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Abstract

In our recent work, a novel speech synthesis with enhanced

prosody (SSEP) system using probabilistic amplitude demodu-

lation (PAD) features was introduced. These features were used

to improve prosody in speech synthesis. The PAD was applied

iteratively for generating syllable and stress amplitude modula-

tions in a cascade manner. The PAD features were used as a

secondary input scheme along with the standard text-based in-

put features in deep neural network (DNN) speech synthesis.

Objective and subjective evaluation validated the improvement

of the quality of the synthesized speech.

In this paper, a spectral amplitude modulation phase hi-

erarchy (S-AMPH) technique is used in a similar to the PAD

speech synthesis scheme, way. Instead of the two modulations

used in PAD case, three modulations, i.e., stress-, syllable- and

phoneme-level ones (2, 5 and 20 Hz respectively) are imple-

mented with the S-AMPH model. The objective evaluation has

shown that the proposed system using the S-AMPH features im-

proved synthetic speech quality in respect to the system using

the PAD features; in terms of relative reduction in mel-cepstral

distortion (MCD) by approximately 9% and in terms of relative

reduction in root mean square error (RMSE) of the fundamen-

tal frequency (F0) by approximately 25%. Multi-task training is

also investigated in this work, giving no statistically significant

improvements.

Index Terms: spectral amplitude modulation phase hierarchy,

probabilistic amplitude demodulation, speech synthesis, deep

neural networks, speech prosody

1. Introduction

In human-to-human communication, through speech, the

speaker conveys information on different levels i.e., linguis-

tic (e.g. phonetic and phonological information), paralinguis-

tic (e.g. speaking style or emotions of the speaker) and ex-

tralinguistic levels (e.g. socio-geographical background of the

speaker). Prosody is related to all of these levels and varies de-

pending on the message that is desired to be conveyed to the

listener [1]. In acoustic terms, prosody is mainly composed by

three aspects, i.e., the fundamental frequency, duration of pho-

netic units and intensity [2, 3]. Since the properties of prosodic

features are units of speech larger than segments, prosody is

related not only to segmental-level information, but also to the

suprasegmental one. Consequently, the correlation of segmental

and suprasegmental information levels becomes very important

in prosody modelling. Robust modelling of prosody is essential

since very often changing prosody could even change the under-

lying meaning of the message [4]. This makes it very important

not only for text-to-speech (TTS) synthesis systems and related

applications but also for broader applications such as speech-to-

speech translation (S2ST), where prosody becomes a part of the

essential information that needs to be analysed (in the source

language), transferred to the target language and synthesized.

A speech signal conveys information on different time-

scales. Traditionally, sequential speech processing suggests the

segmental and suprasegmental time-scales be used for differ-

ent models of interest, such as for the acoustic and prosodic

modelling. Different time-scales have often been treated inde-

pendently in the past. However, we can hypothesise that they

are related, and that this relation is important also for prosody

modelling.

Over the last decades, an increasing interest can be ob-

served in the literature, concerning the spectro-temporal struc-

ture of the speech signal and its correlation to the phonologi-

cal structure of language and speech perception [5, 6, 7]. In

research related to children with impaired phonological devel-

opment, in several languages [8, 9, 10], reduced sensitivity to

the amplitude demodulation structure of acoustic signals was

observed across languages. This led to the conclusion of the

existence of correlation between the extraction of information

about phonological structure and the energy patterns of the am-

plitude envelope. Nonetheless, it remains unclear which mod-

ulations (time-scales) are the most important relating acoustic

with phonological information. Investigating this issue, Leong

and Goswami [11] studied how acoustic spectro-temporal struc-

ture is related to the linguistic phonological structure of speech,

using amplitude demodulation in three time-scales, i.e, prosodic

stress, syllable and onset-rime unit (phonemes) levels.

In our recent work [12], the probabilistic amplitude demod-

ulation (PAD) approach [13] was used in a novel speech syn-

thesis with enhanced prosody (SSEP) system. An attempt was

made to investigate the importance of PAD features used as ad-

ditional input feature scheme in DNN-based speech synthesis.

The PAD method is noise robust and allows the algorithm to

be steered using a-priori knowledge of modulation time-scales,

i.e., the user can specify the prosodic tiers — stress, sylla-

bles, and utterance — to be analysed. Furthermore, as an an-

alytic model, it is assumed to be language independent. The

PAD method can be used iteratively to get progressively slower

prosodic tiers. In our case, two level amplitude demodulation

was performed. A first demodulation was performed with a

syllable-level modulation where an average syllable duration in

samples was used as parameter. The resulting syllable envelope

was used as input signal for progressively slower demodulation

at the stress level, to generate a stress envelope. Our hypothesis,

that the PAD features would be able to capture this correlation

and would be beneficial in speech synthesis, was validated [12].

In this work the PAD scheme is replaced by the spectral am-

plitude modulation phase hierarchy (S-AMPH) [11] approach

for improving speech synthesis. An attempt is made to inves-
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Figure 2: The S-AMPH stress-, syllable- and phoneme-level modulations for the five spectral bands of the utterance “it’s generally a

frog or a worm”.

while the numerical and binary data was preserved.

Since training requires a frame-level mapping between in-

put labels and acoustic features, the segment-based labels have

to be sampled so that we have an input label per acoustic frame.

The DNN system was trained using the state position within the

phone as categorical data, plus using two position features, i.e.

numeric values corresponding to the frame position within the

current state, and to the frame position within the current seg-

ment, plus the standard “full” labels (i.e. a total of 403 input

features). Furthermore it should be noted that the input (label)

data was normalized globally so that each component had val-

ues between 0.01 and 0.99. The output (acoustic) data was fur-

ther normalized for each component to be of zero mean and unit

variance; the output activation function was a sigmoid.

