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ABSTRACT

Performing speaker diarization while uniquely identifying the speak-
ers in a collection of audio recordings is a challenging task. Based
on our previous work on speaker diarization and linking, we devel-
oped a system for diarizing longitudinal TV show data sets based on
the fusion of speaker diarization system outputs and speaker link-
ing. Agreement between multiple diarization outputs is found prior
to speaker linking, largely reducing the diarization error rate at the
expense of keeping some speech data unlabelled. To deal with noisy
clusters, a linear prediction based technique was used to label speak-
ers after linking. Considerable gains for both fusion and labelling are
reported. Despite the challenges of the longitudinal diarization task,
this system obtained similar performance for linked and non-linked
tasks under moderate session variability, highlighting the viability of
a linking approach to longitudinal diarization of speech in the pres-
ence of noise, music and special audio effects.

Index Terms— speaker diarization, linking, longitudinal , fu-
sion, clustering, i-vector, ward

1. INTRODUCTION

Automatically structuring multimedia archives containing large
amounts of data is a difficult task. These data sets typically involve
speech with a large variety of speakers, acoustic environment con-
ditions, languages and expressive states. While speaker diarization
systems are currently quite mature, changes in speech expressiveness
and environmental noise typically result in performance drops while
the computational cost can become prohibitive for long recordings
or collections of recordings.

The Multi-Genre Broadcast (MGB) Challenge [1] is an interna-
tional evaluation campaign of speech technologies on TV recordings
from the British Broadcasting Corporation (BBC). This data is espe-
cially challenging for speech technologies as it involves multi-genre
data from the whole range of TV shows of the BBC. For speaker di-
arization, this data set faces systems to frequent overlapping audio,
such as voice over music or applause, and a large variability in ex-
pressive speech, e.g. in soap operas. On the other side, speaker turn
structure is highly variable from show to show, making it difficult
for systems to be tuned to specific speaker interaction patterns. Task
4 in the MGB Challenge is a longitudinal diarization task, asking to
diarize speakers across different recordings of the same show. This
translates into finding start and end times for every speaker while
labelling the speakers globally within the show.

This work was supported by Speaker Identification Integrated Project
(SIIP), funded by the European Unions Seventh Framework Programme for
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Large scale speaker diarization has been addressed by previous
work on telephone speech and broadcast news data. A speaker link-
ing system using cross-likelihood ratio (CLR) and normalized CLR
(NCLR) scores on Joint Factor Analysis (JFA) compensated mod-
els was proposed in [2, 3], for linking telephone speech and brodcast
news data. Another multi-stage approach [4] targeting large scale di-
arization diarizes chunks of speech data whose clusters are linked in
a later stage. This system scales particurlarly well on large data sets
but still offers variable performance depending on the chunk size.

In this paper, we further develop Idiap’s speaker linking system
for the longitudinal task of the MGB evaluation. We addressed spe-
cific challenges posed by the MGB data by fusing speaker diariza-
tion outputs in order to increase speaker cluster purity and prevent
error propagation to the linking system. A variable threshold prun-
ing approach to speaker labelling was applied to the speaker linking
dendrogram to cope with noisy dendrograms after linking.

The paper is structured as follows: Section 2 gives a system
overview. Sections 3 and 4 describe Idiap’s diarization strategy
to process the MGB Challenge data. Speaker linking, clustering
speaker clusters output in the diarization stage, is described in Sec-
tions 5 and 6. The experimental setup and results are given in
Sections 8 and 9. Section 10 gives conclusion about this work.

2. SYSTEM OVERVIEW

The system submitted to the MGB Challenge was based on the
speaker diarization and linking approaches developed in [5, 6] for
far-field meeting speech data. This approach is well-suited to pro-
cessing a large amount of speech data while modeling speakers
within-recording and across-recording. Diarization is able to pre-
cisely find cluster boundaries within a recording at the expense of
underclustering, while linking is able to link speaker clusters using
knowledge from a large speaker population. If a training data set
with speaker labels is available, speaker models can be compensated
for session variability, e.g. using Joint Factor Analysis (JFA) [7, 8]
or Probabilistic Linear Discriminant Analysis (PLDA). Unfortu-
nately, although the MGB Challenge provides a large training data
set, it does not provide global speaker labels that can directly be
used for training such session variability compensation models.

