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Abstract

In our recent work, a novel speech synthesis with enhanced
prosody (SSEP) system using probabilistic amplitude demodu-
lation (PAD) features was introduced. These features were used
to improve prosody in speech synthesis. The PAD was applied
iteratively for generating syllable and stress amplitude modula-
tions in a cascade manner. The PAD features were used as a
secondary input scheme along with the standard text-based in-
put features in deep neural network (DNN) speech synthesis.
Objective and subjective evaluation validated the improvement
of the quality of the synthesized speech.

In this paper, a spectral amplitude modulation phase hi-
erarchy (S-AMPH) technique is used in a similar to the PAD
speech synthesis scheme, way. Instead of the two modulations
used in PAD case, three modulations, i.e., stress-, syllable- and
phoneme-level ones (2, 5 and 20 Hz respectively) are imple-
mented with the S-AMPH model. The objective evaluation has
shown that the proposed system using the S-AMPH features im-
proved synthetic speech quality in respect to the system using
the PAD features; in terms of relative reduction in mel-cepstral
distortion (MCD) by approximately 9% and in terms of relative
reduction in root mean square error (RMSE) of the fundamen-
tal frequency (FO) by approximately 25%. Multi-task training is
also investigated in this work, giving no statistically significant
improvements.

Index Terms: spectral amplitude modulation phase hierarchy,
probabilistic amplitude demodulation, speech synthesis, deep
neural networks, speech prosody

1. Introduction

In human-to-human communication, through speech, the
speaker conveys information on different levels i.e., linguis-
tic (e.g. phonetic and phonological information), paralinguis-
tic (e.g. speaking style or emotions of the speaker) and ex-
tralinguistic levels (e.g. socio-geographical background of the
speaker). Prosody is related to all of these levels and varies de-
pending on the message that is desired to be conveyed to the
listener [1]. In acoustic terms, prosody is mainly composed by
three aspects, i.e., the fundamental frequency, duration of pho-
netic units and intensity [2, 3]. Since the properties of prosodic
features are units of speech larger than segments, prosody is
related not only to segmental-level information, but also to the
suprasegmental one. Consequently, the correlation of segmental
and suprasegmental information levels becomes very important
in prosody modelling. Robust modelling of prosody is essential
since very often changing prosody could even change the under-
lying meaning of the message [4]. This makes it very important
not only for text-to-speech (TTS) synthesis systems and related
applications but also for broader applications such as speech-to-

speech translation (S2ST), where prosody becomes a part of the
essential information that needs to be analysed (in the source
language), transferred to the target language and synthesized.

A speech signal conveys information on different time-
scales. Traditionally, sequential speech processing suggests the
segmental and suprasegmental time-scales be used for differ-
ent models of interest, such as for the acoustic and prosodic
modelling. Different time-scales have often been treated inde-
pendently in the past. However, we can hypothesise that they
are related, and that this relation is important also for prosody
modelling.

Over the last decades, an increasing interest can be ob-
served in the literature, concerning the spectro-temporal struc-
ture of the speech signal and its correlation to the phonologi-
cal structure of language and speech perception [5, 6, 7]. In
research related to children with impaired phonological devel-
opment, in several languages [8, 9, 10], reduced sensitivity to
the amplitude demodulation structure of acoustic signals was
observed across languages. This led to the conclusion of the
existence of correlation between the extraction of information
about phonological structure and the energy patterns of the am-
plitude envelope. Nonetheless, it remains unclear which mod-
ulations (time-scales) are the most important relating acoustic
with phonological information. Investigating this issue, Leong
and Goswami [11] studied how acoustic spectro-temporal struc-
ture is related to the linguistic phonological structure of speech,
using amplitude demodulation in three time-scales, i.e, prosodic
stress, syllable and onset-rime unit (phonemes) levels.

