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Abstract

One of the primary steps in building automatic speech recognition (ASR) and
text-to-speech systems is the development of a phonemic lexicon that provides
a mapping between each word and its pronunciation as a sequence of phonemes.
Phoneme lexicons can be developed by humans through use of linguistic knowl-
edge, however, this would be a costly and time-consuming task. To facilitate
this process, grapheme-to-phoneme conversion (G2P) techniques are used in
which, given an initial phoneme lexicon, the relationship between graphemes
and phonemes is learned through data-driven methods. This article presents
a novel G2P formalism which learns the grapheme-to-phoneme relationship
through acoustic data and potentially relaxes the need for an initial phone-
mic lexicon in the target language. The formalism involves a training part
followed by an inference part. In the training part, the grapheme-to-phoneme
relationship is captured in a probabilistic lexical modeling framework. In this
framework, a hidden Markov model (HMM) is trained in which each HMM
state representing a grapheme is parameterized by a categorical distribution
of phonemes. Then in the inference part, given the orthographic transcription
of the word and the learned HMM, the most probable sequence of phonemes
is inferred. In this article, we show that the recently proposed acoustic G2P
approach in the Kullback-Leibler divergence-based HMM (KL-HMM) frame-
work is a particular case of this formalism. We then benchmark the approach
against two popular G2P approaches, namely joint multigram approach and
decision tree-based approach. Our experimental studies on English and French
show that despite relatively poor performance at the pronunciation level, the
performance of the proposed approach is not significantly different than the
state-of-the-art G2P methods at the ASR level.
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1. Introduction

Speech technologies such as automatic speech recognition (ASR) and text-
to-speech (TTS) systems aim to link two modes of communication, namely the
spoken form (speech) and the written form (text). In order to model the relation
between the two forms, a shared unit is commonly used. The shared units can
typically be the whole words or subword units. However, subword units are
preferred to words especially in large vocabulary tasks for two main reasons:
1) they are easily trainable compared to the whole words as the frequency of
words in a text follows Zipf’s law1(Powers, 1998), and 2) they are generalizable
for unseen words.

The most widely used subword units in current speech processing systems
are phones or phonemes2. Phonemes can be related to the spoken form (i.e.,
speech signal). More precisely, the envelope of magnitude spectrum of short-
term speech signals typically depicts the characteristics of phonemes. They can
also be related to the alphabetic written symbols (i.e., graphemes). The link
between phonemes and graphemes originates from the alphabetic orthographies
which aim to present the phonetic structure of the spoken words in a graphic
form (Frost, 1989). The alphabetic orthographies can be deep or shallow de-
pending on the language3.

Typically, the development of phoneme-based speech technology systems
consists of two steps: development of a lexicon consisting of a mapping between
each word and its phoneme-based pronunciation followed by system training.
The focus of this article is mainly on the phonemic lexicon development. A
phonemic lexicon can be developed manually through use of linguistic knowl-
edge. However, manual development of lexicons can be costly in terms of time
and money (Davel and Barnard, 2003). In addition, the developed lexicons are
required to be constantly augmented with evolution of languages and emergence
of new words. Therefore, it is necessary to develop automatic pronunciation

1According to Zipf’s law, the frequency of a word is inversely proportional to its rank in
the frequency table.

2Phones are units of the speech sounds which can be designed to cover the set of sounds
in all languages, while phonemes are “the smallest contrastive linguistic units which may
bring about a change of meaning” (Chomsky and Halle, 1968) in a specific language. For
the sake of clarity, throughout this article we use the term phoneme as in the literature the
grapheme-to-phoneme terminology is dominantly used.

3In shallow orthographies, the grapheme-to-phoneme correspondence is one-to-one (e.g.,
Finnish). In deep orthographies, however, the correspondence between the graphemes and
phonemes is not direct. More precisely, the grapheme-to-phoneme relationship may be irreg-
ular (e.g., English) in which some prior knowledge about the word is required to accurately
predict the relationship (i.e., different rules can be applied to various words). The grapheme-
to-phoneme relationship may also be regular, i.e., predictable given a set of linguistic rules.
However, accurate prediction of the grapheme-to-phoneme relationship in deep orthographies
requires complex linguistic rules (e.g., French).
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generation methods to reduce the amount of human effort. Towards that goal,
grapheme-to-phoneme conversion (G2P) methods are applied in which given an
initial phonemic lexicon called a seed lexicon, typically data-driven and machine
learning techniques such as decision trees (Black et al., 1998) or conditional ran-
dom fields (Wang and King, 2011) are used to learn the grapheme-to-phoneme
relationship. The learned grapheme-to-phoneme relationship is then used to
infer pronunciations for the unseen words. Most of the G2P approaches rely
solely on the seed lexicon for learning the grapheme-to-phoneme relationship
while no acoustic information is incorporated within the G2P process.

This article presents a novel G2P formalism in which the grapheme-to-
phoneme relationship is learned through speech data along with word level
transcriptions. The formalism consists of two phases: a training phase and
an inference phase. In the training phase, as the first step, the relationship be-
tween acoustic feature observations and phonemes is learned through an acoustic
model, such as an artificial neural network (ANN). Then as the second step, the
relationship between the graphemes and phonemes is learned in a hidden Markov
model (HMM) framework in which the outputs of the acoustic model are used as
feature observations. In this HMM framework, each state represents a grapheme
and is parameterized by a categorical distribution of phonemes. In the inference
phase, given the orthographic transcription of the word, the grapheme-based
HMM acts as a generative model and emits a sequence of phoneme posterior
probabilities. The sequence of phoneme posterior probabilities is then decoded
using an HMM in which each state represents a phoneme to infer the most
probable pronunciation for each word.

In this article, we show that the recently proposed acoustic data-driven G2P
approach in the framework of Kullback-Leibler divergence-based HMM (KL-
HMM) (Rasipuram and Magimai.-Doss, 2012a) is a particular case of this G2P
formalism. We then build upon the previous studies on the acoustic G2P ap-
proach and study possible ways to refine the method by incorporating recent
trends in ANNs including using ANNs with more layers and output units. Fur-
thermore, we benchmark the approach against two popular conventional G2P
approaches, namely the joint multigram and the decision tree-based methods.
We evaluate the proposed G2P approach at both pronunciation and application
(ASR) levels. For the evaluation at the ASR level, we study different facets
including combining the proposed G2P approach with conventional G2P ap-
proaches.

Our experimental studies on English and Swiss French show that the per-
formance of the proposed approach is not significantly different than the state-
of-the-art G2P approaches at the ASR level. In addition, through combining
the acoustic G2P approach with conventional G2P approaches, improvements
in the ASR performance can be achieved, in particular when a limited amount
of data (for G2P model and acoustic model training) is available.

This article is organized as follows. Section 2 provides a background about
the existing approaches for pronunciation generation in the literature. Section 3
proposes the novel G2P formalism for learning the grapheme-to-phoneme rela-
tionship through acoustic data. Section 4 describes the databases along with the
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evaluation setups in this study. Section 5 presents the pronunciation level setup,
results and analysis. Section 6 provides the experimental setup and results at
the ASR level. Finally Section 7 brings the conclusion.

2. Relevant literature

The first step towards building phoneme-based speech technology systems is
the development of a phonemic lexicon. Phonemic pronunciations are typically
hand-crafted by exploiting the linguistic knowledge. During the preparation
of the pronunciation lexicon by linguists, care is taken to minimize word level
confusions and consistency is ensured across the lexicon. The hand-crafted
phoneme pronunciation lexicon could possibly provide an optimum performance
for ASR or TTS. However, design of the phonemic pronunciation lexicon of
significant size by linguistic experts is a tedious and costly task. Furthermore,
a finite lexicon will always have limited coverage for ASR and TTS systems.
For this reason, ASR and TTS systems use G2P methods when hand crafted
pronunciations fail to cover the vocabulary of a particular domain. In this
section, we first elucidate two classes of G2P methods, namely knowledge-based
and data-driven approaches, which have been explored in the literature.

2.1. Knowledge-based approaches

Knowledge-based G2P approaches exploit rules derived by humans or from
linguistic studies to convert the sequence of graphemes in a word to a sequence
of phonemes. Rule-based G2P approaches are typically formulated in the frame-
work of finite state automata (Kaplan and Kay, 1994). The primary advantage
of rule-based approaches is that they provide complete coverage. However, as
natural languages exhibit irregularities, it is necessary to cross-check if the rules
are applicable to all the entries. Often, rule-based G2P systems also need an
exception list. Furthermore, design of rules requires specific linguistic skills that
may not be always available. In order to reduce the amount of human effort
and linguistic knowledge, data-driven approaches are usually employed.

2.2. Data-driven G2P approaches

Data-driven approaches for G2P predict the pronunciation of an unseen word
based on the examples in the training data (i.e., the seed lexicon). Typically
the G2P process in data-driven approaches can be viewed as a three-step pro-
cess. The first step is the alignment of training data constituting sequences
of graphemes and their corresponding sequences of phonemes (Damper et al.,
2005; Jiampojamarn et al., 2007). In the second step, a learning method is em-
ployed to capture the grapheme-to-phoneme relationship observed in the source
lexicon. Finally as the third step, an inference algorithm is used to infer the
best pronunciation.
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The alignment step can be viewed as a common process in most of the G2P
approaches4. Therefore, what distinguishes different G2P approaches from each
other is the learning and inference methods utilized. Among various G2P ap-
proaches proposed based on different techniques, local classification-based (Se-
jnowski and Rosenberg, 1987; Black et al., 1998; Pagel et al., 1998) and prob-
abilistic sequence modeling-based approaches (Taylor, 2005; Bisani and Ney,
2008; Wang and King, 2011) have gained wide attention:

• Local classification-based approaches: In the local classification-based ap-
proaches, given the alignments, a decision tree (Black et al., 1998; Pagel et al.,
1998) or a neural network (Sejnowski and Rosenberg, 1987) can be trained
to learn the grapheme-to-phoneme relationship from the training data. For
the inference part, the sequence of input graphemes is processed sequentially
in which for each grapheme, the corresponding phoneme (or phoneme se-
quence) is locally generated. Therefore, these methods are referred to as
local classification-based approaches.