In this work, we focused on two topics addressing a) the fusion
of diarization system outputs and b) improving the pruning strategy
for speaker labelling after linking. Figure 1 shows a block diagram
of the overall system. The diarization stage uses fused outputs from
two speaker diarization systems. Fusion has the objective of finding
agreement between diarization outputs expecting the purity of the
resulting speaker clusters to increase and hopefully reduce errors in
the linking stage. Therefore, only a portion of the total speech time
is passed on to the linking module. The linking stage hierarchically
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Fig. 1. Block diagram of the full speaker diarization and linking sys-
tem. In red and yellow colors are the IB and HMM/GMM speaker
diarization system modules respectively. In purple, the fusion of
their outputs based on agreement. In blue, the speaker linking mod-
ule. In green, the final realignment module.

clusters the agreed segments using an i-vector representation along
with the i-vector covariance matrices obtained during i-vector ex-
traction, as in [5]. Finally, the speech data for each linked speaker
cluster is used to train HMM/GMM speaker models that are used to
realign the non-labeled speech portions of the recordings.

3. SPEAKER DIARIZATION

The goal of the speaker diarization task is to split a recording into
acoustically homogeneous regions that were spoken by the same
speaker. After feature extraction and speech activity detection, these
systems typically detect boundaries between speaker turns and then
cluster these segments into speaker clusters across the recording, so-
called speaker clustering. Two diarization systems were used:

e IB diarization: This is a fast agglomerative clustering al-
gorithm based on the information bottleneck (IB) principle
[9]. After uniformly segmenting the audio recording into
short segments, the IB framework iteratively merges pairs of
clusters using the Jensen-Shannon divergence, resulting in a
minimum decrease of the objective function 7 = I(Y,C) —
%I (C,X), where Y are a set of relevance variables, frame
posteriors over the mixtures of a Gaussian Mixture model
(GMM), C is the clustering solution and X are the initial
segments. [ is a trade-off between the amount of informa-
tion preserved and the compression from the initial represen-
tation. The stopping criterion is given by setting a theshold
on the Normalized Mutual Information criterion, NM1 =
I1(Y,C)/I(X,Y), measuring the fraction of original mutual
information I(X,Y) captured by the current cluster represen-
tation C. Once the clustering has stopped, cluster boundaries
are refined using Viterbi decoding on an ergodic HMM with
a minimum duration constaint.

e HMM/GMM diarization: This is a traditional approach
to speaker segmentation using GMM to characterize each
speaker cluster. Starting from a set of uniform initial seg-
ments, the Bayesian Information Criterion (BIC) [10] is
evaluated for all cluster pairs to determine the best merge
candidate. After each merge, Viterbi decoding on an ergodic
HMM with a minimum duration constraint is used to reseg-
ment the data to refine the speaker cluster boundaries. The
process is iterated until the ABIC values for merging are
under a given threshold.
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Fig. 2. Illustration of the fusion process. Only segments for which
both systems agree upon speaker labels are output after fusion. A
new set of labels is created for the fused output. Regions of non-
agreement are marked as such and processed in a later stage.

4. FUSION OF SPEAKER DIARIZATION OUTPUTS

System combination of speaker diarization systems is a poorly stud-
ied topic. Some researchers [11] have cascaded two IB based di-
arization systems, the second algorithm refining the first system out-
put. The same authors combined multiple feature streams in [12].
Frame-by-frame fusion of diarization outputs has been explored in
[13, 14]. In [15], system combination is addressed by finding com-
mon segments in the outputs of two diarization systems while re-
classifying the rest. We used a similar approach using two differ-
ent front-ends together with the two speaker diarization systems de-
scribed in Section 3.

From the outputs of two diarization systems, a new output is
obtained by considering the segment boundaries of both diarization
system outputs simultaneously. As illustrated in Figure 2, for each
cluster of the first system, the cluster with the largest number of
frames in common is found, and the pair of speakers becomes a new
speaker in the output. This process is iterated over all speakers, out-
putting as many new speakers as speakers in the reference diariza-
tion system. Segments that were not assigned to any new speaker are
given a “non-labelled” speaker name and processed separately.

