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Abstract—The prosody of the speech signal carries both
linguistic and paralinguistic information. As such, there is a
necessity of its modelling for the purpose of integrating it in
speech technology systems. So far, there has been a multitude
of proposed models focusing mainly on intonation, but a few
also on energy and duration. The paper proposes an integrated
approach to modelling the three dimensions of prosody through
the use of atom decomposition techniques that we refer to as
a Unified Prosody Model (UPM). The advantages of using such
an integrated approach are illustrated in the task of emphasis
detection, for which simple features are constructed based on the
output of our UPM. A logistic regression classifier is trained and
tested using these features and reaches an accuracy of 91%. This
proof-of-concept algorithm illustrates the potential behind using
the proposed UPM in improving prosody related speech research.

Index Terms: prosody, intonation, energy, duration, modelling, em-
phasis

I. INTRODUCTION

Prosody is a multidimensional phenomenon comprising
the intonation, energy, and duration contours of the speech
signal. It carries both linguistic information, including: sen-
tence structure, mode of enunciation, focus and contrast [1],
as well as paralinguistic information, such as gender, age,
emotions, and physiological state [2]. Because of this prosody
is crucial in speech technology systems, especially in Text to
Speech synthesis where it is necessary for generating natural
speech output, but also in Automatic Speech Recognition of
tonal languages. The importance of integrating prosody has
been emphasized with the shift of scientific focus on the
areas of Speech Emotion Recognition [3], emotional speech
synthesis [4], and emphatic human-machine dialogue systems.

To facilitate its integration, various models have been
developed for the different dimensions of prosody [5], most
of them for modelling intonation. The intonation models have
largely followed two general approaches: 1) modelling the
pitch contour directly, and 2) modelling the underlying mech-
anisms, i.e. the physiology of pitch production. The former
approach comprises a plethora of models, including ToBI [6],
INSINT [7], Tilt [8], General Superpositional Model of Into-
nation [9], and SFC [10]. The physiological models differ from
the surface models in that they directly or indirectly incorpo-
rate physiological constrains in the modelling process. These
models include StemML [11] and qTA [12], as well as the
most famous Fujisaki Command-Response (CR) model [13],

which goes far into trying to model the pitch contour through
the underlying laryngeal muscle activations [14].

In sharp contrast to the numerous intonation models, there
have been only a few models for modelling duration and en-
ergy. These include the Klatt [15] and Sums-of-Products [16]
duration models, and the functional data analysis (FDA) [17]
and Legendre polynomials [18] based approaches to modelling
the energy contour. Finally, an interesting approach was taken
by Ward [19], who used Principal Component Analysis (PCA)
to jointly model all the dimensions of prosody to extract
underlying prosodic patterns.

Since almost all of the aforementioned models are designed
for modelling a single dimension of prosody, practical systems
must rely on different models for the different aspects of
prosody. This can potentially raise inter-model compatibility
issues, and could ultimately lead to a loss of interdimensional
information. Moreover, some of the models are inherently
ambiguous, e.g. ToBI [6], introducing errors in the analysis.
Finally, most of the models, except the physiological intonation
models, are distanced from the human process, reducing their
usability in inferring higher levels of meaning from prosody.
These problems have given rise to the trend of abandoning
prosody models all together, and relying on machine learning
algorithms trained for a specific task on “raw” prosody fea-
tures [20]. However practical, this approach precludes a deeper
understanding of the inner workings of prosody [19].

In this paper, we are proposing an integrated prosody
modelling framework that we call a Unified Prosody Model
(UPM). The model is based on an atom decomposition al-
gorithm and draws on the physiology of prosody production,
making it inherently language independent. The UPM is based
on our work on a generalized CR intonation model and the
Weighted Correlation based Atom Decomposition (WCAD)
algorithm [21], [22], which offer improved consistency and
physiological plausibility, as well as comparable performance
to the standard CR model. We have previously extended the
atom decomposition approach towards modelling the energy
contour [23], and in this paper, we further this extension
towards creating a unified modelling framework for prosody.
This unified modelling framework is advantageous in fields
relying on the multidimensional analysis of prosody, because
it allows for a consistent framework of describing the different
dimensions of prosody.



As an example case-study we have chosen the task of
emphasis detection, which is gaining importance because of
its use in speech-to-speech translation systems and human-
machine dialogue systems. We have chosen this task on the
merit that emphasis has been shown to be indicated by all of
the dimensions of prosody [24]: intonation [25], energy [26],
[271], [28], and duration [29]. The results show that our UPM
is a good foundation for building a state-of-the-art emphasis
detection algorithm.

II. INTEGRATED PROSODY MODEL

The UPM is based on the decomposition of the three
prosody contours into a set of elementary gamma distribution
based atoms. The decomposition process of the UPM is based
on a matching pursuit framework [30] and comprises two
general steps: 1) extract a global phrase atom, and 2) iteratively
extract smaller local atoms. The phrase atom has a different
physiological interpretation for each of the dimensions of
prosody.