• Probabilistic sequence modeling-based approaches: In probabilistic sequence
modeling-based approaches, the G2P task can be expressed formally as:

F ∗ = arg max
F

P (F |G) (1)

= arg max
F

P (F,G) (2)

where given a sequence of graphemes G, the goal is to find a sequence of
phonemes F ∗ that maximizes the posterior probability P (F |G). Eqn. (1) can
also be expressed as finding a sequence of phonemes F ∗ maximizing the joint
probability P (F,G) using the Bayes rule (Eqn. (2)). Various G2P approaches
based on above expressions are described below:

1. HMM-based approach: In (Taylor, 2005), the G2P problem is formulated
in the standard HMM way by applying independent and identically dis-
tributed (i.i.d.) and first order Markov model assumptions as:

S∗ = arg max
S

P (S,G) (3)

= arg max
S

P (G|S)P (S) (4)

= arg max
S

∏
n

P (gn|sn)P (sn|sn−1) (5)

where S = [s1, . . . , sn, . . . , sN ] represents the hidden sequence of phonemes
and G = [g1, . . . , gn, . . . , gN ] denotes the sequence of grapheme observa-
tions. In this framework, each HMM represents a phoneme which emits

4In some approaches, the alignment is done as a pre-processing step whereas in others the
alignments are obtained while learning the grapheme-to-phoneme relationship.
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(up to four) grapheme symbols. As opposed to local classification ap-
proaches in which the alignments are obtained as a pre-processing step,
in this framework the alignments can be derived during the Baum-Welch
training. For the inference, the most probable sequence of phonemes that
generated the input grapheme sequence is obtained using the Viterbi al-
gorithm.

2. Joint multigram approach: In joint multigram or joint n-gram approaches,
the joint probability P (F,G) of a sequence of graphemes G and a se-
quence of phonemes F in Eqn. (2) is obtained based on the concept of
graphones (Deligne et al., 1995). A graphone is a pair of a sequence of
graphemes and a sequence of phonemes. Figure 1 shows a sequence of
graphones for the word phone along with its pronunciation.

 f     ow    n      −

ph    o      n      e

Figure 1: A possible sequence of graphones for the word phone and its associated
pronunciation.

The joint probability P (F,G) is obtained by summing over matching align-
ments which are derived from sequences of graphones Q in the space of all
possible sequences of graphones for the (F,G) pair, i.e., S(F,G):

P (F,G) =
∑

Q∈S(F,G)

p(Q) (6)

The probability distribution over all matching alignments can be modeled
using an n-gram approximation. In (Bisani and Ney, 2008), the parameters
of the n-gram model are learned by maximizing the log-likelihood of the
data using the expectation-maximization (EM) algorithm. There are other
variants such as (Chen, 2003), in which the parameters of the maximum-
entropy n-gram model are learned using the Viterbi EM algorithm. For
the inference, the best sequence of phonemes can be derived by using the
Viterbi algorithm. In (Novak et al., 2012), the best sequence of phonemes
is obtained in the weighted finite state transducer (WFST) framework.

3. Conditional random field-based approach: In conditional random field
(CRF)-based approaches, the conditional probability P (F |G) in Eqn. (1)
is modeled using a log-linear representation (Wang and King, 2011; Lehnen
et al., 2011). The CRF model is a discriminative model which can perform
global inference. Therefore, it can exploit the advantages of both decision
tree-based methods (which are discriminative) and joint multigram meth-
ods (which perform global inference). However, it can be computationally
more expensive than the aforementioned approaches.

The parameters of the log-linear CRF model are learned by maximizing the
conditional log-likelihood. During decoding, the best phoneme sequence
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is inferred using the Viterbi algorithm. In (Hahn et al., 2013), hidden
conditional random fields (HCRFs) are used for the G2P task in which
the alignment between the grapheme sequence and phoneme sequence is
modeled via a hidden variable.

2.3. Pronunciation extraction using acoustic data

The pronunciations derived from automatic grapheme-to-phoneme convert-
ers reflect the ambiguity and variation found in the lexical resources used to
train the model. Therefore, the pronunciations or their variants may not reflect
the natural phonological variation. For example, this can happen in spontaneous
speech when some of the sound units are dropped (Strik and Cucchiarini, 1999);
or when a grapheme-to-phoneme converter trained on native pronunciations is
used to extend the vocabulary of a non-native ASR system.

To overcome this limitation, in the context of pronunciation variation mod-
eling, spoken examples of words are used to obtain pronunciation variants.
Most often, automatic phoneme transcriptions of spoken examples obtained
from a phoneme recognizer are used to determine possible alternative pronun-
ciations of words (Mokbel and Jouvet, 1999). For example, in the first stage,
speech data transcribed at word level is passed through a phoneme recognizer
to obtain phoneme transcriptions of words. The phoneme recognizers can im-
pose phonotactic constraints (Mokbel and Jouvet, 1999), exploit phone bigrams
or trigrams (Fosler-Lussier, 2000), or be ergodic models (Magimai.-Doss and
Bourlard, 2005). Possible alternate phoneme sequences for words are then ob-
tained by finding the best alignment between the output of the phoneme recog-
nizer and pronunciations provided by the seed lexicon.

An issue with such techniques is that they often over-generate variants be-
cause of multiple acoustic samples for each word. Furthermore, this also in-
creases the chance of confusion among words in the dictionary. Therefore, it
is important to prune the pronunciation variants to produce a lexicon that re-
sults in an optimal recognition performance. Possible pruning options that have
been explored are based on maximum number of pronunciations per word, re-
moving pronunciation variants with a probability less than a threshold given
the word (Riley, 1991). Figure 2 illustrates the typical pronunciation variant
extraction process.

Speech
data Phoneme

recognizer

Phoneme
transcriptions

Alignment
&

pruning

Word
transcriptions

Seed
lexicon

Expanded
lexicon

Figure 2: Pronunciation lexicon expansion with possible pronunciation variants for words
obtained using speech samples.
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The pronunciations obtained from a phonemic decoder can be noisy (Fosler-
Lussier, 2000). Therefore, rather than obtaining variants from a phonemic de-
coder, recently, there has been an interest to prune the pronunciation variants
obtained through a grapheme-to-phoneme converter using spoken word exam-
ples:

• In (McGraw et al., 2013), the pronunciation variants of words given by the
graphone-based G2P approach (Bisani and Ney, 2008) are given pronunciation
weights using acoustic samples of words. The approach assumes that an
expert provided pronunciation lexicon is available.

• In (Lu et al., 2013), an approach to enlarge the expert phonetic lexicon is
proposed where the pronunciations of additional words are generated using
their acoustic samples and a trained grapheme-to-phoneme converter. More
precisely, first a grapheme-to-phoneme converter is trained using an expert
lexicon. The grapheme-to-phoneme converter is used to generate pronuncia-
tion variants for new words. The weights for these multiple pronunciations
are estimated based on acoustic evidence using the WFST-based EM algo-
rithm. Finally, the acoustic model is updated using the augmented lexicon.
The process is repeated until convergence.

As shown in Figure 3, the above two G2P approaches rely on a seed lexicon
and a G2P converter. The acoustic samples are used only to weigh or select the
alternate pronunciations given by a grapheme-to-phoneme converter.

Seed
lexicon G2P

model
Update

the lexicon

Acoustic
data

Weighted
lexicon

Figure 3: Acoustic data-driven G2P approaches proposed in the literature. The dotted line
illustrates that some approaches iterate the G2P process.

In addition to the aforementioned approaches, in (Xiao et al., 2007), the
parameters of the grapheme-to-phoneme converter are adapted using spoken
examples for a name recognition task.

3. Acoustic G2P approach using probabilistic lexical modeling

In this section, we first present a novel G2P formalism which incorporates
acoustic information to learn a grapheme-to-phoneme relationship and demon-
strate that the acoustic data-driven G2P approach in the KL-HMM framework
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is a particular case of this formalism. We then compare the acoustic G2P ap-
proach with other existing approaches in the literature.

3.1. Theoretical formulation

Given a sequence of graphemes G = [g1, . . . , gn, . . . , gN ], the G2P problem
in an HMM-based framework can be expressed as finding the most probable
phoneme sequence F ∗ that can be achieved by finding the most likely state
sequence S∗:

S∗ = arg max
S∈S

P (G,S|Θ) (7)

= arg max
S∈S

P (G|S,Θ)P (S|Θ) (8)

where Θ denotes the parameters of the system, S denotes the set of possible
HMM state sequences and S = [s1, · · · , sn, · · · , sN ] denotes a sequence of HMM
states which corresponds to a phoneme sequence hypothesis with sn ∈ F =
{f1, . . . , fk, . . . , fK} where K is the number of phoneme units. By applying
i.i.d. and first order Markov assumptions, Eqn. (8) can be simplified as:

S∗ = arg max
S∈S

N∏
n=1

P (gn|sn = fk,Θ)P (sn = fk|sn−1 = fk′ ,Θ) (9)

By applying the Bayes rule to Eqn. (9) we obtain:

S∗ = arg max
S∈S

N∏
n=1

P (sn = fk|gn,Θ)P (gn|Θ)

P (sn = fk|Θ)
P (sn = fk|sn−1 = fk′ ,Θ) (10)

As P (gn|Θ) does not affect the maximization, Eqn. (10) can be simplified as:

S∗ = arg max
S∈S

N∏
n=1

P (sn = fk|gn,Θ)

P (sn = fk|Θ)︸ ︷︷ ︸
local emission score

P (sn = fk|sn−1 = fk′ ,Θ)︸ ︷︷ ︸
transition probability

(11)

In Eqn. (11), assuming a uniform transition probability P (sn = fk|sn−1 =
fk′ ,Θ) and a uniform prior probability P (sn = fk|Θ), the estimation of the
parameters would be restricted to learning the relationship between graphemes
and phonemes, i.e., P (sn = fk|gn,Θ). In this article, we will see that P (sn =
fk|gn,Θ) can be estimated either using a seed lexicon through local classification
methods (as discussed in Section 3.5) or as presented in the following section, it
can be estimated by exploiting acoustic data which can bring certain advantages
(discussed later in point 3 of Section 3.2.2).

3.2. Estimating P (sn = fk|gn) through acoustic data

Estimating the parameters P (sn = fk|gn) through acoustic data is not a triv-
ial task. Recently within the ASR community approaches have been proposed
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which can model two types of units, namely graphemes and phonemes using
acoustic data. These approaches can provide a means to learn the relationship
between graphemes and phonemes (i.e., the parameters P (sn = fk|gn)) through
acoustic information. In this section, we first provide a background about these
ASR approaches and then explain how they can be exploited for parameter
estimation.

