007] have proposed a

method to handle overlaps for speaker diarization that consists of two steps which are overlap

exclusion and overlap labelling. In overlap exclusion, detected overlap segments are excluded

from the clustering process so that they do not corrupt the speaker models. In overlap la-

belling, the segments detected as overlap are labelled by two speakers according to a heuristic

such as assigning the overlap segment to the two nearest speakers in time. This heuristic is

based on observations from studies on NIST RT meeting data which revealed that assigning

speakers based on proximity to the overlap gives a significant reduction in DER [Otterson and

Ostendorf, 2007]. The two speakers can also be assigned based on cluster likelihoods, in which

the segment is assigned to two clusters for which the data in the overlap segment has highest

likelihood [Boakye et al., 2008, Zelenák et al., 2010]. The overlap handling method in a typical

speaker diarization system is summarized in the Figure 3.2.

Exclusion     Overlap
    detection

Overlaps Final
output

Speech  Diarization   Labelling

Figure 3.2: Block diagram of overlap handling for speaker diarization: Overlaps obtained from
overlap detection are first excluded from the diarization process and later, appropriate speaker
labels are assigned to the overlap segments based on methods described in Section 3.5.1 in
the labelling stage, to generate the final diarization output.

3.5.2 Overlap detection using acoustic features

The baseline overlap detection system is based on acoustic features derived from short-term

spectrum that have been shown to be effective in classifying single-speaker speech and

31



Chapter 3. Overlapping speech handling for Speaker diarization

overlapping speech in the literature [Boakye et al., 2011]. In the present work, we use 12 Mel

frequency cepstral coefficients (MFCCs) with log energy, spectral flatness, linear prediction

(LP) residual energy computed from 12th order LP analysis, along with their deltas, resulting in

a feature vector of dimension 30. All features are extracted from an acoustic frame of size 30 ms

with a frame rate of 10 ms. Prior to overlap detection, automatic speech/non-speech detection

is performed using the SHOUT algorithm [Huijbregts and de Jong, 2011] and non-speech

regions are excluded from further processing. After this single-speaker, overlapping speech

detection is performed on the detected speech regions in the recording. In baseline overlap

detection system, the classes single-speaker and overlapping speech are represented by states

of a hidden Markov model (HMM). The emission probability distributions of these states are

modelled using Gaussian mixture models (GMMs). To control the tradeoff between the false

overlap detections and total number of overlaps being detected, an overlap insertion penalty

(OIP) is introduced which penalizes the overlap detections. High value for OIP hass a positive

effect on the precision of the classifier while effecting the recall in a negative manner while the

lower values increase the recall while sacrificing precision.

Let V ∈ {ov, sp} denote the set of HMM states representing overlapping (ov) and single-speaker

(sp) speech classes, and let F denote the sequence of acoustic feature vectors. Then, the most

likely sequence of the states in a given audio recording can be obtained by Viterbi decoding as,

V ∗ = argmax
V

P (V |F ) = argmax
V

P (F |V )P (V ) (3.1)

The prior probability P (V ) of the state sequence is usually approximated by a first order

Markov model assuming that the current state is dependent only on its previous state and is

represented by the state transition probability. In the baseline overlap detection system, these

probabilities are fixed to a constant value based on the statistics observed in the training data.

But studies on conversational analysis show that the probability of occurrence of an overlap is

not constant across the recording, and there are places in a conversation where overlaps are

more likely to occur [Shriberg et al., 2001, Cetin and Shriberg, 2006a]. In the current work, we

propose a method to capture this information and use it in the acoustic feature based overlap

detection system.

3.6 Conversational features for overlap detection

In this section, we present in detail the long-term features extracted from the structure of a

conversation that are supposed to carry relevant information about occurrence of overlap. We

explore features that can be easily extracted automatically such as silence and speaker change

statistics.
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3.6. Conversational features for overlap detection

3.6.1 Silence statistics for overlap detection

Several studies on multi-party conversational analysis have shown that single-speaker speech,

silence and overlap patterns in a conversation are related to each other and carry useful

information about the conversations and the participants in the conversations [Laskowski

et al., 2008, Laskowski et al., 2007, Laskowski, 2010]. Motivated by these studies, we explore the

relation between silence, single-speaker speech, overlapping speech durations in a segment to

predict the occurrence of overlap in that segment. In particular we hypothesize that segments

containing more silence are less likely to contain overlapping speech. To verify this hypothesis,

we perform experiments using the AMI training set meetings.

Let D be a variable indicating the duration of silence in a segment and nS(D = d) be the

number of segments that contain d seconds of silence where, the length of the segment is

given by the variable S. Let V ∈ {ov, sp} be a binary variable denoting the classes we are

interested in detecting, which are overlapping speech (ov) and single-speaker speech (sp). Let

nS(V = ov,D = d) denote the number of segments of length S seconds that contain d seconds

of silence and an occurrence of overlap. Given these counts, it is possible to estimate the

probability of overlap in a segment conditioned on the amount of silence in that segment as:

P S(V = ov |D = d) = nS(V = ov,D = d)

nS(D = d)
(3.2)
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Figure 3.3: Probability of overlap based on silence duration obtained using ground truth
speech/sil segmentation and automatic speech activity detector output.

Figure 3.3 shows P S(V = ov |D = d) for different values of d (silence duration) for a segment

length of four seconds (i.e., S = 4). In the left plot, speech/silence segmentation is obtained

from the ground-truth segmentation and in the right plot, it is obtained from the automatic

speech activity detector (SAD) output [Huijbregts and de Jong, 2011]. It can be noticed from
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Figure 3.3 that the probability of overlap in a segment is inversely proportional to the amount of

silence in the segment which supports our hypothesis that segments containing more silence

are less likely to contain overlapping speech. In particular, from the left subplot of Figure 3.3,

it can be observed that when the amount of silence in a segment is zero, the probability of

occurrence of overlap in that segment is around 0.7. In other words, this illustrates that it is

possible to estimate the probability of occurrence of an overlap in a segment by the amount

of silence present in that segment. This information is potentially useful as speech/silence

detection is a simpler task compared to single-speaker/overlapping speech detection. The

right subplot in Figure 3.3, which uses the SAD output to compute the amount of silence in a

segment, also shows similar trends which means that ground-truth silence duration can be

replaced by the estimates of silence from the SAD output. The probability of a single-speaker

speech within a segment can be estimated as:

P S(V = sp|SI L = x) = 1−P S(V = ov |D = d). (3.3)

To compute these statistics for the whole recording, the segment is progressively shifted by

one frame at each step. The probabilities P S
i (ov |di ),P S

i (sp|di ) are estimated for i ∈ {1 . . . N }

where N is the total number of frames in the recording and di denotes the duration of silence

in the segment centered around frame i . This process is depicted in Figure 3.4.

  .............   ........

Estimates from train
              data

s1

i

s2 si sN

di

d

P S(ov |d)

P S
i (ov |di ),

P S
i (sp|di )

(1−P S
i (ov |di ))

Figure 3.4: Estimation of probabilities of single-speaker speech and overlapping speech states
for a frame i based on duration of silence di present in the segment si centered around the frame
i .

To verify how the estimated probabilities P S(ovi |di ) and P S(spi |di ) generalize to sets of meet-

ings that are different from those used during training, the cross-entropy between these esti-

mated probabilities and the true distribution of the classes in a development set of meetings is

computed. The probabilities for the true distributions are obtained for each frame i ∈ {1 . . . N }

as follows, P T (ovi ) = 1,P T (spi ) = 0 if the frame i is overlapped and P T (spi ) = 1,P T (ovi ) = 0 if

the frame i belongs to single-speaker speech. The knowledge of whether a frame i belongs

to the overlapped ({OV }) or single-speaker ({SP }) class is obtained from the ground-truth

segmentation of these meetings. The cross-entropy between the true distribution and the
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3.6. Conversational features for overlap detection

estimated distribution is computed as follows:

C (S) =− 1

L

( ∑
i∈{OV }

log (P S
i (ov |di ))+

∑
j∈{SP }

log (P S
j (sp|d j ))

)
(3.4)

where L is the total number of frames used in the computation. To eliminate the bias in

the estimate of C (S) resulting from an uneven number of samples present in single-speaker

speech and overlap classes, the cross-entropy measure is computed by considering an equal

number of samples from each class.

Figure 3.5: Cross-entropy between estimates based on silence duration (obtained from model
learnt from AMI-train set) and true distribution on various datasets (a) AMI development set
(b) NIST-RT 09 (c) ICSI.
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It can be observed from Figure 3.5 (a) that the cross entropy decreases as we increase the

segment length (S) used to estimate the probabilities of overlap until some point and then

starts to increase again. This decrease in the cross-entropy suggests that the estimated proba-

bilities are much closer to the true probabilities when they are estimated from a longer context

than a frame. The lowest value of cross entropy is found around a segment length of 4 secs.

This indicates that a segment length of 4 secs is optimal to compute the silence statistics.

Similar plots of cross entropy are also shown for the RT 09 and the ICSI meetings respectively

in subplots (b) and (c) of Figure 3.5. Note that the probability estimates for the NIST-RT 09

and the ICSI meetings are obtained using the model learned from AMI training set. These

plots also show similar trends to those observed on the AMI development set, which gives an

indication that the estimated statistics have similar effects on other data sets. It also shows

that the model learned to estimate the probabilities of overlapping and single-speaker speech

from the AMI training set can be generalizable to other meeting corpora such as NIST-RT and

ICSI.
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3.6.2 Speaker change statistics for overlap detection

Studies on conversational analysis have shown that overlaps occur more often at some spe-

cific parts of conversations [Shriberg et al., 2001]. Especially, it was shown that a significant

proportion of the overlaps occurs during speaker turn changes [Shriberg et al., 2001]. Moti-

vated by these studies, the current work analyzes the relationship between the occurrence

of overlap in a segment and the number of speaker changes in the segment. Specifically,

the study hypothesizes that the overlap probability in a segment is directly proportional to

the number of speaker changes in the segment. In other words, segments containing more

speaker changes are highly probable to have larger number of overlaps than those having

fewer speaker changes. To verify this hypothesis, we perform experiments using the AMI

training set.

In the first experiment, the distribution of the number of overlaps is analyzed for different

number of speaker changes in a segment. Let C and O respectively denote the variables

indicating the number of speaker changes and overlaps in a segment. In the present work, an

occurrence of overlap is defined as a contiguous segment of overlapping speech surrounded by

single-speaker speech or silence regions. The number of overlaps is obtained by counting such

occurrences in the segmentations (obtained by force-aligning close talking microphone audio

with manual transcripts) provided by the corpus authors. Let nS(C = c) denote the number

of segments of length S seconds which contain c speaker changes and, let nS(O = o,C = c)

denote the number of segments containing o overlaps and c speaker changes. Then, the

probability P S(O = o|C = c) of having o overlaps in a segment of length S seconds conditioned

on the fact that it contains c speaker changes can be estimated as:

P S(O = o|C = c) = nS(O = o,C = c)

nS(C = c)
(3.5)

Figure 3.6 shows the distribution of P S(O|C = c) i.e., the distribution of the number of overlaps

(O) in segments of length six seconds (S = 6) for different numbers of speaker changes (c). The

speaker changes are obtained from the ground-truth speaker segmentation and automatic

diarization output for left and right subplots respectively. It can be observed from Figure 3.6

that, as the number of speaker changes increases, the probability of occurrence of more

overlaps also increases. Also, it can be observed that the distribution of P S(O|C = c) for

different c seem to follow a Poisson distribution with a rate that is directly proportional

to the number of speaker changes (c). The number of speaker changes in the diarization

output is lower when compared to ground truth speaker segmentation due to constraints

and errors introduced by the automatic system. Nevertheless, a similar phenomenon can

also be observed for distributions estimated from the diarization output. Figure 3.6 supports

our hypothesis that segments containing more speaker changes contain more overlaps. This

information can be useful when incorporated into the baseline acoustic feature based overlap

detector, since it does not contain evidence from the conversational patterns in the meetings.

Motivated by the empirical distributions in Figure 3.6, we model the probability of the number
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Figure 3.6: Probability distributions of number of occurrences of overlaps (O) for different
numbers of speaker changes (c) obtained using ground-truth segmentation and diarization
output.

of overlap occurrences in a given segment by a Poisson distribution whose rate λS
c depends on

the number of speaker changes c in the segment S i.e.,

P S(O = o|c) = (λS
c )oe−λ

S
c

o!
(3.6)

where the rate parameter λS
c is a maximum likelihood estimate from the training set of meet-

ings. This estimate is simply the mean of the number of occurrences of overlaps in segments of

length S seconds which contain c speaker changes. After estimating the set of rate parameters

{λS
c } for different values of c, the probability of overlap occurrence in a segment conditioned

on the number of speaker changes in the segment can be obtained as,

P S(V = ov |c) = 1−P S(O = 0|c) (3.7)

= 1−e−λ
S
c (3.8)

and, the probability of single speaker speech can be obtained as,

P S(V = sp|c) = 1−P S(V = ov |c) (3.9)

= e−λ
S
c . (3.10)

The probabilities P S
i (V = ov |ci ) and P S

i (V = sp|ci ) are estimated for all the frames i in a given
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recording as depicted in Figure 3.7. The cross-entropy between the estimated probabilities

  .............   ........