The elementary atoms (1) are designed to capture the phys-
iological muscle response to an elementary impulse excitation,
i.e. a muscle twitch. The gamma distribution used to generate
them is a higher order generalization of the 2" order spring-
mass-damper system used in the standard CR model [14], [31].
This is physiologically plausible when using more complex
muscle models, based on the 3™ order Hill model [32], such
as our recently proposed agonist-antagonist pitch production
(A2P2) model [33].
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The UPM atom decomposition is outlined in Algorithm 1.!
During initialization the algorithm extracts: a continuous pitch
estimate fy [34], the energy e, the syllable duration as a zgore,
the probability of voicing (POV) p [34] used to calculate a
weighting function w, and the start ¢; and end ¢, of phonation.
For each of the three prosody contours ¢ a phrase atom @pprase
is extracted by selecting the atom that maximizes a chosen
cost function within a range determined using ts; and t..
The amplitude of the atom is then calculated using standard
correlation, and is subtracted from c to obtain cgisr. Next, local
atoms ajocy are iteratively extracted from cgifr using the cost
function. Each new atom’s amplitude is again calculated using
the standard correlation and is subtracted from cg;¢r. Local atom
extraction ends when either the amplitude of the atoms goes
below a set threshold.

An example UPM decomposition is shown in Fig. 1. The
top plot shows the audio signal waveform with the annotations
in IPA, the 2" shows the pitch contour and the corresponding
pitch phrase atom, with the 3™ showing the extracted pitch
local atoms. The 4" and 5" plot show the energy contour and
the phrase and local atoms. Finally, the bottom two plots show
the duration contour and the extracted atoms.

Algorithm 1 Integrated Prosody Model atom decomposition.

1: procedure UPM ATOM DECOMPOSITION
Extract prosody = [fo, €, Zscore)

3 Extract p, calculate w = e - p

4 Extract ts and t. of phonation

5 for c in prosody do

6: EXtract aphrase Using cost()

7

8

9

Calculate apprase amplitude using corr()
Cdiff = C — Gphrase

: repeat
10: Extract ajoca using cost()
11: Calculate ayc, amplitude using corr()
12: Cdiff = Cdiff — Qlocal
13: until maz(apca) < Qhresh
14: end

A. Modelling intonation

The decomposition of the pitch contour is entirely based
on our WCAD? algorithm [22]. The decomposition of the
pitch contour takes place in the log fo domain, and it differs
from the decomposition of the energy and duration contours in
that it uses the weighted correlation (WCORR) (2) calculated
using the weight w, as a cost function due to its perceptual
significance [35]. Here f is the reference pitch contour, fj is
the modelled one.
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The phrase atom in the pitch contour corresponds to the global
component of the subglottal pressure Py, which decreases in
the process of phonation, gradually lowering the pitch [36].
Due to the lack of the rise portion of this global component, its
fall is only modelled. This is done by placing the maximum of
the atom kernel (1) at the start of phonation ¢, and finding the
6y that maximizes the WCORR within the range ¢, to t. —toir,
where tq is an offset introduced to eliminate possible phrase
final accents from the analysis.

@)

B. Modelling energy

The decomposition of the energy contour follows the
general UPM algorithm, with some differences [23]. Since the
global component of the energy contour is also due to fall
in Py, the extracted pitch phrase atom, is used to scale the
energy contour. The extracted energy phrase atom is used to
scale the energy contour using (3), which normalizes, inverts
and adds a DC offset to it [23]. In this way the energy contour
towards the end of phonation is amplified, while maintaining
its original values near the start of phonation, as seen in the 3rd
plot of Fig. 1. This approach has been chosen over reducing
the starting energy levels in order to keep the energy contour
above 0. The scaled energy contour eg,eq is then decomposed
iteratively using the standard correlation as a cost function.

Gphrase

€scaled = € * (1 -+ 1> 3
max (aphrase)

'The UPM implementation code is available on

https://github.com/dipteam/upm

gitHub  at

2The WCAD implementation code is available

https://github.com/dipteam/wcad

on gitHub at
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Fig. 1. Example UPM decomposition of the utterance: “The damage caused by the earthquake is being estimated by forty teams.”

C. Modelling duration

The duration contour modelled with the UPM is repre-
sented by a step function whose amplitude for each syllable
is equal to the z-score of its duration [29]. The z-score is
calculated by summing the z-scores for each of the phones
constituting the syllable according to (4). Here P is the number
of phones in the syllable, z; are their z-scores, ¢; is the duration
of the i phone, y; its average duration, and o; the standard
deviation of its duration.
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The global component of the duration contour is marked by a
phrase final rise corresponding to the phrase final lengthening
of the last syllables [37]. This lengthening is due to the
relaxation of the articulators at the end of the utterance which
effects the slowing down of their dynamics, and thus increasing
the duration of articulation. Since this phenomenon differs
from the one governing the phrase component in the pitch and
energy contours, its extraction is done independently by fitting
the fall part of the gamma kernel, which was mirrored left-to-
right. Similar to the phrase atom extraction from the pitch
contour, the location of the atom’s maximum is fixed to the
end of phonation ¢. and the 6 is selected that maximizes the
cost function, which for the duration contour is the correlation
function. An example of this can be seen in the 6™ plot in
Fig. 1.