3.2.1. Probabilistic lexical modeling

In a recent work it was shown that in subword unit-based ASR approaches,
the link between the lexical subword units and acoustic features can be factored
through a latent variable referred to here as acoustic units into two models,
namely the acoustic model and the lexical model (Rasipuram and Magimai.-
Doss, 2015):

1. In the acoustic model, the relationship between the acoustic features xt

and acoustic units {ad}Dd=1 is modeled. The acoustic units {ad}Dd=1 can
be context-independent (CI) or clustered context-dependent (CD) subword
units. The acoustic model can either be a Gaussian mixture model (GMM)
or an artificial neural network (ANN). In likelihood-based ASR approaches,
the acoustic model estimates likelihood vectors vt = [v1t , . . . , v

d
t , . . . , v

D
t ]T

with vdt = p(xt|ad). In posterior-based ASR approaches, the acoustic
model estimates posterior probability vectors zt = [z1t , . . . , z

d
t , . . . , z

D
t ]T with

zdt = P (ad|xt).

2. In the lexical model, the relationship between the acoustic units {ad}Dd=1 and
lexical subword units {li}Ii=1 is modeled as a set of categorical distributions
{yi}Ii=1, where yi = [y1i , . . . , y

d
i , . . . , y

D
i ]T and ydi = P (ad|li). The relation-

ship between the acoustic and lexical units can either be a one-to-one deter-
ministic map or a probabilistic map, leading to deterministic or probabilistic
lexical modeling-based ASR approaches respectively. In deterministic lexi-
cal modeling-based ASR approaches (e.g., standard HMM/GMM or hybrid
HMM/ANN), each lexical unit is deterministically mapped to an acoustic
unit, i.e., yi is a Kronecker delta distribution. The deterministic mapping
is obtained either through knowledge (for CI lexical units) or learned during
clustering and tying of states (for CD lexical units). In probabilistic lexical
modeling-based ASR approaches, however, the relation between the acoustic
and lexical units is learned as explained briefly below.

As elucidated in (Rasipuram and Magimai.-Doss, 2015), there are differ-
ent probabilistic lexical modeling-based ASR approaches, such as probabilistic
classification of HMM states (PCHMM) (Luo and Jelinek, 1999), tied posterior
HMM (Rottland and Rigoll, 2000) and Kullback-Leibler divergence-based HMM
(KL-HMM) (Aradilla et al., 2007). In these approaches, an HMM is trained in
which each state represents a lexical unit li and is parameterized by a categori-
cal distribution yi. The lexical model parameters {yi}Ii=1 are estimated based
on the acoustic unit evidence obtained from the acoustic model. More precisely,
the parameter estimation is done using the Viterbi EM algorithm given either
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acoustic unit posterior probability estimates zt in posterior-based approaches
(such as KL-HMM) or likelihood estimates vt in likelihood-based approaches
(such as PCHMM and tied posterior HMM). In the expectation (segmentation)
step, an optimal lexical unit state sequence is obtained for each training utter-
ance using the Viterbi algorithm. Then in the maximization step, given the
optimal lexical unit state sequences and the acoustic unit evidence, i.e., zt or
vt belonging to each of these states, the new set of parameters {yi}Ii=1 is esti-
mated by either minimizing a cost function based on KL-divergence in the case
of KL-HMM approach or maximizing a cost function based on likelihood in the
case of PCHMM and tied posterior HMM approaches.

3.2.2. Relevance to G2P

The probabilistic lexical modeling framework brings certain advantages over
the deterministic lexical modeling framework for learning the grapheme-to-
phoneme relationship using acoustic information:

1. The acoustic and lexical units can represent different types of subword units: In
the deterministic lexical modeling framework, as the acoustic and lexical units
are deterministically related, they are constrained to be of the same type. For
example, if the set of lexical units L is based on the phonemes (or graphemes),
then the acoustic unit set A is also constrained to be based on phonemes (or
graphemes). However, in the probabilistic lexical modeling framework, as a
result of the probabilistic relationship between the acoustic and lexical units,
the constraint is relaxed. Therefore, the acoustic units can represent phonemes
while the lexical units can represent graphemes (Rasipuram and Magimai.-Doss,
2015; Magimai.-Doss et al., 2011). In this case, the parameters of the lexical
model yi capture a probabilistic grapheme-to-phoneme relationship which is of
our interest.

2. The acoustic and lexical units can represent subword units with different context
lengths: In the deterministic lexical modeling based ASR approaches, due to
the deterministic mapping, the units are restricted to be of the same context
length. For example, if L is based on CI or CD subword units, then A is
also based on CI or CD subword units respectively. In the probabilistic lexical
modeling based framework, however, such a constraint is relaxed. For example,
the acoustic units can represent CI subword units while the lexical units can
denote CD subword units (Razavi et al., 2014; Imseng et al., 2011). This could
be beneficial for languages with complex grapheme-to-phoneme correspondence
which require modeling of longer grapheme contexts to correctly capture the
relationship between graphemes and phonemes.

3. The acoustic model and the lexical model can be trained on different sets of
data: In the probabilistic lexical modeling framework, the acoustic model and
lexical model can be trained independently (one after another) and can exploit
different sources of data during training. In (Rasipuram and Magimai.-Doss,
2015), it was shown that grapheme-based ASR systems can be effectively built
by (a) training a multilingual ANN that learns the relationship between acoustic
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features and multilingual phonemes using acoustic and lexical resources from
auxiliary languages, and then (b) learning a probabilistic relationship between
graphemes of the target language and the multilingual phonemes using the target
language acoustic data. Examples of similar work with the use of cross domain
acoustic and lexical resources for grapheme-to-phoneme relationship learning
can be found in (Magimai.-Doss et al., 2011; Rasipuram and Magimai.-Doss,
2012a). Alternately, such a framework relaxes the need for a phonetic seed
lexicon in the target language or domain for learning the grapheme-to-phoneme
relationship. Thus, it can have potential implications for lexicon development
for under-resourced languages and domains.

In this article, we exploit the advantages of the probabilistic lexical model-
ing framework to learn the grapheme-to-phoneme relationship through acoustic
data. More precisely, we cast the parameter estimation problem for the HMM
explained in Section 3.1 as learning the parameters {yi}Ii=1 in the probabilistic
lexical modeling framework in which the acoustic unit set A is equal to the set
of phonemes F = {f1, . . . , fk, . . . , fK} (in Section 3.1) and the lexical unit set L
contains the possible graphemes in the target language (i.e., ∀Gn = gn : gn ∈ L).

3.3. Pronunciation Inference

Given the orthographic transcription of the word and the estimated pa-
rameters of the probabilistic lexical model, the lexical model can be used as a
generative model where each state emits a single phoneme posterior probability
vector. The most probable phoneme sequence is then inferred by decoding the
sequence of phoneme posterior probabilities using the ergodic HMM presented
in Section 3.1. Multiple pronunciations for a word can be extracted within this
framework using N -best decoding. The pronunciation variants can also be gen-
erated in other ways, such as using different cost functions at the parameter
estimation stage to possibly capture different grapheme-to-phoneme relation-
ships (Razavi et al., 2015a). However, selecting the best method for generating
pronunciation variants is beyond the scope of this article.

3.4. Summary and implementation

Figure 4 provides a summary of the acoustic G2P approach using the proba-
bilistic lexical modeling framework as a three-step process:

1. Acoustic model training : An acoustic model (ANN or GMM) is trained to
estimate phoneme posterior probabilities zt or phoneme likelihoods vt.

2. Grapheme-based probabilistic lexical model training : A grapheme-based prob-
abilistic lexical model is trained to learn the relationship between graphemes
and phonemes.

3. Inference: Given the trained lexical model and the orthographic transcrip-
tion of the word, the most probable sequence of phonemes is inferred using
the HMM framework in Section 3.1. The ergodic HMM in this article is
implemented using the HTK toolkit (Young et al., 2006).
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Figure 4: Block diagram of the acoustic G2P approach.

It can be seen that the recently proposed acoustic data-driven G2P ap-
proach (Rasipuram and Magimai.-Doss, 2012a) in the KL-HMM framework is
a particular case of this formalism where the acoustic model is estimating pos-
terior probabilities zt and the grapheme-to-phoneme relationship is captured
through the parameters of the KL-HMM, i.e., a probabilistic lexical model.

As illustrated in Figure 5, in this approach a grapheme-based ASR model
is trained where the acoustic units {ad}Dd=1 are phonemes and the lexical units
{li}Ii=1 (modeled by HMM states) are based on graphemes. The acoustic model
estimates phoneme posterior probabilities zt. The lexical model parameters
{yi}Ii=1 are trained using zt as a feature observation with a cost function based
on Kullback-Leibler divergence. More precisely, the local score at each HMM
state is defined as the Kullback-Leibler divergence between the posterior feature
zt and categorical distribution yi (Aradilla et al., 2007), which can be estimated
in different ways (Aradilla et al., 2008):

SCKL(yi, zt) =

D∑
d=1

ydi log(
ydi
zdt

) (12)

SCRKL(yi, zt) =

D∑
d=1

zdt log(
zdt
ydi

) (13)

SCSKL(yi, zt) =
1

2
(SCKL + SCRKL) (14)

More information about the parameter estimation step in the KL-HMM
approach can be found in Appendix A.
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Figure 5: Illustration of KL-HMM approach in which graphemes are used as lexical units and
the acoustic model is an ANN.

In this article, we focus on the KL-HMM as the probabilistic lexical model.
This is motivated from the previous observations in which the KL-HMM frame-
work was found to be consistently leading to a better system compared to other
probabilistic lexical modeling-based ASR approaches (Rasipuram and Magimai.-
Doss, 2015).

3.5. Comparison to existing approaches

As explained in Section 3, in the acoustic G2P approach, the parameters of
the probabilistic lexical model are estimated using the Viterbi EM algorithm
as shown in Figure 6. Similar to the acoustic G2P approach, data-driven G2P
approaches can be considered to consist of an E-step and an M-step:

• The E-step which provides an alignment between the grapheme sequence and
the phoneme sequence is common to most of the G2P approaches.

• The M-step which captures the relationship between graphemes and
phonemes is performed through different learning methods such as decision
trees, neural networks, n-gram models or CRFs.