This approach tends to purify the speaker clusters at the price
of missing speaker labels for non-agreed regions. Bootstrapping the
speaker linking system with purer speaker cluster is expected to pre-
vent error propagation across diarization and linking modules.

5. SPEAKER CLUSTER MODELING

In our prior work, speaker clusters were modeled using JFA [7, 8], a
parametric GMM adaptation technique allowing for the disentagle-
ment of speaker and session effects. Although this approach is effec-
tive for observed linear distortion effects due to channel variability,
its effectiveness on additive noise may be questioned. Furthermore,
training data provided in the MGB challenge does not provide global
speaker labels that can be used to train such models.

A single-factor eigenmodeling approach, such as a total vari-
ability (TV) or i-vector approach [7, 16], was used instead. The total
variability model

m=m+ Tw D

is a parametric map from Gaussian supervectors, m down to low-
dimensional vectors, w, that characterize the acoustics of the seg-
ment. The speaker-independent supervector m is formed by the
mean vectors of a Universal Background Model (UBM) trained us-
ing data from many speakers. T'w is a low-rank term that models
the acoustic variation. After T has been estimated in the maximum-
likelihood sense using a large speech database, only latent variables
are fit to the test, i.e. finding parameter estimates for the posterior
distribution of w, the latter being the objects used in the speaker
linking phase.



6. SPEAKER LINKING

The goal of the speaker linking module is to assign unique identi-
fiers to the clusters output by the speaker diarization output for all
recordings in a TV show, i.e. considering longitudinal speaker link-
ing within a show. Two major steps, agglomerative clustering and
labelling, are discussed in the following:

6.1. Agglomerative clustering

The speech data of each cluster is modeled as a single multivariate
Gaussian with a full covariance matrix, which is indeed a total factor
posterior distribution. Initially, each initial cluster is assigned one
speaker cluster output by the diarization system. The two closest
clusters are then successively merged, until only one cluster remains:

1. Compute the distance matrix for all pairs of speaker clus-
ters, that become the initial clusters.

2. Merge the two closest clusters.

3. Update the distance matrix, from the merged cluster to all
other clusters.

4. Go to 2. If only one cluster remains, stop.

We use Ward’s method [17], merging the two clusters that result
in the minimum increase of the total within-cluster variance after
merging, i.e. it aims at obtaining compact clusters. Ward’s method
is implemented in a recursive manner using the Lance-Williams al-
gorithm [18, 5]. When two clusters ¢; and c; are to be merged, the
distances between the merged cluster c;; and all other clusters cy,
are updated using the formula d(;;)r = oidix + ajdjr + Bdij. The
values for a;, a; and 8 can be found in [18]. In [5], we found that
the two-way Hotteling ¢-square statistic, the multivariate equivalent
of the two-way Student-¢ statistic, outperformed other distance mea-
sures such as cosine distance or Kullback-Leibler divergence. We
use the squared Euclidean distance term, (w; — Wj)TC;jl(Wi —
w; ), for the initial inter-cluster distances, which spherifies the dis-
tance between cluster means with the pooled covariance matrix of
both clusters.

6.2. Speaker labelling

A binary tree can be obtained from all the merging steps performed
during clustering. The tree structure indicates the order in which
merges occurred and each merge node in the tree stores the merge
cost. While we found in [5, 6] that pruning this tree using a single
threshold for all series was enough to give satisfactory results on
meeting data, it was difficult to find an optimal threshold that is valid
for all TV series in the MGB development set.

In a first approach, a TV series dependent threshold was set,
namely a fraction of the largest initial inter-cluster distance between
all speaker clusters from all recordings of that series, making the
threshold larger as more spread the initial data are.

A second approach combined the TV series dependent threshold
with an approach aiming at predicting merging costs at a node in the
tree from merging costs in surrounding nodes, labelling a node as a
speaker if a jump in predictability is found. For each node, a linear
prediction model [19] is fit to each of four possible subtree trajecto-
ries, predicting the parent cost from current, child, and child of child
node costs. If the minimum of the prediction errors, normalized by
the central node distance, is larger than a threshold, the node is la-
belled as a new speaker. This threshold and the TV series dependent
threshold are combined with an AND operation. The sibling nodes
of already labelled nodes are labeled as new speakers if they were

not already labeled as speakers. This ensures that all initial samples
are given a speaker label.