In our recent work [12], the probabilistic amplitude demod-
ulation (PAD) approach [13] was used in a novel speech syn-
thesis with enhanced prosody (SSEP) system. An attempt was
made to investigate the importance of PAD features used as ad-
ditional input feature scheme in DNN-based speech synthesis.
The PAD method is noise robust and allows the algorithm to
be steered using a-priori knowledge of modulation time-scales,
i.e., the user can specify the prosodic tiers — stress, sylla-
bles, and utterance — to be analysed. Furthermore, as an an-
alytic model, it is assumed to be language independent. The
PAD method can be used iteratively to get progressively slower
prosodic tiers. In our case, two level amplitude demodulation
was performed. A first demodulation was performed with a
syllable-level modulation where an average syllable duration in
samples was used as parameter. The resulting syllable envelope
was used as input signal for progressively slower demodulation
at the stress level, to generate a stress envelope. Our hypothesis,
that the PAD features would be able to capture this correlation
and would be beneficial in speech synthesis, was validated [12].

In this work the PAD scheme is replaced by the spectral am-
plitude modulation phase hierarchy (S-AMPH) [11] approach
for improving speech synthesis. An attempt is made to inves-
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tigate the importance of S-AMPH features used as additional
input feature scheme in DNN-based speech synthesis. Three
level amplitude demodulation is performed in this work. The
stress-level demodulation, to generate a stress envelope (2 Hz
amplitude modulation). The syllable-level modulation where an
average syllable duration in samples is used as parameter (5 Hz
amplitude modulation). Finally, phoneme-level demodulation
1s performed (20 Hz amplitude modulation). The motivation
behind this attempt is to capture the relation between segmental
and suprasegmental levels, using the S-AMPH technique. We
hypothesize that the S-AMPH features are able to capture this
correlation and are going to be beneficial in speech synthesis.
Furthermore, the additional phoneme-level information is ex-
pected to play a significant role.

The remainder of the paper is organized as follows. In Sec-
tion 2, the proposed speech synthesis scheme is presented. The
system is described in Section 3. In Section 4, the objective and
subjective evaluation are presented. Finally the conclusions are
given in Section 5.

2. Spectral amplitude modulation phase
hierarchy

2.1. Spectral amplitude modulation phase hierarchy model

The boundaries for a parsimonious spectral filterbank are iden-
tified using the principal component analysis (PCA) proce-
dure [14]. This dimensionality reduction in the frequency do-
main spanning 100-7250 Hz resulted into the top 5 components
contributing the highest amount of variance individually, and
cumulatively accounted for 65% of the total variance. The spec-
tral bands were then identified from the rectified component
loading patterns, resulting into the filterbank edges of 100, 300,
700, 1750, 3900 and 7250 Hz. Thus, 5 spectral bands were
identified in the spectral dimensionality reduction process.

A similar statistical approach was used to identify modula-
tion rate bands [14]. The speech samples were first spectrally-
filtered into 5 spectral bands. The Hilbert envelope was then ob-
tained for each spectral band, and this envelope was further fil-
tered into 24 logarithmically-spaced between 0.9-40 Hz modu-
lation rate channels to give a high-dimensional 5 (spectral band)
x 24 (modulation rate) channel representation for each speech
sample. The aim of the PCA procedure was to reduce this large
number of 24 modulation channels into a smaller number of
non-redundant modulation rate bands. A descriptive analysis
suggested that the entire modulation rate spectrum may be use-
fully divided into 3 regions: a narrow syllabic rate band at about
4 Hz, a band of slower modulations below 4 Hz that could corre-
spond to the prosodic stress patterns, and a band of faster mod-
ulations above 4 Hz. Thus, only the top 3 principal components
of the modulation rate PCA procedure, accounting cumulatively
for 60-80% of the total variance, are used for the S-AMPH fea-
tures. The identification of 3 major modulation rate bands or
modulation time-scales fits well with theoretical proposals re-
garding the typical time-scales of 3 major phonological units in
speech: stress pattern (about 2 Hz), syllables (about 5 Hz) and
onset-rimes/phonemes (about 20 Hz) [11].

In this work, the Matlab implementation of the S-AMPH
feature extraction taken from S6 Appendix of [11] is used. Fig-
ure 1 shows a scheme of the feature extraction process. In Fig-
ure 2 the S-AMPH stress-, syllable- and phoneme-level mod-
ulations are shown for the utterance it's generally a frog or a
worm.

Figure 1: Three-level spectral amplitude modulation phase hi-
erarchy scheme; stress-level, syllable-level and phoneme-level
modulations.