Table 1 further compares the acoustic G2P approach with the G2P ap-
proaches explained in Section 2 based on training criteria and required training
data. The table also includes distinctive remarks in each approach.

14



E−Step:

Segmentation

M−Step:

Optimal

sequence

Update
categorical

distributions

grapheme state

grapheme−to−phoneme
Learning 

relationship

Trained

categorical 

distributions

Likelihood features V = {v1, · · ·vt, · · ·vT}

and

Training data, i.e. transcription

or

Initial parameters

yi

Posterior features Z = {z1, · · · zt, · · · zT}

Figure 6: Illustration of parameter estimation in the probabilistic lexical modeling framework,
where the acoustic units represent phonemes and lexical units represent graphemes.

The key distinctive factor in the acoustic G2P approach is exploiting acoustic
data to learn the grapheme-to-phoneme relationship, in contrast to conventional
data-driven G2P approaches which use only the seed lexicon. The proposed
acoustic G2P approach is similar to the local classification based approaches,
as they can be both seen as a particular case of the formalism in Section 3.1
where the transition and prior probabilities are uniform. In the local classifica-
tion based approaches, the phoneme posterior probabilities P (sn = fk|gn) are
estimated either through decision trees or ANNs. For the decision tree-based ap-
proach, as the output of the decision tree is deterministic, the phoneme posterior
probabilities would be zero or one. For the ANN-based approach, however, the
output of the neural network directly provides phoneme posterior probability
estimates.

Table 1: Summary of different G2P approaches based on training criteria, required data and
distinctive remarks.

Approach
Training
criteria

Required
data

Distinctive remarks

Local
classification

Discriminative Seed lexicon
Variation of the posterior-based approach
in Eqn. (11) where P (sn = fk|gn)
is estimated using decision trees/ANNs.

HMM Generative Seed lexicon
Models the likelihood P (gn|sn)
unlike the posterior-based approach
in Eqn. (11) which models P (sn = fk|gn).

Joint
multigram

Generative Seed lexicon Exploits the concept of graphones.

CRF Discriminative Seed lexicon
Exploits both discriminative training
and global inference.

Acoustic
G2P

Generative
Seed lexicon &
Acoustic data

Exploits acoustic information to estimate
P (sn = fk|gn) in Eqn. (11).

In this article, we benchmark the acoustic G2P approach against two con-
ventional G2P approaches: 1) decision tree-based G2P approach which like
the acoustic G2P approach is a particular case of the HMM-based formalism
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in Section 3.1, and 2) the state-of-the-art joint multigram G2P approach. We
evaluate the G2P approaches on English and French as two languages with deep
alphabetic orthographies.

4. Experimental setup

The performance of G2P approaches depends on various factors:

• Language: As explained in Section 1, alphabetic orthographies can be deep
or shallow depending on the language. The G2P task for languages with deep
orthographies is more challenging.

• Seed lexicon size: The size of the initial seed lexicon can be different depending
on the amount of linguistic resources available in a language. Different G2P
approaches may perform differently according to the amount of training data
available.

• Variations in speech: Depending on the type of speech data (being read or
conversational, isolated or continuous, etc.) used for ASR level evaluation, the
quality of G2P-generated pronunciations can have marginal or major effects
on the performance of ASR systems.

In this article, we considered the aforementioned factors thoroughly to design
efficient experimental studies.

4.1. Datasets

We conducted our studies on two databases: 1) PhoneBook corpus, a small-
vocabulary isolated word recognition English corpus, and 2) MediaParl corpus,
a large-vocabulary continuous speech recognition (LVCSR) Swiss French corpus.

4.1.1. PhoneBook: isolated word recognition English corpus

PhoneBook is a speaker-independent task-independent isolated word recog-
nition corpus (Pitrelli et al., 1995) for small size (75 words) and medium size
(602 words) vocabularies. We use the medium size vocabulary task with 602
unique words (Dupont et al., 1997). The overview of the PhoneBook corpus is
given in Table 2.

Table 2: Overview of the PhoneBook corpus in terms of number of utterances, hours of speech
data, speakers and words present in the train, cross-validation and test sets.

Number of Train Cross-validation Test
Utterances 19421 7290 6598

Hours 7.7 2.9 2.6
Speakers 243 106 96
Words 1580 603 602
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The training set consists of 26,711 utterances (obtained by merging the small
training set and cross-validation set as in (Dupont et al., 1997)), and test set
consists of 6598 speech utterances. The test vocabulary consists of words and
speakers which are unseen during training. PhoneBook pronunciation lexicon
is manually transcribed using 42 phonemes (including the phoneme sil). The
manual lexicon contains only a single pronunciation per each word.

The G2P task on the PhoneBook corpus is challenging for several reasons:

• The grapheme-to-phoneme relationship in English is highly irregular.

• The training and test vocabulary sets are totally different.

• The corpus contains uncommon English words and proper names (e.g., With-
erington, Gargantuan, etc.).

• It can be seen as a resource-limited scenario as there are only about 2000
training words and 10 hours of transcribed speech data available.

4.1.2. MediaParl: LVCSR bilingual corpus

MediaParl is a bilingual corpus containing recordings of Swiss parliamentary
debates from Valais region in Swiss German and Swiss French. Valais is a state
in Switzerland consisting of both French and German speakers with a variety
of accents. In this study, we used the French part of the corpus as French is a
challenging language for the G2P task due to its relatively complex grapheme-
to-phoneme conversion rules compared to German. In our experiments, the
database is partitioned into training, cross-validation and test set according to
the structure provided in (Imseng et al., 2012a). Table 3 provides the overview
of the MediaParl corpus. All the speakers in the training and development set
are native speakers. In the test set, four speakers are German native speakers
and for three speakers, French is the native language.

Table 3: Overview of the MediaParl corpus in terms of number of utterances, hours of speech
data, speakers and words present in the train, cross-validation and test set. For the test set,
the amount of native and non-native data is shown as well.

Number of Train Cross-validation Test (native, non-native)
Utterances 5471 646 925 (474, 451)
Hours 16.1 2.2 3.2 (1.6, 1.6)
Speakers 110 8 7 (3, 4)
Words 10555 3376 4246

The preparation of the dictionary was started with the BDLex pronunciation
lexicon (Imseng et al., 2012a)5. For the words that were not found in the

5http://www.irit.fr/~Martine.deCalmes/IHMPT/ress_ling.v1/rbdlex_en.php

17



BDLex dictionary, a WFST-driven G2P system was used to generate single-
best pronunciations6 and afterwards the generated pronunciations were hand-
corrected. The manual dictionary of the French MediaParl corpus is in SAMPA
format with a phoneme set of size 38 (including the phoneme sil) and contains
all the words in the train, cross-validation and test set. The vocabulary size was
12362. The training set consists of 10555 words and 10709 pronunciations. The
test set contains 4246 words of which 915 words are not seen during training.
The unseen words did not occur frequently in the test set (the most frequent
unseen word occurred only 7 times). The average number of pronunciations per
each word was 1.01 which implies that the pronunciation variants are provided
only for a few words in the dictionary. It is also worth mentioning that during
the database preparation by Imseng et al. (2012a), liaison handling was not
considered.

The G2P study on MediaParl corpus is different from the PhoneBook corpus
for the following reasons:

• In French, the grapheme-to-phoneme relationship is regular (though the con-
version rules can be complex), while in English the relationship is irregular.

• The amount of training data is bigger than for the PhoneBook corpus.

• The number of unseen words in the test set is relatively small (20% of the
words in the test set).

• The MediaParl corpus contains not only spontaneous speech and debates but
also non-native speech.

4.2. Evaluation

We used the G2P approaches to generate pronunciations for the words un-
seen during training. More precisely, the “G2P-based” lexicons in this article
contain pronunciations from the manual dictionary for the words seen during
training and the G2P-generated pronunciations for the unseen words. Towards
pronunciation generation, we considered two scenarios: (a) single-best pronun-
ciation scenario where only a single-best pronunciation per word is generated,
and (b) multiple pronunciation scenario where pronunciation variants for the
words are generated. We evaluated the G2P-based lexicons at the pronunciation
level by computing phoneme and word accuracy and analyzing the pronuncia-
tions using a confusion matrix. The pronunciation level studies are presented
in Section 5. As the pronunciation level evaluation may not be indicative of
the performance of the systems in real applications (Hahn et al., 2013; Rasipu-
ram and Magimai.-Doss, 2012a), we further evaluated the G2P-based lexicons
through ASR tasks. The ASR level studies are presented in Section 6.

6http://code.google.com/p/phonetisaurus/
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5. Pronunciation level studies

In this section, we first present the pronunciation generation setup using
different G2P approaches. We then compare the acoustic G2P approach with
the joint multigram and the decision-tree-based approaches at the pronuncia-
tion level. Furthermore, we provide pronunciation level analysis for the G2P
approaches.

5.1. Pronunciation generation setup

We exploit the following G2P approaches to generate both single-best pro-
nunciations and pronunciation variants for the words unseen during training.
The number of pronunciation variants were optimized, if feasible, for each ap-
proach separately to have a fair comparison between the G2P approaches7.
The hyper-parameters in each of the G2P approaches were tuned on the cross-
validation set. The tuning on cross-validation set could possibly help in better
generalization towards unseen contexts.

5.1.1. Decision tree-based approach

We used the Festival toolkit (Taylor et al., 1998) which is based on clas-
sification and regression trees (CART). The width of grapheme context was
optimized based on the phoneme accuracy on the cross-validation set. For the
PhoneBook corpus, the optimal grapheme context length was 7 (three preced-
ing and three following grapheme context). For the MediaParl corpus, the best
performing grapheme context length was 9.

Predicting reliable N -best pronunciations in the decision tree-based ap-
proach is not trivial, because in CART the inference is based on individual
phonemes and hence smoothing the confidence scores (posterior probabilities)
could be difficult (Wang and King, 2011). In this article, we generated mul-
tiple pronunciations by training CART trees using different grapheme context
lengths. More precisely, we generated up to three pronunciations for each un-
seen word using the CART trees trained with grapheme contexts of length 5,
7 and 9. The average number of pronunciations per each unseen word in the
PhoneBook and MediaParl corpora was 1.4 and 1.1 respectively.

5.1.2. Joint multigram approach

We used the Sequitur software developed at RWTH Aachen University8.
The maximum width of the graphone used was one in both PhoneBook and
MediaParl corpora. The n-gram context size was tuned on the cross validation
set and the optimal n-gram context size was 4 and 6 for the PhoneBook and
MediaParl corpora respectively.