Estimates from train

              data

s1

i

s2 si sN

ci

P S
i (ov |ci ),

P S
i (sp|ci )

(1−P S
i (ov |ci ))

{λS
ci

}

Figure 3.7: Estimation of probabilities of single-speaker and overlapping speech classes for a
frame i based on number of speaker changes ci present in the segment si centered around the
frame i .

and the true distribution is computed by replacing the probability estimates in (3.4) by the

estimates based on speaker changes P S(ov |c) and P S(sp|c). Figure 3.8 shows the cross entropy

values for various segment lengths S computed on the AMI, NIST-RT 09 and ICSI data sets. It

Figure 3.8: Cross entropy measure between estimates based on speaker changes (obtained
from model learnt from AMI-train set) and true distribution on various datasets (a) AMI
development set (b) RT 09 (c) ICSI for various segment lengths.
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can be observed from Figure 3.8(a) that a segment length of three seconds yields optimal esti-

mates of the probabilities on the AMI development set. It can also be observed from subplots

(b) and (c) in Figure 3.8 that the estimated statistics generalize well to unseen meetings from

different corpora such as NIST-RT 09 and ICSI.

3.6.3 Combination of silence and speaker change statistics

The probability estimates of single-speaker and overlapping speech classes obtained using

silence and speaker change statistics are based on different conversational phenomena and

we hypothesize that combining the information captured by these two features might result in

a better estimate of the class probabilities. Motivated by this hypothesis, we explore various

combination strategies proposed in the literature to obtain an estimate that exploits the

information captured by both features. In particular, we experimented with two types of
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3.6. Conversational features for overlap detection

combination methods, early combination and late combination.

In the early combination strategy, a combined feature vector is formed for each frame by

appending the individual features, corresponding to the frame. Let di and ci denote the

duration of silence and number of speaker changes in a segment centered around frame

i . Let bi denote the combined feature vector formed by appending the features di and ci

corresponding to the frame i i.e., bi = [di ,ci ]. A logistic regression classifier is trained using

these feature vectors on a training set of meetings with a binary target variable {0,1} denoting

single-speaker and overlapping speech classes respectively. The target labels for each frame

are obtained from the ground-truth segmentation. The output of this classifier is in the

range [0,1] and can be treated as a probability estimate of the overlapping speech class i.e.,

P (V = ov |bi ). Given this estimate, the probability of single speaker speech P (V = sp|bi ) is

obtained as 1−P (V = ov |bi ).

In the late combination method, we explore different ways to combine the probability esti-

mates P (V = ov |di ) and P (V = ov |ci ) obtained from the individual features to get the final

overlap probability estimate P (V = ov |di ,ci ). We experimented with standard combination

methods such as the sum and product rules with uniform weights for individual estimators

as well as the inverse-entropy based weighting scheme [Misra et al., 2003]. The combination

according to sum rule can be written as,

P (V |di ,ci ) = wd P (V |di )+wc P (V |ci ) (3.11)

The combination according to product rule can be written as:

P (V |di ,ci ) = 1

P (V )
P (V |di )wd P (V |ci )wc . (3.12)

where P (V ) denotes the prior probability of a class where V ∈ {ov, sp}. When using uniform

weights, both wd and wc are set to 0.5. In the inverse entropy based weighting scheme,

the weights are set as explained below. Let H i
d and H i

c respectively denote the entropies

of probability estimators based on silence and speaker change statistics for a frame i . The

weights of individual probability estimators for a frame i are computed as, wd = 1/H i
d

1/H i
d+1/H i

c

and wc = 1/H i
c

1/H i
d+1/H i

c
.

To evaluate the usefulness of the different combination strategies, we use the cross-entropy

measure computed on the AMI development set. The cross-entropy is computed based on (3.4)

using the probability estimates of the classes obtained by the above mentioned combination

strategies. Cross-entropy based studies on development set of meetings revealed that the

inverse-entropy based weighting gave similar results to the uniform weighting of the individual

estimators. Table 3.2 shows the cross-entropy measures obtained for different combination

methods mentioned above. It can be observed from Table 3.2 that estimates obtained by

the product rule of combination have the lowest cross-entropy. Therefore, based on these

findings, in the current work, we use the product rule based combination method to combine
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Chapter 3. Overlapping speech handling for Speaker diarization

Table 3.2: Cross entropy measure on AMI development set of meetings for various combination
strategies.

method cross entropy
prod-uniform 0.60
sum-uniform 0.63

log. reg. 0.62

information captured by different conversational features.

3.6.4 Combination of conversational and acoustic features

The probability estimates of single-speaker and overlapping speech classes obtained from

silence and/or speaker change statistics are integrated into the acoustic feature based classifier

as prior probabilities of these classes. As mentioned earlier, the prior probabilities of the

classes in the acoustic feature based system usually are fixed to a constant value based on

the proportion of samples in each class observed during the training phase. However, studies

have shown that the probability of overlap occurrence is neither constant across different

conversations nor within a conversation. Therefore, to address this issue in the acoustic feature

based classifier, we introduce prior probabilities that are estimated based on the silence and

the speaker change statistics in context of a frame. These probabilities encode information

present in the long-term context of a frame and change depending on the context. Let F

denote the sequence of acoustic features and let C denote the sequence of conversational

features which can be either the individual features or their combination. Given these, the

most probable state sequence V ∗ where the states in the sequence belong to the set {ov, sp}

can be estimated by Viterbi decoding as:

V ∗ = argmax
V

P (V |F,C )

= argmax
V

P (F |V ,C )P (V |C )

.= argmax
V

P (F |V )P (V |C )

(3.13)

assuming that, given the state/class the observed acoustic features F are independent of the

conversational features C . The quantity P (F |V ) is modelled using GMM distributions of the

corresponding states and is only dependent on the current frame. The term P (V |C ) estimates

the probability of the states based on the conversational features such as silence duration

and/or number of speaker changes in a segment surrounding the current frame. Also, it

captures the information present in the long-term context of the frame which is not present

in the acoustic features. Therefore, we hypothesize that this combination will improve the

performance of the classifier.
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Figure 3.9: Block diagram of the proposed method of overlap detection: Speech, silence
statistics and speaker change statistics are obtained as a by product of initial pass of IB speaker
diarization. These statistics are used to estimate the probability of occurrence of overlap as
explained in Sections 3.6.1, 3.6.2 and 3.6.3. These probabilities are incorporated into the
acoustic feature based overlap detector (Section 3.5.2) as prior probabilities as detailed in
Section 3.6.4

3.7 Experiments and Results

In this section, we present the experimental results of overlapping speech detection using

standard acoustic features as explained in Section 3.5.2 and the proposed method of using

probability estimates of the classes obtained from conversational features as prior probabilities

of the states as explained in Section 3.6. We also present experiments evaluating the effect

of the acoustic feature based overlap detection system and the proposed method for overlap

detection on speaker diarization. Figure 3.9 summarizes the proposed method for overlap

detection. The obtained overlaps are used for overlap handling in speaker diarization as

explained in Section 3.5.1.

3.7.1 Experiments on overlap detection

We evaluate the performance of the acoustic feature based overlap detector and the proposed

method of incorporating conversational information into acoustic feature based detector

on three different meeting corpora namely, AMI, NIST-RT and ICSI. A HMM/GMM based

overlap detector is trained for each corpus using training set of meetings for the respective

corpus as described in Section 3.5.2. The parameters needed for estimating the probabilities of

single-speaker and overlapping speech classes from the conversational features as described

in Sections 3.6.1, 3.6.2 and 3.6.3 are obtained from the AMI training set of meetings. These

parameters are then used to estimate the probabilities of the classes on the test set of meetings

in all the corpora and are incorporated into the acoustic feature based HMM/GMM system as

explained in Section 3.6.4.

In the first experiment, we verify the hypothesis stated in the Section 3.6.4 that, incorporat-
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ing the probabilities of overlapping and single-speaker speech classes estimated from the

proposed conversational features such as silence and speaker change statistics as prior proba-

bilities of the classes in the acoustic feature based classifier improves its performance. The

systems are compared using the metrics such as recall, precision, F-measure and detection

error. The recall of a system on overlap detection task is computed as the ratio between the

duration of overlap that is correctly detected by the system and the total duration of actual

overlap. The precision is computed as the ratio between duration of the overlap that is cor-

rectly detected by the system and total duration of overlapping speech detected by the system.

The F-measure is the harmonic mean between recall and precision. It is a good indicator of

classifier performance when the number of samples in classes is skewed as in the current

study (proportion of speech in overlap regions is significantly less than that of in single speaker

regions). The overlap detection error rate is computed as the ratio between the total duration

of missed and false overlap detections and the total duration of overlap.

Figure 3.10 shows the performance of the acoustic feature based overlap detector and the

proposed method on the test sets of three meeting corpora in terms of recall (dashed line),

precision (-.- line), F-measure (solid line) and error (dotted line) of the respective classifiers on

the task of overlap detection. In Figure 3.10, the acoustic feature based classifier (Section 3.5.2)

is denoted by the label Acoustic, the system using probability estimates from silence statistics

(Section 3.6.1) is denoted as +Sil-priors, the system using probability estimates from speaker

change statistics (Section 3.6.2) is denoted as +Spkrch-priors and, the system using the proba-

bility estimates from the combination of the individual features by product rule (Section 3.6.3)

is denoted as +Conv-priors. The figure plots various evaluation metrics for different values of

overlap insertion penalty (OIP) which is introduced to have a trade-off between the true and

the false overlap detections. In general, it can be observed that higher values of OIP tend to

increase the precision of the classifier while sacrificing the recall.

The error rates achieved by the acoustic feature based overlap detector on the AMI-test set

are similar to the error rates obtained by prior works [Boakye et al., 2008, Zelenák et al.,

2012, Geiger et al., 2012] in literature on the data set. It can be observed from the Figure 3.10 (a)

that incorporating the probabilities of the classes estimated from the individual conversational

features (Sil-priors, Spkrch-priors) improves the performance of the acoustic feature based

system as they consistently achieve higher f-measure and lower error over the acoustic feature

based classifier for all the values of OIP. Also, the combination (Conv-priors) of the conversa-

tional features (Sil-priors, Spkrch-priors) leads to further improvements in overlap detection.

In the experiments reported here, the combination is performed based on the product rule as

described in Section 3.6.3, since the combination based on product rule obtained the lowest

cross-entropy on AMI development set (see Tab. 3.2). The improvements in terms of f-measure

and decrease in the error rate achieved by the proposed method is mainly due to increase in

the recall of the classifier when compared to the acoustic feature based system. This indicates

that the proposed method is able to identify instances of overlaps which are not detected by

the acoustic feature based system. Similar trends can be observed in all the corpora though

the absolute values of the evaluation metrics are different. In general, it can be observed that
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Figure 3.10: Overlap detection evaluation on (a) AMI-test set (b) NIST-RT 09 set and (c) ICSI-
test set. In each subplot (a), (b), (c), dotted line shows the error, solid line shows f-measure,
dashed line shows recall, and ’-.-’ shows precision of the classifiers in overlap detection in
percentage on y-axis for various overlap insertion penalties (OIP) in x-axis.
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incorporating conversational features into the acoustic feature based classifier improves the

performance of the classifier as shown by the consistent higher f-measure and the lower error

rates achieved by the proposed method on all the three corpora when compared to that of the

acoustic feature based system. This result is particularly encouraging as it demonstrates that,

model trained to estimate probability of overlap based on conversational features using one

corpus (AMI), generalizes well to meetings from the other corpora (NIST-RT and ICSI).

Laughter overlap detection

Laughter is a very common phenomenon in human interactions [Glenn, 2003]. Studies on

spontaneous conversations have shown that overlaps and laughter occurrences are correlated

with each other [Laskowski and Burger, 2007, Kennedy and Ellis, 2004]. Studies done on

ICSI corpus have shown that 9% of speaking time contains laughter [Laskowski and Burger,

2007]. Based on these studies, we evaluate the performance of the proposed method for

overlap detection in laughter segments of ICSI corpus. The start and end times of laughter

segments and the corresponding speakers are obtained from the annotations done for analysis

of laughter in [Laskowski and Burger, 2007]. Figure 3.11 presents results of overlap detection

on laughter segments based on acoustic features alone(Acoustic) and combination of acoustic

and conversational features (+Conv-priors). To obtain the conversational features silence

and speaker change statistics which are used to estimate the prior probabilities of the classes,

we superimpose the ground-truth laughter segments of a meeting recording over speaker
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Figure 3.11: Overlap detection evaluation on laughter segments from ICSI-test set: dotted line
shows the error, solid line shows f-measure, dashed line shows recall, and ’-.-’ shows precision
of the classifiers in overlap detection in percentage on y-axis for various overlap insertion
penalties (OIP) on x-axis.
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diarization output of the respective meeting. It can be observed from the Figure 3.11 that

the combination of conversational features improves the performance of the acoustic feature

based overlap detector as shown by the f-measures for various OIPs.