7. REALIGNMENT

After speaker linking, a new set of speaker labels is obtained for
those segments for which agreement was found during system fu-
sion. The rest of the segments have no speaker labels assigned.
The purpose of realignment is to give “agreed” speaker identifiers
to “non-agreed” speech segments. For this purpose, an ergodic
HMM/GMM is trained on the “agreed” speaker speech of each
recording and decoded using the Viterbi algorithm (with a minimum
duration constraint) on the “non-agreed” speech data.

8. EXPERIMENTAL SETUP

The presented speaker diarization and linking system was partially
tuned using the development MGB Challenge data set before eval-
uation. The linked Diarization Error Rate (DER) performance of
this system was compared to systems using no speaker diarization
fusion.

Only audio labelled as speech in the segmentation provided dur-
ing the MGB Challenge evaluation was used, with ground-truth seg-
mentation being available for development and an automatic seg-
mentation being available for evaluation.

The IB diarization system uses a front-end with 19 Mel-
Frequency Cepstral Coefficients (MFCC) and 19 Mel-Filterbank
Slope features (MFS) [20]. This setup used 2.5s uniform initial
segmentation, S = 7, a stopping threshold of 0.3 and a maximum
number of speaker clusters of 10 were used. The minimum duration
for Viterbi decoding was set to 2.5s. The HMM/GMM diarization
system used 19 MFCC features. The initial number of speaker clus-
ters and Gaussian components was set to 10 and 5, respectively, the
BIC threshold was set to 0.7 and the minimum duration constraint
for Viterbi decoding was 2.5s. Only the number of speakers and
the minimum duration for Viterbi decoding were tuned to the MGB
development data, the rest being optimized for meeting data.

For speaker cluster modeling, we used the speech data from the
“train.full” condition of the challenge, over 2000 hours, to train a
gender-independent GMM-UBM with 512 Gaussian components as
well as the the total variability matrix T using 5 and 10 EM itera-
tions of maximum likelihood estimation respectively. The optimal
i-vector dimensionality was found to be 100, after optimization on
the development set. The speaker linking module thresholds were
optimized on the development data set as well, obtaining an optimal
linear prediction threshold of 4, and a maximum absolute threshold
of 0.2 times the maximum intercluster initial distance.

9. RESULTS

We ran longitudinal diarization experiments on the MGB Challenge
data, using the non-linked and linked DER performance measures,
i.e. the amount of time that system output does not agree with the
non-linked and linked references, as performance measures.

Table 1 shows DER for the speaker diarization and linking sys-
tem. In the first block, DER of 43.6% are shown for both IB and
HMM/GMM diarization. Fusing these two systems results in a rel-
ative drop of 33.4% DER, from 43.6% to 29.0%, at the price of in-
troducing 20% of non-labeled speech. This illustrates a trade-off in
the diarization fusion approach: the more reliable the fused speaker
clusters the more speech is not labelled, and viceversa.



Regarding linking, a performance gap can be observed from
non-linked to linked DER due to the increased difficulty of the link-
ing task. The increase is 6% to 16% DER absolute for IB and
HMM/GMM diarization, from 43.6% to 50.4% and 43.6% to 60.6%,
respectively. For fused diarization, the increase stays around 5%,
from 43.6% to 48.9%, after labelling the non-labeled regions using
Viterbi decoding. The latter is able to label 5.4% out of the non-
labeled 20% with correct speaker labels, assuming the same linked
speakers are present in the non-labelled speech obtained after fusion,
which is far from being true in practice for the MGB data. Indeed, we
noticed that the number of speakers correctly labeled was far below
the actual number of speakers. We believe this is due to optimizing
DER in very noisy data, with tuning resulting in correctly labelling
major speakers while dismissing the rest.

All of these systems used the same pruning thresholds during
speaker labelling. Table 2 shows fixed, show-adaptive and linear pre-
diction based threshold optimizations for the fusion system. Using
an adaptive threshold, relative to the maximum intercluster distance,
results in 13% relative improvement over using a fixed threshold
(41.3% vs. 35.9%). Using the linear prediction based thresholding
together with an adaptive threshold brings a 4% additional relative
gain for an absolute linked DER of 34.3%. Non-linked DER is not
optimal at this operating point, but it is slightly better for a fixed
threshold. We believe this might be a byproduct of having corrupted
speech in the speaker clusters being linked.