2.2. Speech synthesis scheme

In this subsection, initially, the DNN-based speech synthesis
framework, which follows the framework of [15, 16], and con-
stitutes the baseline system in our experiments (see Section 3)
is described and consequently the proposed speech synthesis
scheme is presented.

2.2.1. DNN-based speech synthesis framework

A DNN is a feed-forward artificial neural network with multi-
ple hidden layers between the input and output layers, creating
a mapping function between the input (i.e. linguistic features)
vector and the output (i.e. acoustic features) vector. In the train-
ing phase, the input text is processed and transformed into la-
bels, which contain linguistic features in an appropriate format
for training the DNN:s, i.e., containing binary and numerical fea-
tures. Back-propagation is used for training the DNN using the
input and output data.

The text corresponding to each audio file has to be con-
verted into a sequence of labels suitable for DNN training. A
conventional and freely available TTS front-end was used for
this [17]. The text is turned into a sequence of labels (text-
based labels), which contain segmental information and rich
contextual parameters such as lexical stress and relative posi-
tion within syllables, phrases or sentences. The standard “full”
labels generated by the scripts, i.e. quinphone segmental infor-
mation, and a large number of categorical, numeric, or binary
linguistic and prosodic information, was used [18]. These la-
bels were aligned with the speech signal through a phone-based
forced alignment procedure, using the Kaldi toolkit [19]. The
models for the alignment were trained on the training plus de-
velopment sets, and state-level labels force-aligned to acoustic
frame boundaries were generated for the training, development
and evaluation sets.

Concerning the output features, the STRAIGHT [20]
vocoder was used for the acoustic analysis and feature extrac-
tion, essentially using the default settings from the EMIME [21]
scripts: 25ms frame window, 5ms frame shift, STRAIGHT
Mel-cepstral analysis with 40 coefficients, single FO value,
and 21 coefficients for band aperiodic energy, extracted by the
STRAIGHT vocoder. For each acoustic feature, derivatives of
first and second order are added. The overall acoustic vector
dimension is 186.

A slightly modified version of the Kaldi toolkit for the DNN
training was used. An automatic procedure was used to con-
vert the labels into numeric values: the categorical data (such as
segmental information) was turned into arrays of binary values,
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Figure 2: The S-AMPH stress-, syllable- and phoneme-level modulations for the five spectral bands of the utterance “it’s generally a

frog or a worm”.

while the numerical and binary data was preserved.

Since training requires a frame-level mapping between in-
put labels and acoustic features, the segment-based labels have
to be sampled so that we have an input label per acoustic frame.
The DNN system was trained using the state position within the
phone as categorical data, plus using two position features, i.e.
numeric values corresponding to the frame position within the
current state, and to the frame position within the current seg-
ment, plus the standard “full” labels (i.e. a total of 403 input
features). Furthermore it should be noted that the input (label)
data was normalized globally so that each component had val-
ues between 0.01 and 0.99. The output (acoustic) data was fur-
ther normalized for each component to be of zero mean and unit
variance; the output activation function was a sigmoid.

Unlike other approaches (such as those of Zen et al. [15] or
Qian et al. [22]), we did not remove silent frames from the train-
ing. The training procedure was standard: we used a stochastic
gradient descent based on back propagation. The minimisation
criterion was the Mean Square Error (MSE). The training was
run on the training set, and we used the development set for
cross-validation.

In the synthesis phase, the input text is processed by the
same front-end as in the training phase, creating the input vec-
tors and the trained DNN is used in a forward-propagation man-
ner for mapping them to output vectors. The aligned label
files from the evaluation set were used for synthesis. Synthesis
was performed doing a forward pass through the network, fol-
lowed by acoustic trajectory smoothing [23], through applying
the “mlpg” tool from SPTK [24] and global variance computed
on each acoustic component. This was followed by resynthesis
using the STRAIGHT vocoder.
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2.2.2. S-AMPH speech synthesis framework

In Figure 3, the proposed speech synthesis with S-AMPH fea-
ture scheme is shown.

During the training phase, in parallel with the baseline
scheme, the S-AMPH scheme is used to extract the S-AMPH
features. These features are combined, on frame-level, with
the text-based features and used as the input features for the
DNN. The output features remain the same as in the baseline
system described above. During the synthesis phase, both the
text-based and the S-AMPH features are extracted in the same
way as in the training phase.