7Note that there is a trade-off between the coverage of alternative pronunciations and
increasing the confusion between the words when adding pronunciation variants (Livescu
et al., 2012). As the generated pronunciations through each approach can be different, using
the same number of pronunciation variants for all G2P approaches could be suboptimal.

8http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
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The Sequitur software enables generating pronunciation variants. The num-
ber of variants can be pre-determined or can be optimized for each word based on
a threshold on the overall posterior probability mass of the generated variants.
In our experiments the threshold was set to 0.7, similar to the setup provided
in (Hahn et al., 2012). The average number of pronunciations per each unseen
word in the PhoneBook and MediaParl corpora was 4.9 and 2.7 respectively.

5.1.3. Acoustic G2P approach

The acoustic G2P approach includes three steps. In the first step, ANNs
more specifically multilayer perceptrons (MLPs) were trained. We used 39-
dimensional PLP cepstral features with four preceding and four following frame
context as MLP input. All the MLPs were trained with output non-linearity of
softmax and minimum cross-entropy error criterion, using the Quicknet software
(Johnson et al., 2004).

In the previous studies, only three-layer MLPs were used as the posterior
feature estimators (Rasipuram and Magimai.-Doss, 2012a,b). However, recent
advances in speech technology have shown that ANNs with deep architectures
can improve the performance of the ASR systems (Hinton et al., 2012). In order
to investigate the effect of different MLP architectures on the performance of
the acoustic G2P approach, we built the following MLPs with various number
of layers and output units:

• MLP-3-CI-M : a three-layer MLP classifying M context-independent
phonemes. For the PhoneBook corpus M = 42 and for the MediaParl corpus
M = 38.

• MLP-5-CI-M : a five-layer MLP classifying CI phonemes.

• MLP-5-CD-M : a five-layer MLP modeling M clustered CD phonemes as
outputs. The output units were derived by clustering CD phonemes in
HMM/GMM framework using decision tree state tying. Various number of
acoustic units were derived by adjusting the log-likelihood difference. For the
PhoneBook corpus M ∈ {212, 321, 441, 642} and for the MediaParl corpus
M ∈ {266, 437, 626, 817}.

In order to determine the optimal number of units in the output layer of MLP,
first the posterior probabilities of output units belonging to the same CI unit
were marginalized together. Then using the marginalized posterior probabilities,
the MLP architecture with the highest frame accuracy on the cross-validation
set (without considering silence) was selected. In our experiments, MLP-5-CD-
321 and MLP-5-CD-437 led to the highest frame accuracy for the PhoneBook
and MediaParl corpora respectively.

In the second step in pronunciation generation, a KL-HMM system model-
ing tri-graphemes (single preceding and single following context9) was trained.

9This is mainly due to the limitations of the HTK in tying longer contexts. In future work
we aim to explore longer grapheme contexts.
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The choice of local score to learn the KL-HMM parameters is important as
previously shown in (Rasipuram and Magimai.-Doss, 2013). By using the local
score SCKL, the system is better capable of capturing one-to-one grapheme-
to-phoneme relationships. On the other hand, when using SCRKL as the local
score, the system can better handle one-to-many relationships. For the case
when using SCSKL as local score, the system is able to capture both one-to-
one and one-to-many relations. In this article, the KL-HMM parameters were
trained by minimizing the cost function based on the local score SCRKL as it is
suitable for the scenarios where the grapheme-to-phoneme relationship is irreg-
ular. For tying KL-HMM states we applied the KL-divergence based decision
tree state tying method proposed by Imseng et al. (2012b).

In the inference step, each MLP output unit was modeled with three left-
to-right HMM states. For the case of PhoneBook, silence was removed in the
ergodic HMM as it could lead to deletion of some phonemes when generat-
ing pronunciations. However, for MediaParl, as many of the word endings are
not pronounced, silence was used in the ergodic HMM together with insertion
penalties to control the amount of insertion. The inference step is demonstrated
through the example word “MAP” in Figure 7.
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Inferred pronunciation

[m] [ae] [p]

Figure 7: Block diagram of the inference phase in acoustic data-driven G2P task.

Note that the use of clustered CD phonemes as MLP output units could
possibly help to better model the relationship between the phonemes and the
graphemes (similar to the effect of graphones in the joint multigram approach).
However, in the inference we are interested in inferring CI phoneme sequences.
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(b) MediaParl corpus

Figure 8: Pronunciation level performance on the training words in terms of phoneme accuracy
when using multiple pronunciations per word. The horizontal axis corresponds to different
number of pronunciation variants N , where N ∈ {2,4,6,8,10,12}.

To resolve this issue, after training the KL-HMM, for each lexical unit li, the
parameters {ydi = P (ad|li)}Dd=1 were marginalized, i.e., the posterior probabili-
ties of the acoustic units P (ad|li) belonging to the same central phoneme were
summed together.

We generated multiple pronunciations at the inference stage through N -
best decoding. Among the N -best hypotheses, the pronunciation level accuracy
was calculated for the pronunciation which had the lowest Levenshtein distance
to the manual pronunciation. The optimal N was then determined based on
the pronunciation level accuracy on the training words. Figure 8 shows the
pronunciation level performance on the training words in terms of phoneme
accuracy. For the PhoneBook corpus, it can be seen that when N ≥ 10 the
increase in the phoneme accuracy is not significant. For MediaParl, on the
other hand, when N ≥ 6 the pronunciation level performance does not change
significantly. As a result, the number of pronunciations per word was selected
to be 10 and 6 in the PhoneBook and MediaParl corpora respectively.

We pruned the generated N -best pronunciations by removing the silence
phoneme and the spurious phonemes (consecutive appearance of the same
phoneme) from the pronunciations. As a result of pruning, the number of unique
pronunciations per each word was smaller than N . The average number of
unique pronunciations per each unseen word in the PhoneBook and MediaParl
corpora was 7.1 and 3.7 respectively.

5.2. Pronunciation level results

Table 4 provides pronunciation level evaluation results in terms of phoneme
and word accuracy for different G2P approaches. To better analyze different
G2P approaches, we have presented the results when generating pronunciations
for the training words as well. For the acoustic G2P approach, it can be ob-
served that deep MLP architectures generally perform better than three-layer
MLP architectures. More precisely, for PhoneBook, through use of more layers
and more outputs in the MLP, the performance of the acoustic G2P approach at
pronunciation level constantly improves (in both single-best pronunciation and
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multiple pronunciation scenarios). Similar trends can be seen for the MediaParl
corpus when using multiple pronunciations. However, in the single-best pronun-
ciation case, exploiting a five-layer MLP alone does not lead to improvements;
and the improvements are achieved when using more outputs and marginalizing
the posterior probabilities in the KL-HMM.

Table 4: Pronunciation level evaluations in terms of phoneme accuracy (PA) and word ac-
curacy (WA) using different G2P approaches in the single-best pronunciation and multiple
pronunciation scenarios. AG2P, JMM-G2P and DT-G2P represent acoustic G2P approach,
joint multigram G2P approach and decision tree-based G2P approach respectively.

Approach
Single-best pronunciation Multiple pronunciation
PA (WA)
on train

PA (WA)
on unseen

PA (WA)
on train

PA (WA)
on unseen

AG2P-MLP-3-CI-42 76.4 (16.1) 71.6 (9.8) 86.5 (39.3) 81.4 (25.2)
AG2P-MLP-5-CI-42 77.2 (17.9) 72.4 (10.8) 87.3 (43.1) 82.3 (29.2)
AG2P-MLP-5-CD-321 80.0 (23.4) 75.2 (15.4) 89.5 (50.2) 84.1 (32.6)

JMM-G2P 98.8 (93.9) 89.2 (50.5) 99.5 (97.2) 94.4 (70.1)
DT-G2P 89.3 (53.0) 85.0 (38.7) 90.9 (59.2) 87.1 (43.9)

(a) PhoneBook

Approach
Single-best pronunciation Multiple pronunciation
PA (WA)
on train

PA (WA)
on unseen

PA (WA)
on train

PA (WA)
on unseen

AG2P-MLP-3-CI-38 89.9 (54.8) 88.0 (49.6) 94.1 (71.3) 92.6 (64.9)
AG2P-MLP-5-CI-38 89.9 (54.5) 87.8 (49.5) 94.5 (72.7) 93.1 (67.0)

AG2P-MLP-5-CD-437 91.4 (59.6) 89.6 (54.0) 94.8 (74.1) 93.4 (67.9)
JMM-G2P 99.8 (99.3) 97.4 (89.0) 99.9 (99.4) 98.4 (92.5)
DT-G2P 98.4 (92.8) 96.6 (85.6) 98.8 (94.5) 97.3 (88.5)

(b) MediaParl

Additionally, it can be seen that for the PhoneBook corpus, the joint multi-
gram approach is able to generate exact pronunciations for about 94 % and 97%
of the training words in the single-best pronunciation and multiple pronuncia-
tion scenarios respectively. This shows that the joint multigram approach can
memorize the pronunciations. Similarly for the MediaParl corpus, the pronun-
ciations generated by the joint multigram and decision tree-based methods are
more consistent with the pronunciations in the manual dictionary compared to
the acoustic G2P approach.

The overall comparison of the results for different G2P approaches shows that
conventional G2P approaches perform better than the acoustic G2P approach at
the pronunciation level. This can be attributed to the fact that in conventional
approaches, the grapheme-to-phoneme relationship is learned through direct use
of the manually-generated train lexicon, while the acoustic G2P approach learns
this relationship using acoustic information. Furthermore, the acoustic G2P ap-
proach uses only single preceding and single following grapheme contexts while
conventional G2P approaches exploit longer grapheme contexts. The pronuncia-
tion level results also show that through use of multiple pronunciations, the gap
between the acoustic G2P approach and conventional G2P approaches reduces.
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Finally, it is worth mentioning that the gap between the pronunciation level
accuracy on the training and unseen words is significantly larger in the Phone-
Book corpus compared to the MediaParl corpus. This is due to existence of
uncommon words and availability of fewer amount of training data in the Phone-
Book corpus, which makes generalizability of the G2P approaches towards un-
seen grapheme contexts more difficult.

5.3. Analysis

In this section, we provide the pronunciation level analysis for the joint
multigram approach (as the state-of-the-art G2P approach) and the acoustic
G2P approach using single-best pronunciations10.