We consider speaker diarization and linking results as satisfac-
tory given the challenging data and the use of an i-vector front-end
with no session compensation. These results are in line with our pre-
vious work on speaker linking for far-field meeting data [5, 6], where
the increase of difficulty of the longitudinal diarization task barely
affected the DER. However, for the MGB challenge, the starting di-
arization error rates are roughly twice those reported for far-field
meeting data and no JFA session compensation, or PLDA, was used.

These systems were run on the evaluation data, with the differ-
ence that the provided speech/non-speech segmentation is output by
an automatic speech/non-speech detection system. Table 3 shows
the linking system DER as well as missed speech and speaker and
false alarm times. In this case, missed speech gathers non-labelled
speaker time and non-speech. The non-linked DER for the Fusion
system remains in the same range as for the development data set,
30.8%, with a large proportion of the 25.5% missed speech time to
be realigned. However, bootstrapping the linking system with these
diarization outputs results in significantly larger linked DER when
compared to the development data set. Absolute increases in linked
DER are indeed almost 12% (from 30.8% to 42.6%) range compared
to 5% in the development set, suggesting a deviation in behavior of
the linking system, but not the diarization system. The development
set has an average of 3.8 recordings per show whereas the evaluation
data set has 9.5, more than twice as many recordings per show. The
reported results suggest that the linking system is vulnerable to the
large session variability in the evaluation data set while the DER in-
crease was acceptable for the development data set. Such decrease in
linking performance results in more incorrectly labelled data overall
compared to the development data set. For the evaluation set, out of
the 72.1%=100%-25.5%-2.4% of labelled speaker time, 42.6%, i.e.
more than half of it, are incorrectly labeled. These figures are lower
for the development set.

10. CONCLUSION

This paper presented and analyzed the speaker linking and diariza-
tion system used for the longitudinal diarization task of the MGB

System Not-Linked Linked DER Missed Spkr.
DER (%) (%) (%)

Diarization

1B 43.6 - 0.0

HMM 43.6 - 0.0

Fusion 29.0 - 20.0
Linking

IB 50.4 56.3 0.0

HMM 60.6 69.1 0.0

Fusion 30.6 343 20.0

Fusion + Realign 44.6 48.9 0.00

Table 1. Diarization Error Rates (DER) for the speaker diarization
and linking system. DER on not-linked and linked references are
reported as well as the percentage of missed speaker time.

System Not-Linked Linked Missed
DER (%) DER (%) Spkr. (%)
Linking
Fusion th=5e4 29.2 41.3 20.0
Fusion th=0.2max 29.7 359 20.0
Fusion th=0.2max lp=4 30.6 34.3 20.0

Table 2. Diarization Error Rates (DER) for the speaker diarization
and linking system using the labelling strategies described in Section
6.2. DER on not-linked and linked references are reported as well as
the percentage of missed speaker and speech time.

System Not- Linked Missed False
Linked DER(%)  Spch+Spkr Spch.
DER (%) (%) (%)
Linking
Fusion 30.8 42.6 25.5 24
Fusion + Realign 45.1 58.0 6.0 4.0

Table 3. Diarization Error Rates (DER) for the speaker diarization
and linking system on the evaluation data. DER on not-linked and
linked references are reported as well as the percentage of missed
speaker and speech time and false speech time.

Challenge 2015. An agreement-based approach to diarization fusion
reduced the DER by 33% at the price of missing labels for 20% of
the data. The agreed speaker clusters were linked using Ward clus-
tering and a linear prediction based strategy to pruning the cluster-
ing dendrogram. Together with a show-adaptive threshold this ap-
proach resulted in 13% of relative improvement in linked DER with
respect to a fixed threshold strategy, and 4% with respect to a show-
adaptive threshold. Finally, the non-labelled speech was realigned
using speaker models trained on the agreed speaker clusters.

This work shows that, while the task of longitudinal diarization
is more complex than diarizing one recording at a time, the DER for
both tasks can be kept in the same range. This has been possible
on two very noisy data sets and bootstrapping the linking system
using incorrect speaker labels in around half of the initial diarization
output.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

11. REFERENCES

P. Bell, M.J.E. Gales, T. Hain, J. Kilgour, P. Lanchantin, X. Liu,
A. McParland, S. Renals, O. Saz, M. Wester, and P. C. Wood-
land, “The MGB Challenge: Evaluating Multi-Genre Broad-
cast Media Transcription,” in ASRU 2015, 2015.