Robustness to speaker diarization errors

The conversational features proposed in the current work make use of the baseline IB diariza-

tion output to compute speaker change statistics. These statistics computed over a long-term

context of a frame are used to estimate the probability of overlap at that frame. To evaluate the

effect of errors made by the clustering algorithm of speaker diarization on overlap detection,

we compare the overlap detection performance on meetings with high and low diarization

error. For this purpose, we divided the AMI-test set into two subsets, based on the speaker

error of the diarization output. All the meetings with a speaker error less than 15% were put

in the low error set and rest of the meetings were put in high error set. Figure 3.12 plots the

evaluation metrics for overlap detection for acoustic feature based system (Acoustic) and the

combination of acoustic and conversational feature based system (+Conv-priors) on high

and low error sets. From Figure 3.12, it can be observed that the performance of the acoustic

feature based detector is improved on both the sets by the combination of conversational

features. The low error set (Figure 3.12(b)) has slightly high precision when compared to the
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Figure 3.12: Effect of diarization errors: (a) High error set (b) Low error set. Dotted line shows
the error, solid line shows f-measure, dashed line shows recall, and ’-.-’ shows precision of the
classifiers in overlap detection on in percentage y-axis for various overlap insertion penalties
(OIP) on x-axis.
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high error set (Figure 3.12(a)).

3.7.2 Speaker diarization with overlap handling

In this section, we evaluate the effect of overlap detection on speaker diarization on three

different corpora AMI-test set, NIST RT-09 and ICSI-test sets. For experiments on the ICSI-

test set, we included laughter segments in speech regions given as input to the diarization

system to make the scenario as natural as possible. We used ground-truth speech/non-speech

segmentation for experiments on ICSI corpus to avoid missing laughter segments because of

automatic speech activity detection, which might classifying laughter segments as non-speech.

The detected overlaps are used in speaker diarization by performing overlap exclusion and

labelling techniques explained in Section 3.5.1. Using these methods, we compare the two

overlap detection systems, one based on just the acoustic features and the other incorporating

the information from conversational features as prior probabilities of the classes. Since the

combination of the conversational features showed the best performance in overlap detection

(Figure 3.10), we use the overlap detection hypothesis generated by the system using the

combination of the conversational features based on the product rule (Conv-priors). To decide

the optimal value of OIP to use in the overlap detection system, we perform tuning experiments
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on ami AMI development corpus and pick an OIP that gives lowest DER. As proposed in earlier

works [Zelenák et al., 2010, Boakye et al., 2011], we perform overlap exclusion and overlap

labelling steps using different overlap detection hypothesis dependent on the value of OIP

used. This is based on the rationale that, high precision overlap detection hypothesis is

desirable for overlap labelling step to avoid increasing false alarm errors. Also, high recall

hypothesis is desirable for overlap exclusion, as it helps in avoiding as much overlapping

speech as possible from corrupting the speaker (cluster) models.

Overlap exclusion

To tune the overlap insertion penalty (OIP) for overlap exclusion, we ran experiments on a

development set of meetings by performing overlap exclusion using the overlap hypothesis

generated by various values of OIP. These experiments have revealed a similar trend to that

observed in previous studies [Zelenák et al., 2012], where the DER reduction was not a smooth

function of OIP. Therefore, for overlap exclusion we use the detection hypothesis obtained

with OIP set to zero as done in previous studies [Zelenák et al., 2012, Geiger et al., 2012].

Tab. 3.3 reports DER and its components speech/non-speech error (SpNsp) and speaker

error (Spkr) obtained on a test set of meetings from the AMI and NIST-RT 09 corpus using

the baseline speaker diarization system in three scenarios; without any overlap exclusion

(Baseline), overlap exclusion using the hypothesis generated by acoustic feature based system

(Acoustic) and overlap exclusion using the hypothesis generated by the proposed method

(Conv-priors). First of all, it can be observed from the Tab. 3.3 that performing overlap

exclusion reduces the speaker error (Spkr) of the diarization as expected, since it avoids

corruption of resulting speaker models. Also, it can be observed from Tab. 3.3 that on AMI-test

set, the proposed method reduces the DER by around 17% relative to the baseline speaker

diarization system that does not do any overlap exclusion. The acoustic feature based overlap

detector reduces the DER by around 13% relative to the baseline. The table also reports the

f-measures of both the overlap detection systems used to perform overlap exclusion. This

reveals that higher reduction in DER achieved by the proposed method is due to the ability of

the proposed method to detect more overlap at the given OIP (0).

Tab. 3.3 also presents results of similar experiments on the NIST-RT 09 and ICSI-test data sets.

On the RT-09 data set the acoustic feature based overlap detector reduces the DER by 3.5%

relative and adding conversational features further reduces the DER by 6.4% relative. On the

ICSI-test set, the acoustic feature based overlap detector reduces the DER by 2.4% relative and

the DER reduces by 4.2% relative when conversational features are added. The drop in the

relative reductions in DER when compared to the AMI data set (Tab. 3.3) is mainly due to the

performance drop in the acoustic feature based classifier as indicated by the f-measures of

the classifiers on the corpora in Tab. 3.3. Nevertheless, the proposed method (Conv-priors)

achieves a lower DER than the system using overlaps from acoustic feature based system

(Acoustic) on RT 09 and ICSI-test data sets also.
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Table 3.3: Overlap exclusion on the AMI-test, NIST-RT 09 and ICSI-test data sets: SpNsp repre-
sents error in speech/non-speech detection, Spkr denotes speaker error (clustering error), DER is
the total diarization error rate and f-measure of the respective overlap detection systems at the
operating point (OIP=0) used for exclusion.

Corpus System SpNsp Spkr DER f-measure

AMI
Baseline 13.5 16.9 30.4 -
Acoustic 13.5 12.8 26.3 0.48

+Conv-priors 13.5 11.6 25.1 0.51

RT 09
Baseline 12.7 21.2 33.9 -
Acoustic 12.7 20.0 32.7 0.44

+Conv-priors 12.7 19.0 31.7 0.46

ICSI
Baseline 17.7 15.6 33.3 -
Acoustic 17.7 14.8 32.5 0.44

+Conv-priors 17.7 14.2 31.9 0.49

Overlap labelling

To determine the optimal value of OIP for the labelling task, we ran tuning experiments on the

AMI development set using overlap hypothesis obtained for different values for OIP. Figure 3.13

plots the relative change in DER due to overlap labelling as a function of OIP used to generate

the overlap hypothesis. In the present work, we use nearest neighbor based labelling as it gave

similar results to the cluster likelihood based labelling. It can be observed from Figure 3.13

that the OIP value of 90 gives the highest relative decrement in DER on the AMI development

set. Based on this observation, we use the overlap hypothesis obtained by setting the value of

OIP to 90 while performing overlap labelling. Tab. 3.4 presents the overlap labelling results on

the test set of meetings in the AMI and RT corpora. It can be observed from Tab. 3.4 that on

the AMI corpus, the proposed method (Conv-priors) decreases the DER by 2.9% relative to

the baseline diarization system that does not use any overlap information (Baseline). It also

achieves lower DER than the system using overlaps detected by acoustic feature based system

(Acoustic). The decrease in DER achieved by the proposed method is due to the decrease in

speech/non-speech error (SpNsp). The speech/non-speech error (SpNsp) is reduced from

13.5% in the baseline diarization system to 11.9% in the proposed method, which is around

12% relative reduction. This reduction is due to the detection of overlapping speech and

labelling it as speech. But the improvement in the final DER is not in the same range due to

the errors introduced during labelling, which increase the speaker error when the identified

overlap segments are not assigned to correct speakers. This highlights the need for a novel

speaker labelling method for the detected overlaps. Similar trends can be observed in Tab. 3.4

on the RT 09 data set also. The lower DERs achieved by the proposed method on the two

data sets can be attributed to better detection of overlaps as indicated by the higher values

of f-measure and lower error rate obtained by it on the data sets at the given OIP of 90 when

compared to the acoustic feature based system (see Figure 3.10). On the ICSI corpus also,

overlaps obtained by the combination of acoustic and conversational features achieve the
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Figure 3.13: Overlap labelling: Tuning for optimal overlap insertion penalty (OIP) on AMI
development set.

highest reduction of DER by labelling. The relative reduction on the ICSI-test set is better than

the RT-09 even though the overlap detection performance is similar. This is due to the fact that

the ICSI-test set contains overlaps from laughter segments which tend to have more speakers

than normal speech overlaps. Therefore, the labelling method is less prone to errors when

labelling overlaps in laughter segments.

Overlap exclusion followed by labelling

In this section we summarize the results of the diarization experiments when overlap exclusion

and labelling are performed alone and together, where exclusion is followed by labelling

as described in Figure 3.2. Tab. 3.5 summarizes the DERs obtained on all the three data

sets AMI-test and NIST-RT 09 and ICSI-test while performing overlap handling techniques

Exclusion, Labelling, and Both (exclusion followed by labelling) using overlaps detected by the

acoustic feature based system (Acoustic) and the proposed method of combining acoustic

and conversational features(+Conv-priors). It can be observed from Tab. 3.5 that the proposed

method achieves highest reduction in DER on all the corpora. It increases the relative error

reduction due to overlap detection to around 20% on meetings from AMI-test from around

15% achieved by the acoustic feature based overlap detection system. On RT 09 meetings, it

increases the relative DER reduction to around 7% from 3.5% achieved by the system based on

acoustic features and on the ICSI-test set it increases the relative error reduction to around 7%
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Table 3.4: Overlap labelling on AMI-test and NIST-RT 09 and ICSI-test data sets: missed (Miss)
and false-alarm (FA) errors in speech/non-speech detection and total speech/non-speech error
(SpNsp), speaker error (Spkr), diarization error rate (DER) and f-measures of the respective
overlap detection systems at the operating point (OIP=90) chosen to do labelling.

Corpus System Miss FA SpNsp Spkr DER f-measure

AMI
Baseline 12.5 1.0 13.5 16.9 30.4 -
Acoustic 10.9 1.4 12.3 17.4 29.7 0.23

+Conv-priors 10.2 1.7 11.9 17.6 29.5 0.28

RT 09
Baseline 11.6 1.1 12.7 21.2 33.9 -
Acoustic 11.0 1.5 12.5 21.4 33.9 0.18

+Conv-priors 10.6 1.6 12.2 21.5 33.7 0.26

ICSI
Baseline 17.7 0 17.7 15.6 33.3 -
Acoustic 16.6 0.1 16.7 15.9 32.6 0.18

+Conv-priors 15.8 0.4 16.2 16.1 32.3 0.26

Table 3.5: DERs (with relative improvements over baseline diarization within parenthesis)
obtained while performing overlap handling by using overlaps detected by proposed method
(+Conv-priors) and acoustic feature based overlap detector (Acoustic).

Corpus System Exclusion Labelling Both

AMI
Acoustic 26.3 (+13.4%) 29.7 (+2.3%) 25.8 (+15.1%)

+Conv-priors 25.0 (+17.7%) 29.5 (+2.9%) 24.2 (+20.3%)

RT 09
Acoustic 32.7 (+3.5%) 33.9 (-) 32.7 (+3.5%)

+Conv-priors 31.7 (+6.4%) 33.7 (+0.6%) 31.5 (+6.7%)

ICSI
Acoustic 32.5 (+2.4%) 32.6 (+2.1%) 31.8(+4.5%)

+Conv-priors 31.9 (+4.2%) 32.3 (+3%) 30.9 (+7.2%)

from 4% achieved by the acoustic feature based system.

3.8 Summary

Motivated by the studies done on conversational analysis, in the current work, a method to

improve the acoustic feature based overlap detector using long-term conversational features

was proposed. Experiments done in the present work revealed that features extracted au-

tomatically from conversations such as silence and speaker change statistics carry relevant

information about overlap occurrence in a conversation. The features were computed over a

window of around 3-4 secs to capture the information present in the long-term context of a

frame. These features were then used to estimate the probability of overlap and single-speaker

speech classes in the window. Cross entropy measure based studies on development data

revealed that the probability estimates of the classes are closer to the true distribution as

the length of the context used to compute the features is increased and reaches an optimum

around 4 secs. The probability estimates of the overlapping and single-speaker classes ob-

tained from the long-term context of each frame in the conversation were incorporated into
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the acoustic feature based classifier as prior probabilities of the classes.