Unlike other approaches (such as those of Zen et al. [15] or

Qian et al. [22]), we did not remove silent frames from the train-

ing. The training procedure was standard: we used a stochastic

gradient descent based on back propagation. The minimisation

criterion was the Mean Square Error (MSE). The training was

run on the training set, and we used the development set for

cross-validation.

In the synthesis phase, the input text is processed by the

same front-end as in the training phase, creating the input vec-

tors and the trained DNN is used in a forward-propagation man-

ner for mapping them to output vectors. The aligned label

files from the evaluation set were used for synthesis. Synthesis

was performed doing a forward pass through the network, fol-

lowed by acoustic trajectory smoothing [23], through applying

the “mlpg” tool from SPTK [24] and global variance computed

on each acoustic component. This was followed by resynthesis

using the STRAIGHT vocoder.

2.2.2. S-AMPH speech synthesis framework

In Figure 3, the proposed speech synthesis with S-AMPH fea-

ture scheme is shown.

During the training phase, in parallel with the baseline

scheme, the S-AMPH scheme is used to extract the S-AMPH

features. These features are combined, on frame-level, with

the text-based features and used as the input features for the

DNN. The output features remain the same as in the baseline

system described above. During the synthesis phase, both the

text-based and the S-AMPH features are extracted in the same

way as in the training phase.

Since in a real scenario, during the synthesis phase, the

speech signal is not available, in order to extract the S-AMPH

features, these features need to be predicted from text. Alter-

natively, this scheme could be used in a S2ST scenario. In this

case the S-AMPH features would be extracted from the source

speaker in the source language, be transformed/adapted to the

target speaker and language and consequently be used in the

proposed speech synthesis scheme.

3. System

3.1. Database

For the experiments the blizzard-challenge-2008 [25, 26]

database was used. The speaker is known as “Roger” and is

a native UK English male speaker. The database consists of

15 hours of data, corresponding to approximately 9.6k utter-

ances. For our experiments a subset of the database was used,

composed of the “carroll”, “arctic” and the three news sets (i.e.,

“theherald 1,2,3”). The total number of utterances of this subset

was approximately 4.8k corresponding to 7.5 hours of speech.
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4.2. Subjective evaluation

To further validate our hypothesis and evaluate whether the im-

provement shown in the objective measurements is perceivable

by humans, a subjective evaluation ABX test was performed.

The ABX test was performed only between the baseline and

the SSEP system without using neighbouring frames. These

two systems were selected since the SSEP system showed the

smallest improvement with respect to the baseline system.

We employed a 3-point scale ABX subjective evaluation lis-

tening test [31], suitable for comparing two different systems.

In this test, listeners were presented with pairs of samples pro-

duced by two systems (A and B) and for each pair they were

indicating their preference for A, B, or both samples sound the

same (X). The material for the test consisted of 15 pairs of sen-

tences such that one member of the pair was generated using

the baseline DNN speech synthesis (system A) and the other

member was generated using the proposed SSEP system (sys-

tem B). Random utterances from the evaluation set were used.

27 listeners (native and non-native English) participated in the

ABX test. The subjects were presented with pairs of sentences

in a random order with no indication of which system they were

represented with. They were asked to listen to these pairs of

sentences (as many times as they wanted), and choose between

them in terms of their overall quality. Additionally, the option

X, i.e. both samples sound the same, was available if they had

no preference for either of them.

As can be seen in Figure 4, the SSEP system clearly outper-

forms the baseline one, achieving double preference score, i.e.,

38.6% over 19.5% respectively. In addition the both samples

sound the same (“Equal”) choice achieved a 41.9%.
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Figure 4: Subjective evaluation ABX test results (in %) of the

baseline and SSEP systems.

Furthermore, it should be pointed out that, according to

the feedback from many of the listeners, bigger differences in

prosody between the audio pairs was perceived, when the vari-

ations in prosody were bigger. This confirms our hypothesis,

that the contribution of PAD and S-AMPH features, when using

more expressive and emotional speech, will be bigger.

5. Conclusions and future work

The spectral amplitude modulation phase hierarchy (S-AMPH)

technique was used in this paper for improving speech synthe-

sis. The hypothesis that the information which exists in different

time-scales of a speech signal and the correlation among these

time-scales, would be captured by the S-AMPH features and

learned by the DNNs for improving synthetic speech, was vali-

dated. The evaluation showed improvement in synthetic speech

quality; in terms of relative reduction in mel-cepstral distortion

(MCD) by approximately 9% and in terms of relative reduction

in root mean square error (RMSE) of the fundamental frequency

(F0) by approximately 25%. Multi-task training was also inves-

tigated in this work, giving no significant improvements.

It should be pointed out that, since the database used in

these experiments consists of read speech, where prosody vari-

ations are constrained due to the strict speaking style, it is ex-

pected that the importance of both the PAD and the S-AMPH

features, when more expressive or emotional speech (e.g. au-

diobooks) is used, will be substantially bigger.

As future work we intend to also subjectively evaluate

the new proposed system using S-AMPH features and neigh-

bouring frames, which has shown the highest performance.

Nonetheless, due to the large reduction in the errors in respect

to all the other systems, it is expected that the same trend will

be seen in this subjective test.

Furthermore, the authors are interested in investigating

ways to predict these features from text for evaluating whether

these features could be beneficial also in text-to-speech synthe-

sis. Finally, using this technique in speech-to-speech transla-

tion, transferring these features from the source speaker (in the

source language), to the target speaker (in another language), is

another very interesting path which will be investigated.
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