H. Ghaemmaghami, D. Dean, R. Vogt, and S. Sridharan, “Ex-
tending the Task of Diarization to Speaker Attribution,” in
Proc. INTERSPEECH, 2011, pp. 1049-1052.

H. Ghaemmaghami, D. Dean, and S. Sridharan, “Speaker At-
tribution of Australian Broadcast News Data,” in Proceedings
of the First Workshop on Speech, Language and Audio in Mul-
timedia (SLAM), Marseille, August 22-23, 2013.

M. Huijbregts and D. van Leeuwen, “Large Scale Speaker Di-
arization for Long Recordings and Small Collections,” /EEE
Trans. on Audio, Speech and Language Processing, pp. 404—
413, 2012.

M. Ferras and Hervé Bourlard, “Speaker Diarization and Link-
ing of Large Corpora,” in Proc. of the IEEE Workshop on Spo-
ken Language Technology, 2012.

O.Schreer M. Ferras, S. Masneri and Hervé Bourlard, “Diariz-
ing Large Corpora using Multi-modal Speaker Linking,” in
Proc. INTERSPEECH, 2014.

P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice mod-
eling with sparse training data,” [EEE Trans. on Speech and
Audio Processing, vol. 13, no. 3, pp. 345-354, 2005.

P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel,
“A study of inter-speaker variability in speaker verification,”
IEEE Trans. on Audio, Speech and Language Processing, vol.
15, no. 4, pp. 1435-1447, 2008.

D. Vijayasenan, F. Valente, and H. Bourlard, “Information
Theoretic Approach to Speaker Diarization of Meeting Data,”
IEEE Trans. on Audio, Speech and Language Processing, vol.
17, no. 7, pp. 1382-1393, 2009.

J. Ajmera and C. Wooters, “A robust speaker clustering algo-
rithm,” in Proc. IEEE ASRU, 2003.

F. Valente D. Vijayasenan and H. Bourlard, “Combination
of agglomerative and sequential clustering for speaker diariza-
tion,” in Proc. IEEE ICASSP, 2008, p. 43614364.

F. Valente D. Vijayasenan and P. Motlicek, “Multistream
speaker diarization through Information Bottleneck system
outputs combination,” .

Sylvain Meignier, Daniel Moraru, Corinne Fredouille, Jean-
Francois Bonastre, and Laurent Besacier, “Step-by-step and
integrated approaches in broadcast news speaker diarization,”
Computer Speech & Language, vol. 20, no. 2, pp. 303-330,
2006.

Simon Bozonnet, Nicholas Evans, Xavier Anguera, Oriol
Vinyals, Gerald Friedland, and Corinne Fredouille, “System
output combination for improved speaker diarization,” in In-
terspeech 2010, September 26-30, Makuhari, Japan, 2010, pp.
Interspeech—2010.

V. Gupta, P. Kenny, P. Ouellet, G. Boulianne, and P. Du-
mouchel, “Combining gaussianized/non-gaussianized features
to improve speaker diarization of telephone conversation,”
IEEE Signal Processing Letters, pp. 1040-1043, 2007.

N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-End Factor Analysis for Speaker Verification,” [EEE
Trans. on Audio, Speech and Language Processing, vol. 19,
no. 4, pp. 788-798, 2009.

J. H. Ward, “Hierarchical Grouping to Optimize an Objective
Function,” American Statistical Association, vol. 58, no. 301,
pp. 236244, 1963.

[18] G. N. Lance and W. T. Williams, “A General Theory of Clas-
sificatory Sorting Strategies. 1. Hierarchical Systems,” Com-
puter Journal, vol. 9, pp. 373-380, 1967.

[19] J. Makhoul, “Linear prediction: A tutorial review,” in Pro-
ceedings of the IEEE, 1975.

[20] S. Madikeri and H. Murthy, “Mel Filter Bank energy-based
Slope feature and its application to speaker recognition,” in
National Conference on Communications (NCC), Bangalore,
2011, pp. 1-4.



