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Fullfilling the prospect of robots leaving factory floors, to
enter the human world and act among us, could lie decades
away. However, the move of robots from the large scale
factory plants as in the car manufacturing industry towards
smaller manufacturers might lie around the corner. Funding
agencies are pushing robotics research in manufacturing
through projects such as SMART-E [1]. This, combined with
the recent development of light weight robots for industrial
applications, e.g. KUKA’s LBR and ReThink Robotics’ Bax-
ter, create an optimal climate to advance industrial robotics.

Medium and small scale manufacturing companies repre-
sent the largest number of entities in the manufacturing sector
in Europe. Such companies could benefit greatly from robotic
automation solutions, but they generally have different needs
than large scale manufacturers.

In large scale companies most robots are programmed
to do one specific task for their complete lifetime. Smaller
scale companies robots are likely to perform a wide variety
of tasks. To make this viable, robots need to be easily
(re)programmable. Programming by Demonstration (PbD)
[2] provides suitable solution to this problem. PbD allows
easy (re)programming of a robot by providing a small
number of demonstrations of the task to be learned.

The types of tasks that performed in industrial environ-
ments can have different temporal variance. When a robot has
to synchronize with other systems, exact temporal execution
might be critical. On the other hand, when interacting with
a human co-worker the robot should be able to cope with
high temporal variance. This temporal variability needs to
be taken into acocunt in the representation of movements.

Encoding of movements can effectively be achieved using
movement primitives acting as building blocks that can be
assembled in parallel and series to form complex movements.
Within the literature of movement primitives encoding we
can distinguish autonomous, and non-autonomous systems.
The system evolution of non-autonomous systems only de-
pends on the state of the system (e.g. [3]). Such systems
form an attractor landscape with a unique global minimum,
guaranteeing that the system state will converge to the final
state. The fact that their system evolution only depends on the
system state, makes them ideal for situations in which high
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temporal variability can be expected. However, such systems
are less suitable in situations where more importance should
be given to correct movement duration. In non autonomous
systems, the state evolution does not solely depend on the
system state, but also on a temporal signal or phase variable.
These additional signals, basically acting as an external
clock, achieve a more exact temporal evolution. A common
approach is to model the movement dynamics as a system
of linear spring-damper systems [4] [5].

We propose a non-autonomous movement encoding based
on a Hidden Semi-Markov Model (HSMM). The model
encodes local movement dynamics in Gaussian kernels with
full covariance matrices covering all the synergies among the
dynamics and different degrees of freedom. The switching
between the local-linear models is handled by the HSMM.
This temporal modeling of the HSMM can be seen as
the phase term used in e.g. Dynamic Movement Primitives
(DMP). However, in contrast to the phase term, which is
usually a deterministic heuristic, HSMM provides a way
to learn and represent in a probabilisitc form the temporal
behavior. An adaptive compliant controller is obtained by
combining HSMM with Model Predictive Control (MPC).
At each timestep HSMM is used synthesize desired attractors
with their alloted variability on a given time horizon. A con-
trol command is then obtained by minimizing an objective
function based on the synthesized information. Effectively,
this leads to a minimal intervention control strategy [6].

We succesfully tested this approach in a pick&place exper-
iment. The robot is shown a small number of demonstrations
of a pick-up task. During reproduction the robot, is able to
succesfully reproduce the task and react to perturbations in
a compliant way.
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