Experimental results on overlap detection using three different meeting corpora (AMI, NIST-

RT, ICSI) revealed that the proposed method improves the performance of the acoustic feature

based classifier. These experiments also revealed that the model learnt to estimate the class

probabilities using data from the AMI corpus is generalizable to other meeting corpora such

as NIST-RT and ICSI. Experiments were also done to evaluate the effect of overlap detection on

speaker diarization using the standard methods of exclusion and labelling. These experiments

revealed that the proposed method decreases the DER by 20% relative to the baseline speaker

diarization system on the AMI-test data set. Using overlap detection from the acoustic feature

based system reduced the DER by 15% relative. Speaker diarization experiments on NIST-RT 09

and ICSI-test data sets have also revealed that the proposed method achieves higher reduction

in DER when compared to the system using only acoustic features for overlap detection. These

experiments also highlight the need for an effective overlap labelling mechanism to assign

speakers to the detected overlap segments as the reductions obtained in speech/non-speech

error are compensated to an extent by the increase in speaker error due to the errors done

during labelling.
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4 Auxiliary information for speaker
diarization

4.1 Introduction

Speaker diarization on far-field audio is adversely effected by various factors such as back-

ground noise and channel characteristics. Several diagnostical studies on speaker diarization

have shown that after overlapping speech one of the main causes for degradation of diarization

output is errors in speech/non-speech detection [Huijbregts and Wooters, 2007, Huijbregts

et al., 2012]. Non-speech segments in meeting rooms contain different types of signals such as

door slamming, paper shuffling or other types of ambient noises or vocal sounds like laughter

or cough which have very different characteristics than a usual speech signal. When such

signals are combined with speech segments they degrade the purity of speaker clusters and

increase the speaker error. In [Anguera et al., 2006b], a method was proposed to improve

the diarization output by detecting and eliminating non-speech frames that are included in

clustering due to errors in speech/non-speech detection. In that work, it was observed that

non-speech frames included in clustering have a negative influence on the cluster merging

decisions. In such scenarios, extra information sources which are helpful in speaker discrim-

ination have to be explored. The current chapter proposes two such auxiliary information

sources which are non-speech regions and phoneme transcripts of a given recording to help

improve speaker diarization in information bottleneck framework.

To incorporate information from non-speech regions in a meaningful way, we propose the

information bottleneck with side information (IBSI) framework for speaker diarization. We

explain the clustering based on IBSI framework and use the agglomerative solution of the IBSI

clustering framework to perform speaker diarization. We also show that having information

about what is being spoken (phoneme transcripts) can be useful in identifying who is speaking.

The information from phoneme transcripts is used to estimate a phoneme background model

(PBM) which is then used for speaker diarization in information bottleneck framework. These

two approaches are explained in detail and evaluated on meetings from different corpora.
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4.2 Non-speech as side information for speaker diarization

The use of non-speech regions as side information (irrelevant variable) for clustering is moti-

vated by two reasons. In a typical diarization system, automatic speech/non-speech detection

is performed before initializing the agglomerative clustering. Errors in speech/non-speech

detection are a common artefact, which introduces some non-speech frames into clustering.

Since a typical agglomerative speaker diarization system is initialized by uniform segmenta-

tion, segments of different speakers containing similar non-speech (background noise) might

get merged due to their similarity in the non-speech regions rather than speech regions. The

second reason is that, segments with low signal to noise ratio (SNR), belonging to different

speakers, but corrupted by similar background noise, might get merged into a cluster due

to the similar noise characteristics rather than their speech characteristics. In the present

work, we hypothesize that using information from the non-speech segments in clustering

can overcome these issues. To achieve this, we use information from non-speech regions

as irrelevant variable for clustering in information bottleneck with side information (IBSI)

framework. The IBSI framework [Chechik and Tishby, 2003] aims to cluster the input segments

such that the resulting clusters maximize the mutual information with respect to relevant

variables to clustering while minimizing the mutual information with respect to irrelevant

variables. This method penalizes the cluster similarity in the relevant variable space with

the similiarity in the irrelevant variable space, Since the method only uses the non-speech

segments from a given recording, it does not require any pre-labelled non-speech data. It also

has the advantage of using the data that best represents the given recording.

4.2.1 Agglomerative Information Bottleneck with Side Information (IBSI)

The goal of any clustering algorithm is to find meaningful structure in the given data and

construct clusters based on this structure. But often there are multiple conflicting structures

in the data; for example documents can be clustered based on topic or writing style; speech

segments can be clustered based on speaker identity or background/environmental condi-

tions etc. All the above clustering solutions are valid alternatives and the desired solution

depends on the problem formulation. The IBSI framework was proposed to identify relevant

patterns among several conflicting ones that might exist in the data [Chechik and Tishby,

2003]. The method has been successfully applied in document clustering, processing neural

spike train activity, and face recognition [Chechik and Tishby, 2003, Chechik, 2003]. The

method incorporates information about irrelevant components of the data to better extract

the relevant pattern information. Given a set of input variables X that need to be clustered, a

set of relevant variables Y + whose characteristics should be preserved in the final clustering,

a set of irrelevant variables Y −, and the joint distributions P (X ,Y +) and P (X ,Y −), the IBSI

framework aims at clustering the input variable set X into clusters C such that the resulting

clusters maximize mutual information w.r.t the relevant variable set Y + and minimize mutual

information w.r.t the irrelevant variable set Y −. This can be represented as a maximization of
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the objective function below:

FI BSI = I (Y +,C )−γI (Y −,C )− 1

β
I (X ,C ) (4.1)

where, γ and β are Lagrange multipliers.

FI BSI can be optimized using various approaches [Chechik, 2003] such as deterministic

annealing, greedy agglomerative hard clustering and sequential K-means based clustering.

To be compatible with the already existing diarization framework [Vijayasenan et al., 2009],

in the current work, we used the agglomerative hard clustering solution to the optimization

problem. In this method, loss in the objective function due to a merge of two clusters ci and

c j can be obtained as:

∇FI BSI (ci ,c j ) = [p(ci )+p(c j )]d I BSI
i j (4.2)

The distance d I BSI
i j between two clusters ci and c j can be obtained as:

JS[p(Y +|ci ), p(Y +|c j )]−γJS[p(Y −|ci ), p(Y −|c j )]− 1

β
JS[p(X |ci ), p(X |c j )] (4.3)

where JS() denotes the Jensen-Shannon divergence between two distributions. At each step of

agglomerative clustering, the algorithm merges the two clusters that result in the lowest value

of ∇FI BSI . By comparing the two distance measure of the original IB clustering and d I BSI
i j , it

can be observed that d I BSI
i j incorporates an extra penalty term γJS[p(Y −|ci ), p(Y −|c j )] which

measures the similarity between two clusters in irrelevant variable domain Y −. Due to this,

the current distance measure penalizes the merge of clusters with similar distribution over

irrelevant variables. The whole method is summarized in Figure 4.1. The model selection

criterion which gives the number of final clusters is based on a threshold on the normalized

mutual information given by I (C ,Y +)
I (X ,Y +) .

4.2.2 Agglomerative IBSI for speaker diarization

To apply this method to speaker diarization, the set of relevant variables Y + is defined as

the components of the background GMM trained on the speech regions of a given recording

similar to aIB framework. The set of irrelevant variables Y − is defined as the components

of the background GMM trained on non-speech regions of a given recording. Similar to

the agglomerative IB (aIB), the clustering starts with uniformly segmented speech regions

represented by X , and the posterior distributions of relevant and irrelevant variables p(Y +|X ),
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p(Y −|X ), are obtained using Bayes’ rule. Clusters that have the lowest distance measure (4.2)

are merged at each step. The final number of clusters is obtained using the model selection

criterion.

4.3 Phoneme background model for speaker diarization

The knowledge of what is being spoken has been shown to be a very useful information in

speaker identification/verification tasks [Sturim et al., 2002, Stolcke et al., 2007]. This gives

a chance to model individual variations in pronunciation of an acoustic class (phoneme/-

word) [Weber et al., 2000, Eatock and Mason, 1994]. Due to this, text constrained speaker

identification/verification tasks usually have higher accuracies than their text independent

counterparts. In the current work, we perform experiments to investigate whether knowledge

of what is being spoken helps to improve speaker diarization.

4.3.1 Diarization experiments using oracle annotations

First of all, we perform an oracle speaker diarization experiment, with ground-truth phone

transcription and speaker segmentation. In this experiment, we compare the IB diarization

systems using different background models to perform speaker diarization. We compare

plain background GMM (Plain-UBM) estimated from the speech regions of a given meeting

recording, the background model estimated with the knowledge of speaker segmentation

(Spkr-UBM) and the model estimated with the knowledge of both speaker and phoneme being

spoken (Spkr-phone-UBM). In the Spkr-phone-UBM, each phoneme spoken by a speaker is

represented by a Gaussian component in the background GMM. This is done by accumulating

all the utterances of a phoneme by a speaker according to the ground-truth transcripts and

approximating them with a Gaussian. In total there are 45 phonemes including silence class.

To estimate the Spkr-UBM, speech segments belonging to a speaker are used to estimate n

components per speaker in the background GMM, where n is varied from 5 to 45. The ground-

truth phone transcripts are obtained by force-aligning the manual transcripts to individual

head microphone channels, which also produces speaker start and end times as a by product.

Once the background model is obtained based on one of the approaches explained above

(Plain-UBM/Spkr-UBM/Spkr-phone-UBM), IB speaker diarization is performed using the

components of the background model as a relevance variable set. We used 100 meetings from

the AMI corpus [Mccowan et al., 2005] in this experiment. Figure 4.2 plots the speaker error in

IB diarization when using the three background models (Plain-UBM/Spkr-UBM/Spkr-phone-

UBM). The lowest error for Spkr-UBM is at n = 20 which means 20 is the optimal number of

components per speaker in the background GMM. It can be observed that Spkr-phone-UBM

achieves the lowest error among all the background models which shows that having the

knowledge of what is being spoken helps speaker diarization.
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Input:

Joint Distribution p(x, y+), p(x, y−)

Trade-off parameters γ, β

Output:

Cm : m-partition of X , 1 ≤ m ≤ |X |

Initialization:

C ≡ X

For i = 1. . . N

ci = {xi }

p(ci ) = p(xi )

p(y+|ci ) = p(y+|xi )∀y+ ∈ Y +

p(y−|ci ) = p(y−|xi )∀y− ∈ Y −

p(ci |x j ) = 1 if j = i ,0 otherwise

For i , j = 1. . . N , i < j

Find ∇FI BSI (ci ,c j )

Main Loop:

While |C | > 1

{i , j } = argmini ′, j ′ ∇FI BSI (ci ′ ,c j ′)

Merge {ci ,c j } ⇒ cr in C

p(cr ) = p(ci )+p(c j )

p(y+|cr ) = [p(y+|ci )p(ci )+p(y+|c j )p(c j )]
p(cr )

p(y−|cr ) = [p(y−|ci )p(ci )+p(y−|c j )p(c j )]
p(cr )

p(cr |x) = 1,∀x ∈ ci ,c j

Calculate ∇FI BSI (cr ,c), ∀c ∈C

Figure 4.1: Agglomerative IBSI algorithm
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Figure 4.2: Comparison of oracle UBMs: Spkr-UBM is estimated with the knowledge of speaker
labels, Spkr-phone-UBM is estimated with the knowledge of both the speaker and phoneme
being spoken and Plain-UBM is the regular UBM.

4.3.2 Estimation of a phoneme background model (PBM)

Motivated by the above oracle experiment, we propose a method to estimate a background

model that captures different modes of articulation of a phoneme. The hypothesis is that

different modes of articulation of a phoneme arise due to differences in the individual speakers

pronouncing it. Given a phone transcript of a meeting recording (obtained either from ground-

truth or an ASR system), we employ a simple clustering algorithm such as Ward’s method

to estimate the clusters in a phoneme and use the obtained clusters from all the phonemes

to build a background GMM which is referred to as the phoneme background model (PBM).

Let S = {p1, p2, . . . , pi , . . . , pN } denote the set of phonemes in the given transcript, where N is

the number of unique phonemes in the transcription. Let Pi = {p1
i , p2

i , . . . , pni

i } denote the

set of all the occurrences of a phoneme pi in the transcript, where ni indicates the number

of occurrences. Each occurrence p j
i of phoneme pi is approximated by a mean vector x j

i

computed from the feature vectors corresponding to that phoneme occurrence. This results

in a set of points Xi = {x1
i , x2

i , . . . , x j
i , . . . , xni

i } where, x j
i represents the j th occurrence of the

phoneme pi in the transcript. Agglomerative clustering is performed using Ward’s method

to cluster the occurrences of a given phoneme. The agglomerative clustering is initialized by

a set of single-ton clusters represented by Xi . Ward’s method is a greedy clustering method,

where, at each step, it merges two clusters that results in minimum increase of total cluster
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variance. The distance measure ∆(ck ,cl ) between two clusters ck and cl , is given by:

∆(ck ,cl ) = nck ncl

nck +ncl

‖mk −ml‖2 (4.4)

where, ‖‖ denotes Euclidean distance, nck and ncl represent the number of samples in cluster

ck and cl respectively and mk , ml represent the mean vectors (centroids) of clusters ck and cl

respectively. The clustering continues until the desired number of clusters M is obtained. The

clustering is performed for all phonemes pi in the set S and the final set of clusters C = {c j
i }

∀ i ∈ {1, . . . , N } and ∀ j ∈ {1, . . . , M } is obtained. Each of the clusters in the final cluster set C is

represented as a Gaussian component in the PBM. The mean of component is equal to the

centroid of the respective cluster and variance is equal to the cluster variance. The weight

of a component is obtained as the proportion of samples assigned to the respective cluster.

The number of clusters for each phoneme class M is selected based on cross-validation on

development set. Figure 4.3 summarizes the procedure of estimating the PBM with the help of

a block diagram.