Since in a real scenario, during the synthesis phase, the
speech signal is not available, in order to extract the S-AMPH
features, these features need to be predicted from text. Alter-
natively, this scheme could be used in a S2ST scenario. In this
case the S-AMPH features would be extracted from the source
speaker in the source language, be transformed/adapted to the
target speaker and language and consequently be used in the
proposed speech synthesis scheme.

3. System
3.1. Database

For the experiments the blizzard-challenge-2008 [25, 26]
database was used. The speaker is known as “Roger” and is
a native UK English male speaker. The database consists of
15 hours of data, corresponding to approximately 9.6k utter-
ances. For our experiments a subset of the database was used,
composed of the “carroll”, “arctic”” and the three news sets (i.e.,
“theherald 1,2,3”). The total number of utterances of this subset
was approximately 4.8k corresponding to 7.5 hours of speech.
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Figure 3: Speech synthesis scheme.

This subset was split in a training set of 4273 utterances, a de-
velopment set of 335 utterances and an evaluation set of 158
utterances. The sampling frequency of the audio is 16 kHz.

3.2. DNN-based speech synthesis setup

The DNNs were built implementing various combinations of
the number of hidden layers (i.e. from 4 to 6 hidden layers),
and nodes (i.e. 1000 and 2000 nodes) in each layer. Each layer
comprised an affine component followed by a sigmoid activa-
tion function. Based on the development set, the best perfor-
mance in respect to mel-cepstral distortion (MCD) [27] and root
mean square error (RMSE) of the FO was achieved by the DNN
system composed of 4 hidden layers and 2000 units per layer.

3.3. PAD features setup

For the extraction of the PAD features, a frame window of 25
ms and a frame shift of 5 ms were used. The default (not cal-
culated based on the specific speaker) syllable frequency of 5
Hz was selected. The two PAD features were combined with
the frame-level text-based input features as described in [12].
Furthermore, 16 neighbouring frames (8 previous and 8 next),
were used for PAD features. This parameter was not used in
our previous work [12], and it further improves the SSEP sys-
tem performance.

3.4. S-AMPH features setup

Five-spectral band filtered signal with Hilbert envelopes from
each spectral band overlaid was used in S-AMPH model:

* 100-300 Hz
* 300-700 Hz

» 700-1750 Hz
» 1750-3900 Hz
» 3900-7250 Hz

Three modulation rate bands (Stress, Syllable & Phoneme) are
extracted from each of the envelopes in the 5 spectral bands:

* Stress-level: 2 Hz
* Syllable-level: 5 Hz
¢ Phoneme-level: 20 Hz

Furthermore, 10 neighbouring frames (5 previous and 5 next),
were used for S-AMPH features.

4. Experiments

To validate our hypothesis, that the S-AMPH features will be
beneficial, and further improve the quality of synthetic speech
in respect to the baseline and to the SSEP system, objective and
subjective evaluation was performed.

4.1. Objective evaluation

The MCD between original and synthesized samples is used
as an objective metric to compare the three systems. Higher
MCD values indicate lower speech quality of the synthesized
speech samples. Additionally for evaluating the three systems
in respect to prosody modelling, the RMSE of FO was calculated
for each system. These results are presented in Table 1.

Table 1: MCD in dB and RMSE of FO in Hz for the baseline and
SSEP and the S-AMPH systems on the evaluation set.

| System H # of neighbouring frames ‘ MCD (dB) ‘ FO (Hz) ‘
Baseline 0 3.938 19.096
SSEP 0 3912 18.208
SSEP 16 3.872 17.546
S-AMPH 0 3.744 15.298
S-AMPH 10 3.569 13.602

As can be seen from the results, the reduction in MCD of
the SSEP (using neighbouring frames) system over the base-
line one is very small, i.e, approximately 1.7% relative improve-
ment. Nonetheless, the reduction of RMSE of FO of the SSEP
(using neighbouring frames) system over the baseline one is ap-
proximately 8.1%, showing a small but clear relative improve-
ment in respect to prosody modelling. The results are statisti-
cally significant (p < 0.05). Furthermore, the speech synthe-
sis system based on S-AMPH features (without neighbouring
frames) system is clearly outperforming the SSEP system by
8.8% and 25.3% relative improvement in MCD and RMSE of
FO respectively.