Table 5 shows examples of the phoneme confusions according to the con-
fusion matrix of the generated pronunciations through acoustic G2P and joint
multigram approaches for the PhoneBook corpus. It can be observed that most
of the confusions come from vowel phonemes such as /E/ (as in the word “aber”:
/a/ /b/ /E/ /R/) which are confused with similar phonemes such as /x/ (as
in the word “allow”: /x/ /l/ /W/) in both G2P approaches. Confusions can
also occur for consonant phonemes. For instance, the consonant phoneme /Z/
is confused with the phoneme /z/ and /S/ in the joint multigram and acoustic
G2P approaches respectively. For the case of acoustic G2P approach, in fact
the phoneme set size reduces as the phoneme /Z/ is replaced with the unvoiced
phoneme /S/ which can be due to the confusion present at the output of MLP.
It is interesting to note that the phoneme confusions in the two approaches
can be different. For instance, in the acoustic G2P approach the phoneme /@/
is mostly confused with /e/, while in the joint multigram approach it is con-
fused with /x/. This indicates that the two approaches could possibly provide
complementary information to each other.

Table 5: Examples of the phoneme confusions in the generated pronunciations through acous-
tic G2P (AG2P) and joint multigram (JMM-G2P) approaches for the PhoneBook corpus.
The table presents phonemes together with their most confusable phonemes according to the
confusion matrix.

Actual phoneme @ a x Y E R X e I i o c u D Z
Confused
phoneme

AG2P e o @ x x X r @ x x a a ˆ T S
JMM-G2P x x, o @,a I x X R @ x E a a ˆ T z

Similarly for MediaParl, as shown in Table 6, it can be seen that the con-
fusions are mostly related to vowel phonemes. For example, the phoneme /o/
(as in the word “ausse”: /o/ /s/) is confused with the phoneme /O/ (as in the
word “aussi”: /O/ /s/ /i/ ) in both G2P approaches. Similar to the PhoneBook
corpus, in the acoustic G2P approach the phoneme set size is reduced since the

10The comparison is provided only for the single-best pronunciations, as the main goal in
this section is to compare the potential of different G2P approaches, rather than investigating
the effect of adding pronunciation variants.
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phonemes / 6 / and / 9 ˆ/ are replaced with similar vowel phonemes. Further-
more, the phoneme confusions in the two approaches are different, similar to
the observations in PhoneBook corpus. For instance, the phoneme /g/ is con-
fused with the phonemes /k/ and /Z/ in the acoustic G2P approach and joint
multigram approach respectively.

Table 6: Examples of the phoneme confusions in the generated pronunciations through acous-
tic G2P (AG2P) and joint multigram (JMM-G2P) approach for the MediaParl corpus. The
table presents phonemes together with their most confusable phonemes according to the con-
fusion matrix.

Actual phoneme J g eˆ o 6 9 ˆ

Confused phoneme
AG2P n Z n O @ eˆ

JMM-G2P n k aˆ O E -

To analyze the performance of the acoustic G2P and joint multigram ap-
proaches in terms of word accuracy at pronunciation level, we calculated the
frequency of the unseen words in the test set based on Levenshtein distance
between the generated pronunciation and the manual pronunciation. Figure 9
depicts the results when using pronunciations derived from the acoustic G2P
and joint multigram approaches.
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Figure 9: Frequency of the words in terms of Levenshtein distance between the generated
pronunciation and the manual pronunciation for PhoneBook and MediaParl databases using
acoustic G2P and joint multigram approaches.
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For the acoustic G2P approach, about 15.9% and 55.1% of the words lie
within the Levenshtein distance of two in PhoneBook and MediaParl databases
respectively. For the joint multigram approach, however, most of the words
(50.7% and 90.2%) are within the Levenshtein distance of two in PhoneBook
and MediaParl databases.

To have a better sense about the quality of the pronunciations generated
by acoustic G2P and joint multigram approaches, Tables 7 and 8 present ex-
amples of the generated pronunciations for the unseen words in the PhoneBook
and MediaParl corpora respectively. It can be observed from both tables that
the joint multigram and acoustic G2P approaches show different kinds of ca-
pabilities in generating correct pronunciations. More precisely, in the English
words “yowler”, “uncharted” and “uninspired”, the acoustic G2P approach is
providing better pronunciations than the joint multigram approach. Similarly
for the French words “anodin” and “tes”, the acoustic G2P approach is able to
generate correct pronunciations, while the joint multigram approach fails. On
the other hand, the joint multigram approach is able to provide better pronun-
ciations for the English words “activist” and “amputate” and for the French
words “examinerons” and “banale” compared to the acoustic G2P approach.
As the joint multigram and acoustic G2P approaches generate different types of
errors, it can be hypothesized that combination of the two approaches can help
in improving the ASR accuracy. We will see the effect of combination of G2P
approaches on the ASR performance in Section 6.2.

Table 7: Sample unseen words from the PhoneBook corpus along with their joint multigram-
based (JMM-based), acoustic G2P-based (AG2P-based) and manual pronunciations.

Word JMM-based pronunciation AG2P-based pronunciation Manual pronunciation
yowler /y/ /o/ /l/ /X/ /y/ /W/ /l/ /X/ /y/ /W/ /l/ /X/
uncharted /ˆ/ /n/ /k/ /a/ /r/ /t/ /x/ /d/ /ˆ/ /n/ /C/ /a/ /r/ /t/ /x/ /d/ /ˆ/ /n/ /C/ /a/ /r/ /t/ /x/ /d/
uninspired /ˆ/ /n/ /I/ /n/ /s/ /p/ /Y/ /r/ /d/ /ˆ/ /n/ /x/ /n/ /s/ /p/ /Y/ /X/ /d/ /ˆ/ /n/ /x/ /n/ /s/ /p/ /Y/ /X/ /d/
activist /@/ /k/ /t/ /x/ /v/ /I/ /s/ /t/ /@/ /k/ /x/ /v/ /I/ /s/ /t/ /@/ /k/ /t/ /x/ /v/ /x/ /s/ /t/
amputate /@/ /m/ /p/ /y/ /u/ /t/ /e/ /t/ /@/ /m/ /p/ /U/ /t/ /e/ /t/ /@/ /m/ /p/ /y/ /x/ /t/ /e/ /t/
bearskin /b/ /i/ /r/ /s/ /k/ /I/ /n/ /b/ /i/ /r/ /s/ /k/ /x/ /n/ /b/ /e/ /r/ /s/ /k/ /I/ /n/

Table 8: Sample unseen words from the MediaParl corpus along with their joint multigram-
based (JMM-based), acoustic G2P-based (AG2P-based) and manual pronunciations.

Word JMM-based pronunciation AG2P-based pronunciation Manual pronunciation
bourlard /b/ /u/ /R/ /a/ /R/ /b/ /u/ /R/ /l/ /a/ /R/ /b/ /u/ /R/ /l/ /a/ /R/
tes /t/ /t/ /E/ /t/ /E/
anodin /a/ /n/ /O/ /d/ /i/ /n/ /a/ /n/ /O/ /d/ /e/ /ˆ/ /a/ /n/ /O/ /d/ /eˆ/
examinerons /E/ /g/ /z/ /a/ /m/ /i/ /n/ /@/ /R/ /oˆ/ /E/ /z/ /a/ /m/ /i/ /n/ /E/ /R/ /oˆ/ /E/ /g/ /z/ /a/ /m/ /i/ /n/ /@/ /R/ /oˆ/
rèadaptation /R/ /E/ /a/ /d/ /a/ /p/ /t/ /a/ /s/ /j/ /oˆ/ /R/ /E/ /a/ /d/ /a/ /t/ /a/ /s/ /j/ /oˆ/ /R/ /E/ /a/ /d/ /a/ /p/ /t/ /a/ /s/ /j/ /oˆ/
banale /b/ /a/ /n/ /a/ /l/ /b/ /aˆ/ /n/ /a/ /l/ /b/ /a/ /n/ /a/ /l/

6. ASR level studies

We evaluated the G2P-based lexicons at the ASR level considering different
facets:

1. Evaluation using deterministic and probabilistic lexical modeling-based ASR
systems.
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2. Combination of different G2P approaches.

3. Comparison with the grapheme-based ASR system using KL-HMM.

This section presents the ASR evaluation setup and results for each of these
aspects. For comparing the ASR performance of different systems, we applied
the statistical significant test presented in (Bisani and Ney, 2004) with the
confidence level of 95%.

Note that as explained in Section 4.2, the G2P-based lexicon contains pro-
nunciations from the manual dictionary for the words seen during training, and
G2P-generated pronunciations for the unseen words. As the pronunciations for
the unseen words are added to the lexicon before decoding, the ASR systems do
not have any out-of-vocabulary words. Furthermore, there is no bias in any of
the ASR systems due to missing pronunciation variants for the high frequency
words since, as explained in Section 4, for the PhoneBook corpus, the manual
dictionary does not include any pronunciation variants for the unseen words;
and for the MediaParl corpus, the unseen words occur rarely in the test set.

6.1. Deterministic and probabilistic lexical modeling-based ASR studies

We used the HMM/GMM framework for the deterministic lexical modeling-
based ASR studies. We trained standard cross-word CD HMM/GMM systems
using the manual dictionary with 39 dimensional PLP cepstral features xt ex-
tracted using HTK toolkit (Young et al., 2006). During decoding, the G2P-
based lexicons were used.

For the probabilistic lexical modeling-based ASR studies, we trained KL-
HMM systems using the manual dictionary with phoneme posterior probabilities
zt obtained from MLP-5-CI-M as feature observations and modeled CD (tri)
subword units. The KL-HMM parameters were trained by minimizing the cost
function based on SCSKL as the local score. For tying KL-HMM (lexical) states
we applied the KL-divergence-based decision tree state tying method.

It is worth mentioning that in deterministic lexical modeling based ASR
framework, it is common to use ANNs that classify clustered CD phoneme
states, referred to as CD neural networks (CDNNs), instead of GMMs as acous-
tic model to estimate emission likelihoods (Hinton et al., 2012). In recent works,
it has been shown that the performance of a KL-HMM system using an ANN
classifying CI phonemes is not significantly different than the HMM/CDNN
ASR system (Razavi et al., 2014; Razavi and Magimai.-Doss, 2014). There-
fore in this study, we limited the deterministic lexical model studies to only
HMM/GMM systems, as the performance of a KL-HMM system using CI
phonemes as acoustic units could be already an indicative of the performance
of an HMM/CDNN ASR system.