Audio

 Input      Speech/
  Non−speech

 Speech Phonemes     Clustering  PBM  IB diarization
output
Final  ASR

Figure 4.3: Block diagram of the proposed diarization method using PBM.

4.4 Experiments and Results

4.4.1 Diarization experiments using phoneme background model

Speaker diarization experiments are conducted on meetings from the AMI [Mccowan et al.,

2005] and NIST-RT [National Institute of Standards and Technology, 2003] meeting corpora.

Out of 170 meetings present in the AMI corpus, 100 meetings are used in the current exper-

iments. The number of speakers in each meeting in the AMI dataset varies between 3 to 5,

but most of the meetings have 4 speakers. For experiments on the NIST-RT corpus, we have

used meetings from RT-05,06,07,09 datasets. The number of speakers in each meeting of

the NIST-RT corpus varies between 4 to 11. Both the corpora contain meetings recorded in

multiple meeting room environments. The audio captured by the distant microphone array is

enhanced by beamforming using BeamformIt [Anguera, X, ] toolkit. 19 Mel-frequency cepstral

coefficients (MFCC) are extracted for each frame of length 30 ms with a frame shift of 10

ms from this enhanced signal. These features are used both for speaker diarization and for

clustering of data within each phoneme class to obtain a PBM. Prior to performing diarization,

speech/non-speech detection is performed using the SHOUT toolkit [Huijbregts and de Jong,

2011] and non-speech segments are ignored. The speaker diarization systems are evaluated

using the metric diarization error rate (DER) used in NIST evaluation campaigns.
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The ASR system used in the current study is a conventional HMM/GMM system [Motlicek

et al., 2013]. The acoustic models are trained on 150 hours of labelled speech from the AMI

and ICSI [Janin et al., 2003] corpora. 13 dimensional MFCC along with their first and second

order derivatives resulting in a 39 dimensional feature vectors are extracted every 10 ms from

a speech frame of length 30 ms. The features are extracted from individual head microphone

(IHM) channels worn by the speakers in the meetings. These features are used for training the

models and for decoding. The 1-best word recognition output is subsequently transformed

into a sequence of phonemes (i.e., top-down approach to deriving a phoneme sequence)

which is later used for PBM estimation.

The optimal number of clusters M for each phoneme class in the PBM is decided based on

diarization experiments on development data. Since the number of clusters is inherently

dependent on the number of speakers in a given recording and since the number of speakers

varies significantly between AMI and NIST-RT meetings, we performed separate development

experiments for each corpus. For the development experiments on the AMI corpus, we used

20 meetings that are not included in the 100 test meetings. For NIST-RT meetings, we used

meetings from RT-05,06 as the development set and used RT-07,09 as our test set. Development

experiments on AMI data set revealed that M = 6 is optimal for meetings from the AMI corpus.

For the NIST-RT meetings, the optimal value of M on the development data was 15. Table 4.1

presents the speaker errors for the baseline IB system (Bas-IB), and the system using PBMs

estimated from phone transcripts obtained from ground-truth (GT-PBM) and ASR (ASR-PBM)

systems on the AMI and the NIST-RT development sets.

Table 4.1: Diarization experiments on development sets: Speaker error for different systems on
development set of meetings from AMI (20 meetings) and NIST-RT (RT-05,06) corpora.

Corpus Bas-IB GT-PBM ASR-PBM
AMI 24.3 17.4 20

NIST-RT 16.8 13.4 14.8

To evaluate the performance of the proposed method on the test set of meetings, we compare

the performance of the baseline IB speaker diarization system using a normal background

model without any information about the phoneme transcripts with the IB diarization system

using the PBMs estimated using phoneme transcripts obtained from ground-truth reference

transcripts and ASR system. Table 4.2 presents the evaluation results on the AMI data set.

Speech/non-speech error (SpNsp) for all the systems is constant as the speech activity detector

output given by the SHOUT toolkit [Huijbregts and de Jong, 2011] is systematically used. It can

be observed from Tab. 4.2 that the baseline IB system achieves a DER of 38.2. Also, the system

using PBM estimated from ground-truth phone transcripts (GT-PBM) gives the lowest DER

among all the systems. It reduces the DER from 38.2 to 33.4. The PBM estimated from ASR

transcripts also performs better than the baseline system. It reduces the DER from 38.2 to 34.8.

This shows that the proposed method of using PBM for IB speaker diarization improves the

performance of the baseline IB system. To check that phone transcripts generated by the ASR
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Table 4.2: Diarization experiments on 100 test meetings from AMI corpus: Speech/non-speech
error (SpNsp), Speaker error (Spkr) and total diarization error rate (DER) for different diarization
systems.

System SpNsp Spkr DER
Bas-IB 15.0 23.2 38.2

GT-PBM 15.0 18.4 33.4
ASR-PBM 15.0 19.8 34.8

Rand-PBM 15.0 23.0 38.0

system are providing reliable information for PBM estimation, we performed an experiment

in which, the PBM is estimated by randomizing the phone transcript, and the phoneme class

for a segment was chosen randomly out of the 45 phoneme classes. Since this randomization

results in the loss of phoneme information, it is expected that the performance of this system

will be similar to the baseline system which uses a background model estimated by ignoring

the phoneme information. Tab. 4.2 also reports the performance of the system using the PBM

estimated from randomized phone transcripts (Rand-PBM) which is similar to the baseline IB

system(Bas-IB).

Tab. 4.3 compares the performance of the various systems on NIST-RT test set of meetings

from RT-07,09 sets. It can be observed from Tab. 4.3 that the proposed method (ASR-PBM)

Table 4.3: Diarization experiments on NIST-RT test set: Speech/non-speech error (SpNsp),
Speaker error (Spkr) and total diarization error rate (DER) for different diarization systems on
NIST-RT 07, 09 data sets.

Corpus System SpNsp Spkr DER

RT 07
Bas-IB 3.7 10.8 14.5

GT-PBM 3.7 8.3 12
ASR-PBM 3.7 9.9 13.6

RT 09
Bas-IB 12.7 21.2 33.9

GT-PBM 12.7 16.6 29.3
ASR-PBM 12.7 18.2 30.9

reduces the DER of the baseline IB system from 14.5 to 13.6 on the RT-07 data set and from

33.9 to 30.9 on the RT-09 data set. Using ground-truth phone transcripts (GT-PBM) further

reduces the error to 12.0 and 29.3 on the RT-07 and RT-09 data sets respectively.

4.4.2 Diarization experiments in agglomerative IBSI framework

This section presents the results of speaker diarization experiments in the IBSI framework

using non-speech as side information for clustering. Experiments are conducted on meet-

ings from the NIST RT 06, 07 and 09 evaluation data sets. The audio captured by multiple

distant microphone channels is beamformed to get an enhanced signal using BeamformIt
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Figure 4.4: Meeting wise speaker error values for baseline aIB diarization system and aIBSI
system.

toolkit [Anguera, X, , Anguera et al., 2007]. 19 dimensional Mel frequency cepstral coefficients

(MFCCs) are extracted per each frame with a frame rate of 10 ms and frame length of 30ms.

These features are used as input features for the speaker diarization system. Speech/non-

speech detection is performed using the SHOUT system [Huijbregts and de Jong, 2011].

It was observed that non-speech segments detected by the SHOUT system contained instances

of laughter in the meeting conversations. Since the aim of using data from non-speech regions

in the current method is to capture the background environment in the meeting, these laughter

instances have to be eliminated from the non-speech regions before using them in clustering.

Since the laughter segments detected as non-speech by the SHOUT system are usually very

loud as they involve several people laughing together, they can be easily separated from

silence/background noise in the recording. In the current study, we used a simple short-

term spectral energy based system to detect the laughter segments in non-speech segments

detected by the SHOUT system. The detected laughter segments are excluded from non-

speech regions and the remaining data is used to train the non-speech background model.

The optimal value of γ in (4.1) for the aIBSI framework is obtained by picking the value of

the parameter that minimized speaker error on the RT 05 evaluation set of meetings which is

used as a development set. The speaker error obtained for various values of γ on this set of

meetings is plotted in Figure 4.5. These development experiments as reported in Figure 4.5

show that γ= 0.1 is optimal on the RT 05. Therefore, the parameter value is fixed to 0.1 when

testing on the RT 06, 07 and 09 meetings. The value of β is fixed to 10 according to prior
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work [Vijayasenan et al., 2009].
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Figure 4.5: Speaker error for various values of γ on development set of meetings from RT05 eval
set.

The performance of the two systems, the baseline aIB system and the proposed aIBSI system

is measured in terms of Diarization Error Rate (DER) which is a standard metric used to

evaluate speaker diarization systems in NIST RT evaluation campaigns [National Institute of

Standards and Technology, 2003] given a reference ground-truth segmentation. DER is the

sum of speech/non-speech error and the speaker error.

The performance of the automatic speech/non-speech detector in terms of miss (Miss) and

false-alarm (FA) rates on the different test meeting sets is summarized in Table. 4.4. Since

Table 4.4: Speech/non-speech errors for RT 06, 07 and 09 sets.

Data set Miss FA TOTAL
RT-06 6.5 0.1 6.6
RT-07 3.7 0 3.7
RT-09 11.6 1.1 12.7
ALL 7.3 0.4 7.7

automatic speech/non-speech output is kept constant for all the meetings for both the baseline

aIB framework and the proposed aIBSI framework, we compare the meeting wise speaker

error or the error in the clustering for the two systems in Figure 4.4. It can be observed from

Figure 4.4 that the proposed method either decreases or makes insignificant changes to DER

for most of the meetings.

In Table 4.5, we summarize the results at the data set level for the baseline aIB and the
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proposed aIBSI diarization systems. It can be observed from this table that the proposed

Table 4.5: Speaker error for aIB, aIBSI diarization systems (with relative improvements over aIB
baseline in parenthesis) on RT 06, 07 and 09 sets. We also report the performance of HMM/GMM
system for comparison.

Data set aIB aIBSI
RT-06 16.8 14.9 (+11.3)
RT-07 10.8 9.8 (+9.2)
RT-09 21.2 15.3 (+27.8%)
ALL 16.3 13.3 (+18.4%)

method decreases speaker error on all the meeting sets when compared to the baseline aIB

system. The overall speaker error on all three data sets is reduced from 16.6 to 13.3 by around

18.4% relative when compared to the baseline aIB system.

4.5 Summary

This chapter proposed two methods to incorporate auxiliary information sources which

are non-speech regions and phoneme transcripts to improve IB diarization system. The

information about non-speech regions was incorporated into IBSI clustering framework in

the form of an irrelevant variable set represented by a set of components of background GMM

estimated over non-speech regions in a given recording. Experimental results on meetings

from the RT 06, 07, 09 meeting sets have shown that, the proposed method decreases the

speaker error or the clustering error on all three data sets when compared to the baseline aIB

diarization system. The combined speaker error on all three data sets was reduced from 16.3%

to 13.3% which is a reduction of around 18% relative to the baseline aIB system. Also, meeting

level comparison between the two systems showed that the proposed method decreases the

speaker error on most of the meetings.

The information from phoneme transcripts was used to estimate a phoneme background

model which was used instead of the regular background model used in IB diarization. Experi-

ments have shown that incorporating information about “what is being spoken” (represented

by phoneme transcripts) improves identification of “who is speaking when” (speaker diariza-

tion) in an information bottleneck based speaker diarization system. The estimation of a PBM

was motivated by the oracle experiment, which showed that the background model estimated

from the knowledge of speaker and phoneme being spoken is more useful for diarization than

the background model estimated using only speaker information and a model estimated by

ignoring both speaker and phoneme information. The PBM estimation was based on the

hypothesis that clusters within a phoneme class roughly correspond to different speakers that

have spoken it. The PBM was estimated by clustering the data within each phoneme class in a

phoneme transcript of an audio file and representing each cluster with a Gaussian component

in the PBM. The usefulness of such a PBM was evaluated by using it as a background model
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4.5. Summary

in IB speaker diarization. Experiments conducted on meetings from the AMI and NIST-RT

corpora showed that the PBMs estimated from ASR transcripts reduce the DER from 38.2 to

34.8 on the AMI corpus, from 14.5 to 13.6 on the RT-07 and 33.9 to 30.9 on the RT-09 data sets.
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5 Artificial neural network features for
speaker diarization

5.1 Introduction

The state-of-the-art speaker diarization systems typically use short-term spectral features,

such as Mel-frequency cepstral coefficients (MFCCs) which represent the vocal tract charac-

teristics of a speaker, as features for diarization. The MFCCs are not optimized for speaker

discrimination as they also encompass various other information sources like phoneme being

spoken, background noise and channel characteristics etc. In the current chapter, we propose

new features based on artificial neural networks (ANNs) which are trained on tasks related to

speaker diarization such as speaker comparison, speaker classification and auto encoding.