Finally, an attempt was also made to use these features in a
multi-task training scheme in the DNN-based speech synthesis
scheme. Multi-task training has been recently used in speech
synthesis [28, 29, 30], for improving the quality of synthetic
speech; not always achieving significant improvement. In our
case, when multi-task training was used in either case, i.e., us-
ing PAD or S-AMPH features, the improvement shown in the
objective evaluation measurements was not significant. Further
investigation is needed.

37



A. Lazaridis, M. Cernak, P. Honnet, P.N. Garner

38

4.2. Subjective evaluation

To further validate our hypothesis and evaluate whether the im-
provement shown in the objective measurements is perceivable
by humans, a subjective evaluation ABX test was performed.
The ABX test was performed only between the baseline and
the SSEP system without using neighbouring frames. These
two systems were selected since the SSEP system showed the
smallest improvement with respect to the baseline system.

We employed a 3-point scale ABX subjective evaluation lis-
tening test [31], suitable for comparing two different systems.
In this test, listeners were presented with pairs of samples pro-
duced by two systems (A and B) and for each pair they were
indicating their preference for A, B, or both samples sound the
same (X). The material for the test consisted of 15 pairs of sen-
tences such that one member of the pair was generated using
the baseline DNN speech synthesis (system A) and the other
member was generated using the proposed SSEP system (sys-
tem B). Random utterances from the evaluation set were used.
27 listeners (native and non-native English) participated in the
ABX test. The subjects were presented with pairs of sentences
in a random order with no indication of which system they were
represented with. They were asked to listen to these pairs of
sentences (as many times as they wanted), and choose between
them in terms of their overall quality. Additionally, the option
X, i.e. both samples sound the same, was available if they had
no preference for either of them.

As can be seen in Figure 4, the SSEP system clearly outper-
forms the baseline one, achieving double preference score, i.e.,
38.6% over 19.5% respectively. In addition the both samples
sound the same (“Equal”) choice achieved a 41.9%.

Baseline mEqual = SSEP

Figure 4: Subjective evaluation ABX test results (in %) of the
baseline and SSEP systems.

38.6%

Furthermore, it should be pointed out that, according to
the feedback from many of the listeners, bigger differences in
prosody between the audio pairs was perceived, when the vari-
ations in prosody were bigger. This confirms our hypothesis,
that the contribution of PAD and S-AMPH features, when using
more expressive and emotional speech, will be bigger.

5. Conclusions and future work

The spectral amplitude modulation phase hierarchy (S-AMPH)
technique was used in this paper for improving speech synthe-
sis. The hypothesis that the information which exists in different
time-scales of a speech signal and the correlation among these
time-scales, would be captured by the S-AMPH features and
learned by the DNNs for improving synthetic speech, was vali-
dated. The evaluation showed improvement in synthetic speech
quality; in terms of relative reduction in mel-cepstral distortion
(MCD) by approximately 9% and in terms of relative reduction
in root mean square error (RMSE) of the fundamental frequency
(FO) by approximately 25%. Multi-task training was also inves-
tigated in this work, giving no significant improvements.

It should be pointed out that, since the database used in
these experiments consists of read speech, where prosody vari-
ations are constrained due to the strict speaking style, it is ex-
pected that the importance of both the PAD and the S-AMPH

features, when more expressive or emotional speech (e.g. au-
diobooks) is used, will be substantially bigger.

As future work we intend to also subjectively evaluate
the new proposed system using S-AMPH features and neigh-
bouring frames, which has shown the highest performance.
Nonetheless, due to the large reduction in the errors in respect
to all the other systems, it is expected that the same trend will
be seen in this subjective test.

Furthermore, the authors are interested in investigating
ways to predict these features from text for evaluating whether
these features could be beneficial also in text-to-speech synthe-
sis. Finally, using this technique in speech-to-speech transla-
tion, transferring these features from the source speaker (in the
source language), to the target speaker (in another language), is
another very interesting path which will be investigated.
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