Table 9 presents the performance of HMM/GMM and KL-HMM systems
in terms of word accuracy (100 - ASR word error rate) using single-best and
multiple pronunciations from different G2P approaches for the unseen words.
For the sake of clarity, we have investigated the ASR experimental results in
the single-best pronunciation and multiple pronunciation scenarios separately.
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Table 9: Performance of HMM/GMM and KL-HMM systems in terms of word accuracy using
different G2P approaches. AG2P, JMM-G2P and DT-G2P represent acoustic G2P approach,
joint multigram G2P approach and decision tree-based G2P approach respectively.

G2P approach
Single-best pronunciation Multiple pronunciation
HMM/GMM KL-HMM HMM/GMM KL-HMM

AG2P-MLP-3-CI-42 81.1 84.8 86.8 88.3
AG2P-MLP-5-CI-42 82.1 85.1 87.3 89.0

AG2P-MLP-5-CD-321 82.9 85.0 88.7 89.4
JMM-G2P 88.8 89.4 93.0 93.7
DT-G2P 85.2 86.9 86.9 88.5

Manual dictionary 98.2 98.2 98.2 98.2
(a) PhoneBook

G2P approach
Single-best pronunciation Multiple pronunciation
HMM/GMM KL-HMM HMM/GMM KL-HMM

AG2P-MLP-3-CI-38 72.0 73.3 72.5 73.6
AG2P-MLP-5-CI-38 72.0 73.2 72.5 73.7

AG2P-MLP-5-CD-437 72.2 73.3 72.6 73.6
JMM-G2P 73.1 74.0 73.2 74.0
DT-G2P 73.0 73.8 73.1 74.0

Manual dictionary 73.2 74.1 73.2 74.1
(b) MediaParl

6.1.1. ASR results using single-best pronunciations

For the acoustic G2P approach, it can be observed from Table 9 that similar
to the pronunciation level results in Table 4, with improvements in the ANN
architecture, the performance of HMM/GMM systems also improves in most
of the cases. However such improvements are not observed for the KL-HMM
systems.

The performance of the acoustic G2P approach is not significantly differ-
ent than the joint multigram and the decision tree-based G2P methods in the
MediaParl corpus. However, for the PhoneBook task, the joint multigram and
decision tree-based G2P approaches perform significantly better than the acous-
tic G2P method. The difference in the behavior of the acoustic G2P approach
in the two databases could be due to the following factors:

• Language: Since the grapheme-to-phoneme relationship in English is irregular
compared to French, it may require modeling of more than single preceding
and single following grapheme context.

• Discrepancy between the manually-generated and G2P-generated pronuncia-
tions: As it can be seen from Table 4, the word accuracy at the pronunciation
level for the acoustic G2P approach is poor (in particular in the PhoneBook
corpus). This is partly due to replacement of vowel phonemes with similar
vowels as observed in Tables 5 and 6. As a consequence, the phoneme con-
texts seen in the manual lexicon which are used for ASR system training are
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different from the phoneme contexts obtained from the generated pronunci-
ations at decoding. This effect could lead to pronunciation model mismatch
at the ASR system level when training is done using manual dictionary and
decoding is performed using the G2P-based pronunciations for the unseen
words. The pronunciation model mismatch could particularly affect the ASR
performance in the case of PhoneBook task where the words are uncommon
and the words in the test data are entirely different than training data, i.e.,
the test set vocabulary is completely unseen. For the MediaParl corpus, how-
ever, as mentioned earlier the unseen words are 20% of the overall words
in the test vocabulary which do not appear frequently in the test set. As
a result, the possible discrepancies between the existing and G2P-generated
pronunciations for the unseen words may not affect the performance of the
system.

In order to ascertain the effect of inconsistencies, we generated lexicons for
the PhoneBook corpus, in which G2P-generated pronunciations were exploited
for the seen words in addition to the unseen words (no pronunciation from the
manual lexicon was used). We then trained the ASR system using the new
lexicon. Table 10 presents the ASR performance in terms of word accuracy.

Table 10: Performance of ASR systems in terms of word accuracy when using single-best G2P-
generated pronunciations at both train and test lexicons for the PhoneBook corpus. AG2P,
JMM-G2P and DT-G2P represent acoustic G2P approach, joint multigram G2P approach
and decision tree-based G2P approach respectively.

G2P Approach
Word accuracy

HMM/GMM KL-HMM
AG2P-MLP-5-CD-321 88.3 88.8

JMM-G2P 89.1 89.4
DT-G2P 88.5 88.1

Manual dictionary 98.2 98.2

It can be observed that in almost all cases, the ASR systems using G2P-
generated pronunciations in both train and test lexicons perform better than
the systems using G2P-generated pronunciations only for unseen words. These
improvements can be attributed to reducing the inconsistencies between the
train and test dictionary by using G2P-generated pronunciations in both lexi-
cons. Such observations have also been made in a previous study (Jouvet et al.,
2012). Furthermore, it can be seen that the difference between the ASR perfor-
mance of the acoustic G2P and conventional G2P approaches is not statistically
significant when using G2P-generated pronunciations in both train and test
lexicons.

As it can be seen in Table 9, the KL-HMM systems generally perform better
than HMM/GMM systems in both databases. This observation is consistent
with our previous studies (Razavi et al., 2014; Razavi and Magimai.-Doss, 2014).
In addition, the gap between the performance of different systems is relatively
less in the KL-HMM framework compared to the HMM/GMM approach. The
improvements in the performance and reduction in the gap can be attributed
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to the probabilistic lexical modeling framework of KL-HMM, which enables
capturing the possible inconsistencies and variations in pronunciations.

6.1.2. ASR results using multiple pronunciations

As it can be observed from Table 9, for the PhoneBook corpus, using multiple
pronunciations leads to significant improvements over single-best pronunciations
in the ASR word accuracy for all the G2P approaches. Furthermore, through
use of multiple pronunciations, the gap between the acoustic G2P approach and
conventional G2P approaches decreases. In the case of MediaParl, the systems
using manual lexicon and G2P-based lexicon with multiple pronunciations per-
form similar. Similar to the studies in the single-best pronunciation scenario,
to overcome the pronunciation inconsistency issue, we conducted experiments
on the PhoneBook corpus by training an ASR system using the single-best
G2P-generated pronunciations in the train lexicon, and then decoding using
the multiple G2P-based pronunciations in the test lexicon. Table 11 presents
the ASR performance in terms of word accuracy. It can be seen that the G2P
approaches can benefit from using G2P-generated pronunciations in both train
and test lexicons.

Table 11: Performance of ASR systems in terms of word accuracy when using single-best G2P-
generated pronunciations at the train lexicon and multiple G2P-generated pronunciations at
test lexicon for the PhoneBook corpus. AG2P, JMM-G2P and DT-G2P represent acoustic G2P
approach, joint multigram G2P approach and decision tree-based G2P approach respectively.

G2P Approach
Word accuracy

HMM/GMM KL-HMM
AG2P-MLP-5-CD-321 91.6 91.7

JMM-G2P 93.2 93.7
DT-G2P 89.8 89.2

Manual dictionary 98.2 98.2

6.2. Combination of G2P approaches

As discussed earlier in Section 3.5, different G2P approaches exploit different
resources and techniques to learn the grapheme-to-phoneme relationship and
infer pronunciations. It would be interesting to investigate whether combination
of pronunciation lexicons obtained through various G2P approaches can bring
any benefits for the ASR systems. Table 12 presents the average number of
unique pronunciations per each unseen word for the PhoneBook and MediaParl
corpora when combining G2P-based lexicons. The results show that combining
the acoustic G2P approach with a conventional G2P approach leads to more
diverse pronunciations than combination of conventional G2P approaches.

Table 13 reports the ASR performance of HMM/GMM and KL-HMM sys-
tems in terms of word accuracy when combining pronunciations from different
G2P approaches. Similar to experimental studies in Section 6.1, we present
the ASR results using a combination of single-best pronunciations and multiple
pronunciations from each of the G2P approaches separately.
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Table 12: Average number of pronunciations per unseen word obtained through combining
different G2P approaches. The first column in each database represents the average number
of pronunciations per unseen word when combining single-best pronunciations from each of
the G2P approaches. The second column shows the average number of pronunciations when
combining pronunciation variants generated from each of the G2P approaches. AG2P, DT-
G2P and JMM-G2P represent acoustic G2P approach, decision tree based G2P approach and
joint multigram G2P approach respectively.

G2P Approach
Combinations

PhoneBook MediaParl
Comb. of 1-best

G2P-based prons.
Comb. of multiple
G2P-based prons.

Comb. of 1-best
G2P-based prons.

Comb. of multiple
G2P-based prons.

AG2P +
DT-G2P

1.9 8.2 1.4 4.7

AG2P +
JMM-G2P

1.8 11.4 1.4 6.2

JMM-G2P +
DT-G2P

1.6 5.7 1.1 2.8

AG2P+
JMM-G2P+
DT-G2P

2.4 12.1 1.6 6.4

6.2.1. ASR results using combination of single-best pronunciations from each of
the G2P approaches

For the PhoneBook corpus, significant improvements in terms of ASR word
accuracy are achieved through combination of the G2P approaches compared
to the case using single-best pronunciations from a G2P approach (Table 9).

For the MediaParl corpus, it can be seen that the systems using the lexicon
obtained from combination of G2P approaches yield the same performance as
the system using the manual dictionary. However, compared to the PhoneBook
corpus, the improvements in ASR accuracy through combination of G2P ap-
proaches are less noticeable. This can be due to availability of larger amount of
training data in the MediaParl corpus which reduces the effect of adding pro-
nunciation variants. Furthermore, as the unseen words are only about 20% of
the words in the test set, the possible improvements at the pronunciation level
may not affect the performance at the ASR level significantly.