To extract speaker discrimininant features, previous works have adapted factor-analysis based

techniques, which are popular in the speaker-verification domain, to the speaker diarization

task [Shum et al., 2011]. These methods cluster i-vectors extracted from speech segments using

a cosine similarity measure to provide speaker diarization output. Experiments on summed

telephone channels have shown that i-vector based methods improve the performance of

speaker diarization when compared to the traditional MFCC features. Another approach

based on feature transforms uses linear discriminant analysis (LDA) after initial passes of

diarization to obtain discriminative features [Lapidot and Bonastre, 2012]. However, none of

these methods developed for two-party telephone conversations have so far been applied to

multi-party, conference-style meetings.

In this work, we explore various artificial neural network (ANN) architectures to extract features

for diarization. We train three different neural networks; which are then used to generate

features for speaker diarization. The first network is trained to decide whether two given

speech segments belong to the same or different speakers. The second network is trained

to classify a given speech segment into a pre-determined set of speakers. The third network

is an auto-encoder which is trained to reconstruct the input at the output layer with as low

reconstruction error as possible. We hypothesize that the hidden layers of networks trained

in this fashion should transform spectral features into a space more conducive to speaker

discrimination. We propose to use the hidden layer activations from the bottleneck layer of
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such networks as a new feature for speaker diarization. We conduct experiments to evaluate

the usefulness of these bottleneck features for the task of speaker diarization on various

meeting-room data sets.

5.2 ANN features for speaker diarization

Artificial neural networks are extensively used in supervised tasks such as automatic speech

recognition and speaker identification/verification tasks. In these problems neural networks

are trained to predict the posterior probabilities of the desired classes (speakers/phonemes).

The posterior probabilities obtained from a neural network can be directly used to infer the

class. Another way of using neural networks for these tasks is to use a network trained to iden-

tify the classes as a discriminative feature extractor. Here, the activations of the hidden layer

prior to the final layer are used as input features to another classifier (typically HMM/GMM).

This section explains different ANN architectures which are trained on tasks related to speaker

diarization. Once trained, the networks are used to generate features for speaker diarization.

5.2.1 ANN for speaker comparison

Speaker diarization is an unsupervised task and there is no a-priori information about the

speakers. Therefore, in this work, we propose a neural network that is trained to compare two

given input speech segments and predict if they are spoken by the same or different speakers.

Such a network, when fully trained, would initially transform the input features into a space

which makes the task of prediction (same/different speaker) easier. Therefore, we extract

features from this network to use as a new stream in a diarization system. Figure 5.1 shows

the architecture of the four-layer network we use in this work. We split the input layer of

the network into two halves, left and right, to represent acoustic features belonging to the

two speech segments being compared. The first hidden layer (bottleneck) is also split into

two halves similar to the input layer, so each half receives input from the respective input

segment i.e., the right half of the hidden layer only gets input from the right half of the input

layer and the left half from the left half of the input layer. We tie the weight matrices (denoted

by W in Figure 5.1) connecting the right and left halves of input and hidden layers so that

the network learns a single common transform for all speakers. The second hidden layer

connects each half of the first hidden layer to the output layer. The output layer has two units

denoting the class labels—-same or different speakers—deciding the identity/non-identity of

the speakers providing the two input speech segments (segment1, segment2 in Figure 5.1).

All the hidden layers have sigmoid activation functions and the output layer has a softmax

function to estimate the posterior probabilities of the classes (same/different). We train the

network using a cross-entropy objective function.

After training the network, we use the first hidden layer activations, before applying the

sigmoid function, as features for speaker diarization. The resulting features obtained are a

linear transform of the input features as they are extracted before applying the non-linearity.
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w

segment 2

same/different

w

Feature Extractor

segment 1

tied

Figure 5.1: An ANN architecture to classify two given speech segments as belonging to same or
different speakers. The dotted box indicates the part of the network used to generate features for
diarization after the full network is trained.

To generate features from the network, we give a speech segment as input to one half of

the input layer and extract activations at the corresponding half of the bottleneck layer. It

should be noted that it does not matter to which half a speech segment is given as input to

generate features since, the weight matrices connecting left and right halves of input layer to

the corresponding halves in bottleneck layer are tied.

5.2.2 ANN for speaker classification

Konig et al. [Konig et al., 1998] used a multi-layer perceptron (MLP) with five layers, trained to

classify speakers, as a feature extractor for speaker recognition. The MLP was discriminatively

trained to maximize speaker-recognition performance. They used the outputs from the

second hidden layer (units of which had linear activation function) as features in a standard

GMM-based speaker-recognition system.

In the current work, we trained a similar network with speakers as output classes. The archi-

tecture of the network is depicted in Figure 5.2 The network is trained by providing a frame

along with its context as input and the corresponding speaker as the output class label. The

output layer uses a softmax function to estimate the posterior probability of the speaker.

The second hidden layer (bottleneck) uses a linear activation function and the units in the

rest of the hidden layers use a sigmoid non-linearity. After, training the network, the hidden

layer activations obtained from the bottleneck layer (2nd hidden layer) of the network are

used as features in speaker diarization. This network generates a non-linear transform of the
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Feature Extractor

Bottleneck

Input layer

Speakers

Figure 5.2: An ANN architecture to classify a given input speech segments into one of speakers in
the output layer. The dotted box indicates the part of the network used to generate features for
diarization after the full network is trained.

input features as the the input features are fed through the first hidden layer with a sigmoid

activation function before extracting the activations at the second hidden layer.

5.2.3 ANN as an auto-encoder

Auto-encoders are used in the literature to generate feature representations and non-linear

dimensionality reduction [Bengio, 2009]. An auto-encoder encodes the input in a representa-

tion which in turn is used to reconstruct the input. Therefore, while training the network the

target at the output is the input it self. When the network has a single hidden layer with linear

activations and is trained with mean square error criterion, it was shown that the activations

at the n dimensional hidden layer project the input data into the space of first n principal

components of the data [Bourlard and Kamp, 1988]. When the hidden layers have non-linear

activations, the representation diverges from the principal component space and captures

different aspects of the input feature distribution [Japkowicz et al., 2000]. In the current work,

we use an auto-encoder with three hidden layers. The input to the network is the current

frame along with its context. The network is trained to reconstruct the current frame at the

output with as less re-construction error as possible. The network is trained with a mean

square error criterion. The architecture of the network is depicted in Figure 5.3. All the hidden

layers of the network use a sigmoid non-linearity. Once the network is trained, the features are

generated by giving an input frame along with a context as input to the network and obtaining

the activations of the bottleneck layer (second hidden layer) before applying the sigmoid

non-linearity. The network performs a non-linear transform of the input features as they are
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Bottleneck

Feature Extractor

Output layer
Center frame

Input layer

Figure 5.3: An ANN as an auto-encoder: The network reconstructs the center frame of the input
(center frame + context) at the output layer. The dotted box indicates the part of the network
used to generate features for diarization after the full network is trained.

Table 5.1: Meeting corpus statistics as used in experiments, including numbers of distinct
speakers, meeting room sites, and number of meetings used as part of train, development and
test sets.

Corpus Speakers Sites Meetings
Train Dev Test

AMI 150 3 148 - 12
ICSI 50 1 - 20 55
NIST-RT 100 6 - - 24

fed through sigmoid activation function in the first hidden layer.

5.3 Experiments and Results

This section describes the data sets, methodology, and experiments done on speaker diariza-

tion using ANN features.

5.3.1 Datasets used in experiments

The experiments make use of meeting room recordings from various corpora: AMI [Mccowan

et al., 2005], ICSI [Janin et al., 2003], and 2006/2007/2009 NIST-RT [National Institute of

Standards and Technology, 2003]. Table 5.1 summarizes the characteristics of these data sets.
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The AMI data set is split into train and test sets of 148 and 12 meetings, respectively. The

AMI-test and AMI-train sets are disjoint in speakers. We use only speech data from the AMI

train set to train the neural network classifiers described in Section 5.2. Twenty ICSI meetings

are set aside for the purpose of development and tuning, and the remaining 55 ICSI meetings

form an additional test set. The ICSI-dev and ICSI-test sets have speaker overlap as the ICSI

data set contains speakers that are common in most of the meetings. All NIST-RT evaluation

sets (2006/2007/2009) are also used for testing.

5.3.2 Training of the ANNs

All the ANNs are trained using the data from the AMI-train set. To avoid skewing the training

toward particular speakers we sampled 50 utterances from each of 138 speakers in the meetings

of the AMI-train set. Each utterance has a duration of around 10 seconds. The cross validation

(CV) set contained 10 utterances from each speaker in the training set. The networks are

trained using 19-dimensional MFCC features extracted every 10 ms from a frame length of

30 ms. We force-aligned the manual speech transcripts to the close-talking microphone

recordings to obtain frame-level speaker labels needed for training the ANNs. For training

purposes we ignored speech segments containing overlapping speech. The objective function

for the ANN was cross entropy for the speaker comparison and speaker classification networks

and mean square error for the auto-encoder network. All the networks are trained using error

back propagation and stochastic gradient descent for 25 epochs.

5.3.3 Speaker diarization evaluation

In this section, we report the speaker diarization experiments performed using the bottleneck

features obtained from various ANN architectures. The bottleneck features are compared

against the baseline 19 dimensional MFCC features extracted from one of the single distant

microphone channels used to record the meeting room conversation. The diarization output

is evaluated using a metric called diarization error rate (DER), which is a standard metric used

in NIST-RT evaluation campaigns [National Institute of Standards and Technology, 2003]. We

used speech/non-speech labels obtained from the ground-truth speaker segmentation to get

the speech regions for diarization.

To evaluate the usefulness of the features obtained from the different ANN architectures for

speaker diarization, we use them as features for diarization systems based on the HMM/GMM

framework and the Information Bottleneck (IB) framework. To identify the optimal context

length at the input to generate features for diarization from different ANN architectures, we

performed tuning experiments on meetings from ICSI-dev set.

ANNs are trained with features of different context lengths varying between 10–50 frames

(100–500 ms) at the input layer. The dimension of the bottleneck layer was fixed to 20. The

bottleneck features obtained from these networks are used for speaker diarization. Figure 5.4
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shows the speaker errors of the HMM/GMM system while using bottleneck features obtained

from different ANN architectures with different input context lengths. It can be observed from

Figure 5.4: Input context length tuning using ICSI-dev set for various bottleneck features in
HMM/GMM based speaker diarization system: (a) Speaker comparison (b) Speaker classifier
(c) Auto-encoder.
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Figure 5.4 that the optimal input context length for speaker comparison ANN is 20 frames, for

speaker classification network is 10 frames and for auto-encoder it is 50 frames. Similar plots

for IB diarization system are shown in Figure 5.5.

Figure 5.5: Input context length tuning using ICSI-dev set for various bottleneck features in
information bottleneck based speaker diarization system: (a) Speaker comparison (b) Speaker
classifier (c) Auto-encoder.
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It can be observed from Figure 5.4 and Figure 5.5 that the optimal input context lengths to

generate ANN features are the same for both the HMM/GMM system and the IB system.

The context lengths optimized in the above fashion using the development set are used to

generate features for the meetings in test set. The results obtained for the different test sets

are summarized in Tab. 5.2 for the HMM/GMM and the IB systems. It can be observed from

Tab. 5.2 that, while the bottleneck features from the speaker comparison network (spkr-com)
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Table 5.2: Speaker errors on test data sets for various bottleneck features in HMM/GMM and IB
speaker diarization system.

System Test-set spkr-com autoen spkr-class MFCC

HMM/GMM

AMI-test 22.9 25.9 29.3 24.8
ICSI-test 23.1 20.9 19.8 19.8

RT-06 26.6 11.0 22.1 14.5
RT-07 16.8 9.7 16.7 12.0
RT-09 20.9 16.4 25.6 16.3

IB

AMI-test 20.5 21.1 29.7 22.5
ICSI-test 21.3 19.9 20.7 20.9

RT-06 24.8 19.5 18.5 17.5
RT-07 18.0 12.9 15.4 13.1
RT-09 28.3 26.8 23.1 23.0

give lower speaker error than MFCC features on AMI-test set for both HMM/GMM and IB

diarization systems, they increase the error on all the remaining test sets. Bottleneck features

from the auto-encoder produce lower error on the RT-06/07 data sets for HMM/GMM systems

and for the AMI-test and the ICSI-test sets for IB system. The bottleneck features obtained

from speaker classification network increase error on all test sets for both systems except on

the ICSI-test set for the HMM/GMM system. In summary, it can be observed that none of the

neural network features perform as well as baseline MFCC features on all test sets.

Combination of MFCCs with ANN features.

Though the results in Tab. 5.2 show that the bottleneck features in general perform worse

than MFCC features on most of the test sets, one can hypothesize that these features capture

some complementary information to that of MFCC features, which can be helpful for speaker

diarization. To test this hypothesis, we combine the MFCC features with bottleneck features

obtained from different ANN architectures. The combination in the HMM/GMM system is

performed at the model level, where separate GMM models are estimated for each feature

stream for every cluster (state) and the final log-likelihood for a cluster is obtained as a

weighted combination of log-likelihoods of individual feature streams.