III. EMPHASIS DETECTION

The communication of emphasis in the speech signal can
rely on using any or all of the dimensions of prosody. In this

sense the integrated modelling framework offered by the UPM
is well suited for the task of automatic emphasis detection. An
example of this is shown in Fig. 2, where the duration atoms
point to which of the energy atoms correspond to emphasis.
Our hypothesis is that the UPM will be able to capture the
increased prosodic effort speakers make when they want to
emphasise a word through the increased dynamics in the atom
amplitudes.

A. Experiments

To assess the usability of UPM for the task of emphasis
detection we will use a subset of the English part of the
multilingual SP2 Speech Corpus® [38] created under the SP2
project [39]. The subset comprises 4 sets of 10 utterances from
the English speaker which have deliberately placed emphasis:

A. Emphasis on one word in the utterances,
B. Emphasis at the start of the utterances,
C. Contrastive emphasis, and

D. Contrastive emphasis in a question.

This amounted to 381 words in total of which 66, or 17%
were emphasised. For the analysis we first use the UPM to
decompose the prosody of these 40 utterances into elementary
atoms. Then we construct a feature vector using the maximum
atom amplitudes for each dimension of prosody per word.
We feed the feature vectors to a logistic regression machine
learning algorithm. For estimating the classifier performance
we use a 5-fold cross-validation assessment, in which the data
is randomly divided into 5 subsets, of which repeatedly one is

3The SP2 Speech Corpus can be downloaded from https:/github.com/
SP2-Consortium/SP2- Speech-Corpus
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Fig. 2.  Example UPM decomposition for the purpose of emphasis detection for an utterance with contrastive emphasis: “Since he cannot buy it, hes going to

rent it.”

used for testing and the others for training, giving a 20/80%
test/train ratio.

B. Results

The distribution of the atom amplitude feature vectors is
shown in Fig. 3, where emphasised words are marked yellow,
and non-emphasised word violet. We can see that although
there is a large amount of overlap, the atom amplitudes of the
emphasised words have a significantly larger variance, as was
hypothesised. The average accuracy was calculated using A 5,
where g are the predicted values, and y are the true values. The
accuracy of the classifier assessed for a 5-fold cross-validation
on the whole dataset was 0.92 £0.03%. On the other hand,
the same analysis the corresponding values for the precision 6
and recall 7 are 0.87 £0.14% and 0.66 £0.19%, respectively,
where T'P are the correctly detected “true” positives, F'P
are the falsely detected positives, and P is the total number
of positives in the data. This performance of the classifier
can be seen in the precision-recall curve for varying decision
thresholds in Fig. 4.
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For comparison the state-of-the-art results of our previous
algorithm that relied solely on the atom decomposition of the

Fig. 3.  Distribution of the maximum atom amplitudes for each of the
381 emphasised (yellow) and non-emphasised (violet) words used in the
experiments for each dimension of prosody.

energy contour [23], and which was based on an adaptation
of an approach based on probabilistic amplitude demodulation
(PAD) [28], gave a precision and recall of 0.8, 0.8 and 1, 1,
however only on a subsets A and B from the data, and by
detecting a single emphasis per utterance.
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Fig. 4.  Precision-recall curve for the logistic regression classifier.

IV. CONCLUSIONS

The proposed Unified Prosody Model is an integrated
framework for the analysis of the phenomenon of prosody in
all three of its dimensions. It uses a matching pursuit approach
to first extract a global phrase atom from each of the three
contours, and then to decompose them into local elementary
atoms. The approach draws on the physiology of prosody
production, and is thus inherently language independent. The
integrated approach to prosody analysis is advantageous in that
it facilitates the analysis of the three dimensions of prosody in
a consistent way. We have shown the usefulness of the model
for the task of emphasis detection, in which our UPM captured
the hypothesised increased variability in the emphasised words.

A logistic regression classifier was trained using simple
features extracted from the output of our UPM. The classifier
showed high accuracy in its performance, but failed to show
good precision and recall. It can, however, predict any number
of emphasised words in the utterance, not just one. In this re-
gard it outperforms previous state-of-the-art approaches. These
proof-of-concept results are promising, and more advanced
algorithms for emphasis detection should be explored based
on the proposed UPM. Moreover, we believe that the UPM
will be useful for advancing any field of speech research that
relies on the analysis of prosody.
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