As it can be seen from Table 9, the performance of the systems using multiple
pronunciations from the joint multigram approach (with 4.9 and 2.7 pronunci-
ations per unseen word in PhoneBook and MediaParl respectively) is the same
as the performance of the systems using multiple pronunciations through com-
bination of single-best G2P-based pronunciations from various G2P approaches
(with 2.4 and 1.6 pronunciations per unseen word in the PhoneBook and Me-
diaParl respectively). This indicates that by obtaining multiple pronunciations
through combination of single-best G2P-based pronunciations from various ap-
proaches, it is possible to achieve a similar performance to the case using mul-
tiple pronunciations from a single G2P approach, but with a fewer number of
pronunciation variants.
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Table 13: ASR performance in terms of word accuracy when combining pronunciations from
different G2P approaches. AG2P, JMM-G2P and DT-G2P represent acoustic G2P approach,
joint multigram G2P approach and decision tree-based G2P approach respectively.

G2P approach
Combination of 1-best

G2P-based pronunciations
Combination of multiple

G2P-based pronunciations
HMM/GMM KL-HMM HMM/GMM KL-HMM

AG2P-MLP-5-CD-321
+JMM-G2P

91.7 92.1 94.9 95.0

AG2P-MLP-5-CD-321
+DT-G2P

90.4 91.6 92.8 93.4

JMM-G2P
+DT-G2P

92.6 93.0 94.5 95.0

AG2P-MLP-5-CD-321
+ JMM-G2P
+DT-G2P

93.2 93.7 95.1 95.4

Manual dictionary 98.2 98.2 98.2 98.2
(a) PhoneBook

G2P approach
Combination of 1-best

G2P-based pronunciations
Combination of multiple

G2P-based pronunciations
HMM/GMM KL-HMM HMM/GMM KL-HMM

AG2P-MLP-5-CD-437
+JMM-G2P

73.1 74.2 73.2 74.1

AG2P-MLP-5-CD-437
+DT-G2P

73.1 74.1 73.1 74.0

JMM-G2P
+DT-G2P

73.2 74.1 73.3 74.1

AG2P-MLP-5-CD-437
+JMM-G2P
+DT-G2P

73.2 74.1 73.1 74.0

Manual dictionary 73.2 74.1 73.2 74.1
(b) MediaParl

6.2.2. ASR results using combination of multiple pronunciations from each of
the G2P approaches

It can be seen from Table 13 that for the PhoneBook corpus, a combination of
pronunciation variants from each of the G2P approaches leads to improvements
over the combination of single-best G2P-based pronunciations. Moreover, it
brings further improvements over the case using multiple pronunciations from a
single G2P approach (Table 9). This can indicate that different G2P approaches
bring complementary information to one another. For the MediaParl corpus,
similar to the observations in Section 6.2.1, the combination of G2P approaches
does not lead to significant changes in the ASR performance. In fact, the ASR
performance in some cases slightly degrades which could suggest that in large
vocabulary continuous speech recognition tasks, adding pronunciation variants
without any pruning can lead to confusions between the words.
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6.3. Comparison with grapheme-based ASR using KL-HMM

The grapheme-based KL-HMM system was originally developed for
ASR (Magimai.-Doss et al., 2011) and was later exploited for pronunciation
generation. As grapheme-based approaches can avoid the need for a phonemic
lexicon, it would be interesting to investigate whether doing lexicon development
and ASR training in two separate stages as done in present phoneme-based ASR
systems can bring any benefits over grapheme-based KL-HMM systems. For this
purpose, we compared the grapheme-based KL-HMM system with the phoneme-
based KL-HMM system using the lexicon obtained from combination of G2P
approaches. The KL-HMM systems were built in the same setup explained in
Section 6.1.

Table 14 presents the ASR results in terms of word accuracy. The results
show that building an ASR system as a two stage process helps, since it not only
enables exploiting phonetic pronunciations, but also facilitates using pronuncia-
tion variants obtained either through combination of different G2P approaches
or from a single G2P approach.

Table 14: Comparison of the ASR results for the grapheme-based KL-HMM and the phoneme-
based KL-HMM systems using the pronunciations derived from the combination of G2P ap-
proaches.

Database
Word accuracy

Grapheme-based KL-HMM Phoneme (G2P)-based KL-HMM
PhoneBook 93.6 95.4
MediaParl 71.7 74.2

7. Conclusions

In this article, we presented a novel HMM-based G2P formalism in which
the grapheme-to-phoneme relationship is locally modeled as a distribution of
phoneme probabilities given a grapheme input. We showed that the formalism
together with recent developments in grapheme-based ASR using probabilistic
lexical modeling naturally leads to a G2P approach where the grapheme-to-
phoneme relationship is learned through acoustics. Furthermore, the existing
local classification-based G2P approaches based on decision trees and ANNs can
be seen as a particular case of this formulation.

We compared the proposed acoustic G2P approach against the conventional
G2P approaches on two different languages with deep alphabetic orthographies
and considered using both single-best pronunciations and multiple pronuncia-
tions per word. The studies showed that the acoustic G2P-based lexicon per-
forms poor at the pronunciation level compared to conventional G2P approaches
when using a single-best pronunciation per word. However, through use of pro-
nunciation variants, the gap in performance between the proposed approach
and conventional G2P approaches reduces. Furthermore, despite the relatively
poor performance at the pronunciation-level, the ASR system using the acoustic
G2P-based lexicon performs statistically similar to the system using a lexicon
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from conventional G2P approaches. Though the proposed acoustic G2P ap-
proach does not outperform the state-of-the-art G2P methods, it can bring two
main advantages. We discuss them briefly below.

As observed through experimental studies, the acoustic G2P approach can
bring complementary information compared to state-of-the-art G2P approaches.
i.e., combination of lexicons from the acoustic G2P approach and conventional
approaches can yield better ASR systems. In this article, we combined the
proposed acoustic G2P approach and conventional G2P approaches at the lex-
icon level. However, the HMM-based G2P formulation can be effectively ex-
ploited to combine different streams of estimates of probability of phonemes
given graphemes obtained from various G2P approaches during pronunciation
inference (Razavi and Magimai.-Doss, 2015a).

Conventional G2P approaches necessitate the availability of a seed lexicon
in the target language or domain. The proposed approach alleviates the need
for a seed lexicon from the target language or domain given some amount of
word level transcribed speech data. Specifically as discussed earlier in Sec-
tion 3.2.2 (Point 3), the acoustic-to-phoneme relationship (zt estimator) can be
learned on language-independent data and the grapheme-to-phoneme relation-
ship ({yi}Ii=1) can be learned on target language or domain speech data. This
could be potentially exploited to:

• Develop lexicons for new domains such as names, child speech and accented
speech. For example, in the case of accented speech the proposed approach
could be employed in the following manner. The acoustic-to-phoneme rela-
tionship (i.e., ANN) is learned on large amount of native speech while the
grapheme-to-phoneme relationship (i.e., KL-HMM) is learned on available
non-native speech. Given the learned grapheme-to-phoneme relationships the
pronunciations are then inferred.

• Develop lexicons for under-resourced languages which lack phonetic lexicons.
In such a case, we could employ the proposed acoustic G2P approach in
the following manner. The acoustic-to-multilingual phoneme relationship is
learned using auxiliary acoustic and lexical resources from resource-rich lan-
guages, and the grapheme-to-multilingual phoneme relationship is learned us-
ing target language speech data. The pronunciations are then finally inferred
given the learned grapheme-to-multilingual phoneme relationships. In other
words, the proposed approach provides a means to exploit lexical knowledge
and acoustic resources from resource-rich languages towards development of
lexicons for under-resourced languages.

Furthermore, the proposed acoustic G2P approach can be exploited for de-
veloping lexicons based on automatically derived subword units (Razavi and
Magimai.-Doss, 2015b; Razavi et al., 2015b).

The proposed acoustic G2P approach has also room for further improve-
ments. In this article, we investigated generating pronunciation variants through
N -best decoding at the inference stage. However, multiple pronunciations
can also be generated by employing different cost functions at the learning
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stage (Razavi et al., 2015a). Our future work, in addition to the above discussed
potential future directions, will also further investigate pronunciation variants
generation and pronunciation pruning strategies for the proposed acoustic G2P
approach.
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Appendix A. Parameter estimation in the KL-HMM approach

KL-HMM is fully parameterized by Θkull = {{yi}Ii=1, {aij}Ii,j=1} where I is
the total number of states and state i is represented by categorical distribution
yi, aij is the transition probability from state i to state j.

Given a training set of N utterances {Z(n),W (n)}Nn=1, where for each train-
ing utterance n, Z(n) represents sequence of acoustic state probability vectors
Z(n) = {z1(n), · · · , zt(n), · · · , zT (n)(n)} of length T (n) and W (n) represents
the sequence of underlying words, the parameters Θkull are estimated by Viterbi
expectation maximization algorithm which minimizes the cost function,

N∑
n=1

min
Q∈Q

T (n)∑
t=1

[SC(yqt , zt(n))− log aqt−1qt ] (A.1)

where qt ∈ {1, · · · , I}, Q denotes the set of all possible HMM state sequences,
Q = {q1(n), · · · , qt(n), · · · , qT (n)} denotes a sequence of HMM states and
zt(n) = [z1t (n), · · · , zdt (n), · · · , zDt (n)]T . More precisely, the training process
involves iteration over the segmentation and the optimization steps until con-
vergence. Given an estimate of Θkull, the segmentation step yields an optimal
state sequence for each training utterance using Viterbi algorithm. The opti-
mization step then estimates a new set of model parameters given the optimal
state sequences, i.e., alignment and zt belonging to each of these states.

With SCRKL as the local score, the optimal state distribution is the arith-
metic mean of the training acoustic state probability vectors assigned to the
state, i.e.,

ydi =
1

M(i)

∑
zt(n)∈Z(i)

zdt (n) ∀n, t (A.2)

where Z(i) denotes the set of acoustic state probability vectors assigned to state
i and M(i) is the cardinality of Z(i).
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With SCKL as the local score, the optimal state distribution is the normal-
ized geometric mean of the training acoustic state probability vectors assigned
to the state, i.e.,

ydi =
y−di∑D
d=1 y

−d
i

where y−di = (
∏

zt(n)∈Z(i)

zdt (n))
1

M(i) ∀n, t (A.3)

where y−di represents the geometric mean of state i for dimension d, Z(i) denotes
the set of acoustic state probability vectors assigned to state i and M(i) is the
cardinality of Z(i).

With SCSKL as the local score, there is no closed form solution to find the
optimal lexical state distribution. The optimal lexical state distribution can be
computed iteratively using the arithmetic and the normalized geometric mean
of the acoustic state probability vectors assigned to the state (Veldhuis, 2002).
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