In the IB system, the combination occurs in the posterior space. Here, the posteriors of the

relevance variable set obtained for each feature stream are combined by weighted combination

to obtain the final posteriors of the relevance variable set. The weights in both systems sum

to unity and are fixed based on tuning experiments done on ICSI-dev set. The bottleneck

features in both cases are obtained from the best architecture in the single stream case whose

diarization performance is reported in Tab 5.2. Figure 5.6 shows the speaker error for different

combination weights for MFCCs and various bottleneck features in HMM/GMM system. It

can be observed from the Figure 5.6 that the optimal weights for the combination of MFCCs

and bottleneck features from the speaker comparison network are 0.5 and 0.5 for MFCCs
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Figure 5.6: Feature stream weight tuning using ICSI-dev set for combination of MFCC fea-
tures with bottleneck features obtained from different ANNs in HMM/GMM based speaker
diarization system: (a) Speaker comparison (b) Speaker classifier (c) Auto-encoder.
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and bottleneck features respectively. The optimal weights for the combination of MFCCs

and bottleneck features from the auto-encoder network are 0.1 and 0.9 for the MFCCs and

bottleneck features respectively. The optimal weights for the combination of the MFCCs and

bottleneck features from speaker classification network are 0.3 and 0.7 for the MFCCs and

bottleneck features respectively.

Similar plots for weight combination tuning experiments on the ICSI-dev set are shown for

the IB system in Figure 5.7. The Figure 5.7 shows that the optimal combination weights for

Figure 5.7: Feature stream weight tuning using ICSI-dev set for combination of MFCC fea-
tures with bottleneck features obtained from different ANNs in information bottleneck based
speaker diarization system: (a) Speaker comparison (b) Speaker classifier (c) Auto-encoder.
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MFCCs and bottleneck features from the speaker comparison and auto-encoder networks

are same as the optimal weights obtained for HMM/GMM system. In IB system, the optimal

weights for combination of MFCCs and bottleneck features from the speaker classification

network are 0.5 and 0.5 for MFCCs and bottleneck features respectively.
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The optimal combination weights obtained for the MFCCs and the different bottleneck fea-

tures are used for performing multi-stream diarization on the meetings from test sets. Tab. 5.3

shows the speaker errors of the HMM/GMM and the IB systems which combine MFCCs

and different bottleneck features on various test sets. It can be observed from Table 5.3 that

Table 5.3: Speaker errors on test data sets after combining different bottleneck features with
MFCC features in HMM/GMM and IB speaker diarization systems.

System Test-set M+spkr-com M+autoen M+spkr-class MFCC

HMM/GMM

AMI-test 19.7 24.9 19.2 24.8
ICSI-test 18.5 21.1 13.1 19.8

RT-06 18.4 14.9 10.9 14.5
RT-07 12.7 10.8 10.6 12.0
RT-09 20.7 17.0 14.0 16.3

IB

AMI-test 19.9 21.3 18.8 22.5
ICSI-test 17.0 19.2 15.3 20.9

RT-06 17.9 18.7 17.1 17.5
RT-07 13.5 12.5 10.0 13.1
RT-09 24.5 24.2 21.0 23.0

the combination of MFCCs and bottleneck features from the speaker comparison network

(M+spkr-com) reduces the error on the AMI-test and the ICSI-test sets while performance is

worse than MFCC features on the RT-06/07/09 data sets in both the diarization systems. The

combination of the MFCCs and the bottleneck features from the auto-encoder (M+autoen)

does not yield significant changes from the single stream system using only auto-encoder

based bottleneck features (refer to Table 5.2). This shows that the auto-encoder based bottle-

neck features are not capturing any information complementary to that of the MFCC feature

stream. The highest gains are achieved by combining the MFCCs with bottleneck features

from the speaker classification network. It can be observed from Tab. 5.3 that this combination

consistently reduces the speaker error significantly in both the diarization systems on all test

sets.

5.4 Summary

We have developed a speaker diarization framework that uses ANNs as trainable acoustic

feature extractors. Three different ANN architectures are explored for this purpose. The first

ANN, is trained to compare pairs of speech segments and predict if they are spoken by the

same or different speakers, while forcing the raw MFCC features to undergo a shared transform

via a bottleneck layer. The learned transform (linear) can then be applied to unseen data to

generate features that are combined with the baseline MFCCs and given as input to standard

agglomerative clustering diarization systems based on the HMM/GMM and the IB frameworks.

We find that the resulting system reduces speaker error substantially when trained on data that

is reasonably matched to the test data (AMI or ICSI test data when trained on AMI speakers

not seen in testing).
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The second ANN was trained to classify an input speech segment into one of the pre-determined

speaker classes. The network consists of three hidden layers and the activations from the

second hidden layer (which has a linear activation function) are used as features for speaker

diarization. These features when combined with MFCCs produced significant reduction in

speaker error for all the test data sets in both HMM/GMM and IB diarization systems.

The third ANN was trained to perform auto encoding. The network was trained to replicate

the input at the output with as less re-construction error as possible. The network consisted of

three hidden layers and the activations of the second hidden layer before applying the sigmoid

are used as features for speaker diarization. These features did not show any significant

reduction in the error when combined with MFCC features, which shows that they did not

capture any complementary information to MFCCs.

In summary, the experiments in this chapter suggest that neural network features extracted

from networks discriminatively trained on related classification tasks to speaker diarization

capture complementary information to MFCCs and are useful for speaker diarization.
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6 Combination of different diarization
systems

6.1 Introduction

Speaker diarization evaluation campaigns conducted by NIST [National Institute of Standards

and Technology, 2003] have revealed that there is a significant variance in performance of

different systems based on different clustering frameworks [Knox et al., 2012, Mirghafori and

Wooters, 2006]. These studies have observed that there is no single best system on all the

meeting recordings used in the test sets. One way to overcome this issue is by combining dif-

ferent diarization systems so that the combination can take advantage of the complementary

nature of the systems being combined. In the current chapter we propose a novel combina-

tion strategy for the parametric HMM/GMM based diarization system and non-parametric

Information Bottleneck (IB) system. The combination takes place at the feature level where

the output of the IB diarization system is used to generate features for the HMM/GMM system.

The rationale behind this is that the new feature set will complement the HMM/GMM system

at each step with the information provided from the output of the IB system. The proposed

combination method does not require any changes to the original systems.

6.2 Previous approaches to system combination

A number of studies on broadcast data have discussed the combination of speaker diarization

outputs from different systems to improve results. The simplest combination consists of

voting schemes [Tranter, 2005] between the outputs of multiple systems. Also, a system can

be initialized with the output of another one, such as in case of bottom-up and top-down

diarization proposed in [Moraru et al., 2003]. Finally integrated approaches [Moraru et al.,

2004], i.e., systems that integrate two different diarization methods into a single one, have been

considered for broadcast data. Recently, they have also been revisited in the context of meeting

recordings [Bozonnet et al., 2010a]. While combinations are able to outperform the individual

diarization systems, each combination technique has advantages and pitfalls; in particular

the voting scheme performs only late combination, i.e. at the output level. The initialization

77
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approaches only benefit from a different starting point and the integrated approaches require

modifications to all parts of the systems.

6.3 Combination of HMM/GMM and IB systems

The HMM/GMM and IB systems differ in a number of implementation issues which are sum-

marized in Tab. 6.1. The HMM/GMM system uses GMMs as speaker models for clustering,

where as the IB system uses components of background model as a set of relevance variables

(Y ) for clustering. The distance measure used for merging two clusters in HMM/GMM frame-

work is based on modified ∆B IC where as in IB system it is based on Jensen-Shannon (JS)

divergence. The output of HMM/GMM system assigns an input speech segment X to a cluster

C . The output of IB diarization system, in addition to assigning the input segments to a cluster,

each cluster is also represented by a relevance variable distribution P (Y |C ). Given these

differences in the two systems, one could expect complementarity between them. Hence, we

describe a combination method for HMM/GMM and IB diarization systems which captures

this complementarity.

6.3.1 Motivation for the proposed method

The current combination method is largely inspired from the TANDEM framework used in

Automatic Speech Recognition (ASR) [Hermansky et al., 2000]. TANDEM aims at using the

probabilistic output of a Multi Layer Perceptron (MLP) that estimates phoneme posterior

probabilities, as features to a conventional HMM/GMM system. Given an input speech frame

X and a set of phonetic targets Y , the MLP estimates the posterior probabilities p(Y |X ). After

that, the p(Y |X ) are first gaussianized using a logarithm and then de-correlated with a PCA

transform followed by a dimensionality reduction. The resulting features are referred as the

TANDEM features. After concatenation with MFCC, they are used to train a standard HM-

M/GMM system. TANDEM features are able to reduce the Word Error Rate (WER) by 10−15%

relative (see [Morgan et al., 2005] for a review of tasks and improvements) thus complement-

ing well the standard spectral features. However, contrary to ASR, speaker diarization is an

unsupervised task thus there is no direct equivalent to the phoneme posterior probabilities

p(Y |X ). This work proposes to generate TANDEM-like features using the probabilistic output

of the Information Bottleneck system [Vijayasenan et al., 2009].

Table 6.1: Main differences between the HMM/GMM and the IB diarization systems.

HMM/GMM IB

Modeling a separate GMM relevance variables Y
for each speaker c from a background GMM

Distance Modified ∆B IC JS divergence
Output mapping X → C mapping X → C

and p(Y |C )
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6.3.2 Information Bottleneck features

This section describes how the output of the IB system can be used as features in HMM/GMM

diarization. Consider MFCC feature vectors S = {s1, . . . , sT } where st denotes the feature vector

at time t ; those are then segmented in X = {x j } chunks each containing D consecutive speech

frames (feature vectors). The feature vectors S can be re-designated as S = {s j
t }, where the

superscript j denotes to which segment the feature vector belongs to. The output of the IB

diarization is a hard partition of speech segments x j ∈ X into C clusters, i.e., p(ci |x j ) ∈ {0,1},

meaning that each segment x j is assigned to only one cluster. For each cluster, the associated

relevance variable distribution p(Y |ci ) is available.

Thus each feature vector s j
t belonging to segment x j (given by the initial segmentation) can

be associated to a cluster zt obtained from the diarization output, i.e.,

zt = {ci |s j
t ∈ x j , p(ci |x j ) = 1}, t = 1, ...,T. (6.1)

Let F denote a matrix that contains the relevance variable distributions p(Y |zt ) associated

with each zt , i.e.,

F = [p(Y |z1), ..., p(Y |zT )], t = 1, ...,T. (6.2)

F is a |Y |×T matrix where T is the number of speech frames and |Y | is the cardinality of the

relevance variable space.

F contains both information on the clustering output (if two feature vectors st and st ′ belong

to the same cluster), and characterizes each cluster with the distribution p(Y |zt ) (different

clusters will have different p(Y |zt )). Thus TANDEM processing [Hermansky et al., 2000] can

be applied, probabilities p(Y |zt ) are gaussianized by a logarithm on their individual elements

and then de-correlated using Principal Component Analysis (PCA). The PCA is also used to

reduce the initial dimensionality, equal to the relevance variable space cardinality (|Y |). The

resulting matrix, designated as FI B and referred to as Information Bottleneck (IB) features can

be used as input to a conventional diarization system where the GMM speaker models can be

learnt from these features. The integration with MFCC can happen in two possible ways:

1 by concatenating IB features with MFCC features (as done in ASR) thus forming a single

input vector to the HMM/GMM system. This approach will be referred as IB_aug (the IB

feature stream is augmented with MFCC features).

2 by multi-stream modeling, i.e., estimating a separate GMM model for each feature

stream and combining their log-likelihoods [Pardo et al., 2007]. This approach is used

for instance in diarizing with features having very different statistics (like MFCC and

Time Delay of Arrival features) and will be referred to as IB_multistr. In this case, the
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Figure 6.1: Block diagram of the proposed method.

clustering is based on the combined log-likelihood:

wm f cc log bm f cc
c +wFI B log bFI B

c (6.3)

where bm f cc
c and bFI B

c are GMMs trained on MFCC and FI B features and (wm f cc , wFI B )

are the combination weights.

The overall method can be summarized in three main steps given below and a block diagram

of the proposed approach is shown in Figure 6.1:

1 Perform IB diarization and estimate p(C |X ) and p(Y |C ).

2 Map p(Y |C ) to input frames S and apply TANDEM processing to obtain IB features (FI B )

3 Use FI B as complementary features to MFCC in a conventional HMM/GMM system.

6.4 Experiments and Results

The experiments are conducted on 24 meetings recordings from the NIST-RT data set [National

Institute of Standards and Technology, 2003]. We used meetings from NIST RT06, RT07, RT09

evaluation sets for tesing and RT05 set for development experiments. The audio from multiple

distant microphone channels of each meeting is beamformed using the BeamformIt toolkit

[Anguera, X, ]. The beamformed output of each meeting is used for speech, non-speech

detection and feature extraction. Acoustic features consist of 19 MFCCs. The speech/non-

speech detection is based on the SHOUT toolkit [Huijbregts and de Jong, 2011] and evaluated

in terms of missed speech rate (Miss) and false alarm rate (FA) summing into the speech/non-

speech error rate (SpNsp) (see Tab. 6.2). The performance is evaluated in terms of Diarization

Error Rate (DER) which is the sum of speech/non-speech error and speaker error. For the

purpose of comparison, only speaker error is reported here as same speech/non-speech is

used for all the systems.

The number of principal components to be kept after PCA and the weights (wm f cc , wFI B ) are

selected as the ones that minimize the speaker error on a separate development data set. The

optimal number of principal components is found to be equal to two, covering more than

80% of the PCA variability. The feature weights (wm f cc , wFI B ) are found to be equal to (0.9,0.1).
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Table 6.2: Speech/non-speech error rate in terms of missed speech (Miss), false alarm speech
(FA) and the total error (SpNsp) in the evaluation data sets.

Data-set Miss FA SpNsp

RT-06 6.5 0.1 6.6
RT-07 3.7 0.0 3.7
RT-09 11.6 1.1 12.7
ALL 7.3 0.4 7.7

These values are then used for evaluation on the RT06, RT07, RT09 meetings. Tab. 6.3 reports

speaker error for the baseline system as well as the IB_aug and IB_multistr approaches. The

meeting-wise performance is reported in Figure 6.2 and data-set wise performance is reported

in Table 6.4.

Table 6.3: Total speaker error with relative improvement over baseline in parenthesis on the
evaluation data sets (RT06, RT07, RT09 combined) for various diarization systems.

system Baseline IB_aug IB_multistr

spkr err 12.0 (-) 13.5 (-12.5%) 9.7 (+19%)

Table 6.4: Data-set wise speaker error on RT06, RT07, RT09 data sets for various diarization
systems.

corpus system Spkr

RT-06
HMM/GMM 13.6

IB_aug 14.7
IB_multistr 10.3

RT-07
HMM/GMM 6.4

IB_aug 7.5
IB_multistr 6.0

RT-09
HMM/GMM 14.3

IB_aug 18.1
IB_multistr 12.7

The baseline HMM/GMM system achieves a speaker error equal to 12%. The first approach

IB_aug, which concatenates MFCC and FI B features, degrades the performance producing an

error equal to 13.5%. On the other hand, the second approach IB_multistr, which estimates

separate GMM models for MFCC and FI B features, reduces speaker error to 9.7%, i.e., an

improvement of approximatively 19% relative to the baseline. The degradation in performance

produced by concatenation can be explained by the very different statistical properties of the

MFCC and FI B features. In fact, FI B features have smaller dimensionality compared to the

MFCC and are a compact representation of IB diarization output, thus they do not share the

same distribution as MFCC. Therefore, whenever the modeling is done using separate GMMs,

speaker error decreases from 13.5% (IB_aug) to 9.7% (IB_multistr). This is similar to what was
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Figure 6.2: Meeting wise speaker error values for baseline HMM/GMM diarization system and
IB_multistr.

observed in case of TDOA features, as they also become affective only through multistream

modeling [Pardo et al., 2007].

It can be noticed from Figure 6.2 that the IB_multistr shows significant improvement upon the

baseline system in meetings with high error (over 15%). It is observed that the IB features have

an effect on purity of clusters, i.e., assignment of segments uttered by different speakers to

the same clusters is reduced, thus producing much purer clusters compared to MFCC only

(baseline). Reversely IB_aug often degrades the performance.

We also investigate the effect of the FI B features at different stages of the clustering. Figure 6.3

plots the speaker error for the baseline and IB_multistr after each merge, for the meeting

EDI_20061113-1500. It can be noticed that both systems have similar error rates in initial

iterations but after a few iterations, the FI B features avoid wrong cluster merges, which

increase error rate and produce a smooth and decreasing error curve. Similar trends are

verified for other meetings where IB_multistr achieves improvements over baseline.

We also combine the diarization systems using non-speech and phoneme transcripts pro-

posed in this thesis with HMM/GMM system. Here, the features for HMM/GMM system are

generated in a similar way as explained in Section 6.3.2 but using the output of agglomerative

information bottleneck with side information (IBSI) clustering framework. In this system

we use the phoneme background model (PBM) as relevant variable set for clustering and

the components of GMM estimated from non-speech regions as irrelevant variable set. The

diarization output of this system is used to generate features for HMM/GMM system. The

results obtained by this combination on various data sets are presented in Table 6.5. It also
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Figure 6.3: Speaker error after each merge for baseline and IB_multistr systems for meeting
EDI_20061113-1500

shows the results for combination of IB and HMM/GMM systems (IB_multistr) for reference.

Table 6.5: Combination of IBSI and HMM/GMM systems: The IBSI system uses phoneme
background model (PBM) as relevance variable set and components of GMM estimated from
non-speech regions as irrelevant variable set. Speaker error is reported for various test sets
NIST-RT 06/07/09.

corpus system Spkr

RT-06
HMM/GMM 13.6
IB_multistr 10.3

IBSI_multistr 9.7

RT-07
HMM/GMM 6.4
IB_multistr 6.0

IBSI_multistr 5.8

RT-09
HMM/GMM 14.3
IB_multistr 12.7

IBSI_multistr 11.4

It can be observed from Table 6.5 that the combination of the IBSI and HMM/GMM systems

(IBSI_multistr) reduces the speaker error further when compared to combination of IB and

HMM/GMM systems (IB_multistr). Also, the reduction in errors is consistent across all the

test sets. This can be attributed to the improved speaker diarization output in IBSI framework

when compared to IB system.
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6.5 Summary

This chapter proposes and investigates a novel approach to combine diarization systems

through the use of features. The Information Bottleneck system is used to generate a set of

features that contain information relevant to the clustering and characterizes each speaker

in terms of probabilities; these features are later used to complement MFCC in a conven-

tional HMM/GMM system. The approach is largely inspired from the TANDEM framework

used in ASR and has the advantage of being fully integrated (features are used at all steps

of agglomerative clustering), while it does not require any change to individual diarization

components.

The combination with MFCC features is investigated using simple concatenation and using

multi-stream modeling. Results on 24 meetings from the NIST RT06/RT07/RT09 evaluation

campaigns reveal that the Information Bottleneck features reduce the speaker error from

12% to 9.7%, i.e., a 19% relative improvement when they are used together with MFCC in

multi-stream fashion. The improvements are consistent across all the test sets. The approach

is particularly effective in meetings where the baseline system has a speaker error higher

than 15%. On the other hand, simple concatenation increases speaker error to 13.5% as FI B

and MFCC have very different statistical distributions to be modeled using same GMM. In

summary the IB system provides complementary information to the HMM/GMM whenever

the integration is based onby multi-stream modeling.

The combination of IBSI and HMM/GMM systems has yielded further reduction in the error

across all the test sets. Here, the combination was performed using the features generated from

the IBSI diarization output. This system used components of phoneme background model

(PBM) as the relevant variable set and the components of background GMM estimated from

non-speech regions as irrelevant variable set. This shows that improvements observed in the

diarization output in IBSI framework also improve the combination of IBSI and HMM/GMM

system.

84



7 Conclusion and Future Directions

7.1 Conclusion

In this thesis, we have tackled issues in the state-of-the-art speaker diarization systems such

as overlapping speech, effects of background noise, errors in speech/non-speech detection,

and performance variations across different systems.

To handle overlaps, we proposed to use long-term features extracted from the structure of

a conversation to improve the overlap detection system based on acoustic features. These

features such as silence and speaker change statistics are computed over a long-term window

(3-4 seconds) and are used to predict the probability of overlapping speech in the window.

These probabilities are incorporated into the overlap detection system as prior probabili-

ties of overlapping, single-speaker speech classes. Experiments on meetings from different

meeting corpora revealed that the proposed method improves the overlap detection system

significantly, which also results in the reduction of diarization error.

To suppress the effects of background noise and errors made in speech/non-speech detection,

we proposed the use of auxiliary information from non-speech regions in a given recording

in the Information Bottleneck with Side Information (IBSI) based clustering framework. The

objective function of the IBSI clustering tries to find a clustering representation that maximizes

the mutual information w.r.t the relevant variable set i.e., speech regions, while minimizing

the mutual information w.r.t the irrelevant variable set (non-speech segments). Experimental

results on meeting corpora showed that IBSI based speaker diarization system reduces the

diarization error significantly when compared to the baseline Information Bottleneck (IB)

system.

To capture speaker discriminative information present in a speech signal, we proposed to use

one more auxiliary information source in the form of phoneme transcript of a given recording.

The use of phoneme transcript as auxiliary information for speaker diarization is motivated

from previous works in speaker verification/identification, where the knowledge of what is

being spoken was shown to be useful to identify who is speaking. Oracle experiments using
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ground-truth transcripts showed that phoneme transcripts are indeed useful for speaker

diarization. Motivated from these findings, we proposed a Gaussian mixture model based

Phoneme Background Model (PBM) as a replacement to the normal background model in IB

diarization system. The phoneme background model (PBM) is estimated from clusters within

different phonemes in a given transcript. Experiments on meeting corpora have shown that

the use of PBM as a background model in the IB diarization system reduces the error.

In an another attempt to extract speaker discriminative information, we trained Artificial

Neural Networks (ANNs) to extract features relevant for speaker diarization. We investigated

three ANN architectures for this task. The first network was trained to compare two given

speech segments and predict if they are spoken by the same speaker or not. The second

network was trained to classify a given input speech segment into on of the pre-determined

speaker classes. The third network was trained as an auto-encoder which aims to reconstruct

the input at the output with as less reconstruction error as possible. The bottleneck layer

activations from these three networks are used for speaker diarization. Experimental results

showed that bottleneck features from all the ANNs perform poorly when used on their own in

both HMM/GMM and IB diarization systems. Bottleneck features from the speaker compari-

son network (first ANN) reduce error when testing on data reasonably matched to training

data when combined with MFCCs. Bottleneck features from speaker classification network

consistently reduce error on all test data sets when combined with MFCCs. On the other

hand, bottleneck features obtained from the auto-encoder (third ANN) do not change the

error significantly when combined with MFCC features, which shows that it did not capture

any information complementary to the MFCCs.

In the final part of the thesis we proposed a method to combine two speaker diarization

systems; HMM/GMM and IB that are based on different clustering frameworks to exploit the

complementary nature of these systems. The combination takes place at the feature level and

does not require any changes to the original systems. This combination method is inspired

from the TANDEM method used in automatic speech recognition (ASR) systems. Similar

to what is done in TANDEM processing, the posterior distributions over a set of relevance

variables obtained for different clusters as a by-product of the IB diarization are used as

features in HMM/GMM diarization system. These features referred to as IB features are

combined with MFCCs in a multi-stream mode in a HMM/GMM system. This method of

combination of the two systems has yielded a significant reduction in the error rate over both

individual systems on meetings from various datasets.

7.2 Future directions

The work done in this thesis motivates several future directions of research. They are outlined

below.

In current work, we have used overtly available features such as silence and speaker change

statistics to improve overlap speech detection. Several studies [Cetin and Shriberg, 2006b,
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Cetin and Shriberg, 2006a, Shriberg et al., 2001] on meeting room conversations have shown

that overlaps are strongly related to various other factors such as type of dialogue acts [Stolcke

et al., 2000] and hot spots [Wrede et al., 2005]. Dialogue acts (DAs) convey the nature of

speech act such as question, statement, back-channel etc.,. Hot spots [Wrede et al., 2005] in

a multi-party conversation are defined as regions where participants are highly involved in

the conversation. Studies have shown that overlaps are highly correlated with some of the

DAs such as back-channels and interruptions. Though DA tagging and hot spot detection are

not trivial tasks, future works on overlap detection would benefit from leveraging the relation

between the DAs, hot spots, and overlap occurrence.

The evaluation results on overlapping speech diarization have shown that reduction in diariza-

tion error by overlap labelling which attributes speaker labels to detected overlaps requires a

high precision overlap detector. This is due to the reason that the current overlap labelling

methods are based on heuristics like nearest speakers in time and cluster likelihoods. There is

a great scope of improvement in overlapping speech diarization if a overlap labelling method

that can overcome this problem is proposed.

The Information Bottleneck with Side Information (IBSI) based clustering framework was

proposed in the current work to suppress the effects of background noise and errors in

speech/non-speech detection on speaker diarization. Here, the side information is provided

in the form of an irrelevant variable set, which consists of components of background GMM

estimated over non-speech regions of a given recording. Future works can explore the appli-

cability of this framework in different scenarios to suppress influences of specific channel or

meeting room environment conditions. Also, pre-trained non-speech background models

trained on various types of ambient noises encountered in a typical meeting room environ-

ment could be used instead of using background model estimated from non-speech regions

of a given recording.

The phoneme background model was proposed in the current work to capture speaker depen-

dent phoneme articulation. Phonemes are very often influenced by their context. Therefore,

future works can explore the use of context dependent phonemes or triphones to estimate

such a background model to alleviate the effects of context.

Features extracted from three different ANNs are proposed for the purpose of speaker di-

arization. The features extracted from ANN trained to compare two speech segments are

only a linear transform of the input features as they are extracted from the first hidden layer

before applying the non-linearity. Exploring deeper architectures with more hidden layers and

extracting features from these deep layers can be more useful for speaker diarization. Several

other neural network architectures such as convolutional networks [Lecun et al., 1998] and

recurrent networks [Graves et al., 2009] can also be used to extract features.
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