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Abstract
Object recognition is one of the most important problems in computer vision. However, visual recogni-
tion poses many challenges when tried to be reproduced by artificial systems. A main challenge is the
problem of variability: objects can appear across huge variations in pose, appearance, illumination
and occlusion, and a visual system need to be robust to all these changes. In the present thesis, we are
interested in pixel-level recognition problems, i.e., problems in which the objective is to partition a
given image into multiple regions (overlapping or not) that are considered meaningful according to
some criterion.
Our interests are in algorithms that require the least amount of feature engineering and are easy to
scale. Deep learning methods fit very well with this objective: these models alleviate the need of
engineered features by discriminatively training a system from raw data (pixels). More precisely, we
propose different convolutional neural network (CNN) based algorithms to deal with three important
segmentation problems: semantic segmentation, object proposal generation and object detection with
segments.
The objective of semantic segmentation is to generate a categorical label to each pixel present in a
scene. We first study the problem of fully supervised semantic segmentation. We propose a recurrent
CNN that is able to consider a large input context (while limiting its capacity), which is essential to
model long range pixel label dependencies. This approach achieves state-of-the-art performance
without relying on any post-processing smoothing step. However, having densely labeled images to
train a model can be expensive and require a lot of human labor. We also propose a CNN-based model
that is able to infer object semantic segmentation by leveraging only the object category information
from images. This is achieved by casting the problem into a multiple instance learning framework. This
approach beats previous state of the art in weakly supervised semantic segmentation by a large margin.
Object proposal algorithms generate a set of regions (segments) that are likely to contain objects,
independent of their semantic category. Contrary to most approaches (which rely on low-level vision
cues), we propose a CNN-based discriminative approach that is able to learn segmentation proposals
from raw pixels. This approach is proven to be quite effective in this setting, achieving substantially
higher recall using fewer proposals than other methods. The state of the art is pushed further with the
introduction of a new top-down network augmentation. The resulting bottom-up/top-down network
combines low-level rich spatial information with high-level object semantic information to improve
segmentation, while remaining fast at test time.
Finally, we show that the proposals generated by our approach, when coupled with a standard state-of-
the-art object detection pipeline, achieve considerably better performance than previous proposals
methods.

Key words: object recognition, artificial neural networks, deep learning, semantic segmentation, object

proposals, object detection, image segmentation.
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Résumé
La reconnaissance d’objets est l’un des problèmes les plus importants de la vision par ordinateur.
Cependant, la reconnaissance visuelle pose de nombreux défis lorsqu’on essaie de la reproduire par des
systèmes artificiels. Un défi important est le problème de la variabilité : les objets peuvent apparaître
à travers d’énormes variations de pose, d’apparence, d’illumination et d’occlusion, et un système
visuel doit être robuste à tous ces changements. Dans la présente thèse, nous nous intéressons à des
problèmes de reconnaissance au niveau des pixels, c’est-à-dire des problèmes dans lesquels l’objectif
est de partitionner une image donnée en plusieurs régions (chevauchantes ou non) considérées comme
significatives selon un certain critère.

Nos intérêts sont dans des algorithmes qui nécessitent le moins d’ingénierie de fonctionnalité et
sont faciles à mettre en échelle. Les méthodes d’apprentissage profond s’accordent très bien avec cet
objectif : ces modèles allègent le besoin de fonctionnalités techniques en formant discriminativement
un système à partir de données brutes (pixels). Plus précisément, nous proposons différents algorithmes
basés sur le réseau neuronal convolutif (CNN) pour traiter trois problèmes de segmentation importants :
la segmentation sémantique, la génération de propositions d’objets et la détection d’objets avec des
segments.

L’objectif de la segmentation sémantique est de générer un label catégorique pour chaque pixel présent
dans une scène. Nous étudions d’abord le problème de la segmentation sémantique entièrement
supervisée. Nous proposons un CNN récurrent capable de considérer un contexte d’entrée important
(tout en limitant sa capacité), ce qui est essentiel pour modéliser les dépendances d’étiquettes de pixel
à longue portée. Cette approche permet d’obtenir des performances de pointe sans compter sur une
étape de lissage après-traitement. Cependant, avoir des images fortement marquées pour entrainer
un modèle peut être coûteux. Nous proposons également un modèle basé sur CNN qui est capable
d’inférer la segmentation sémantique d’objets en utilisant uniquement les informations de catégorie
d’objet à partir d’images. Ceci est réalisé en jetant le problème dans le cadre d’apprentissage à instance
multiple. Cette approche dépasse largement l’état de l’art dans le cadre de segmentation sémantique
faiblement supervisée.

Les algorithmes de proposition d’objet génèrent un ensemble de régions (segments) susceptibles de
contenir des objets, indépendamment de leur catégorie sémantique. Contrairement à la plupart des
approches (qui s’appuient sur des indices de vision de bas niveau), nous proposons une approche
discriminative basée sur CNN capable d’apprendre des propositions de segmentation à partir de pixels
bruts. Cette approche s’est révélée très efficace dans ce contexte, ce qui a permis d’obtenir un rappel
beaucoup plus important en utilisant moins de propositions que d’autres méthodes. L’état de l’art est
poussé plus loin avec l’introduction d’une nouvelle augmentation de réseau de haut en bas. Le réseau
ascendant / descendant résultant combine des informations spatiales riches de faible niveau avec
des informations sémantiques d’objet de haut niveau pour améliorer la segmentation tout en restant
rapide en inference.

Enfin, nous montrons que les propositions générées par notre approche, associées à un pipeline de
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détection d’objets de pointe, atteignent des performances nettement meilleures que les méthodes de

propositions précédentes.

Mots clefs : reconnaissance d’objet, réseaux de neurone artificielle, apprentissage profond,
segmentation sémantique, proposition d’objets, détection d’objet, segmentation d’image.
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1 Introduction

1.1 Overview

Computer vision is the science of endowing computing machines with visual perception, that
is, the ability to see. Palmer (1999) defines visual perception as being the process of acquiring
knowledge about environmental objects and events by extracting information from the light
they emit or reflect (through any optical device such as an eye or a camera). By this definition,
vision can be interpreted as the ability to model the perceivable world and achieve high-level
understanding of it. Understanding in this context means transforming visual information
into descriptions of the world.

A central problem in computer vision is that of object recognition. Humans possess a remark-
able ability to parse an image (or many images) simply by looking at them. In a blink of an
eye, we are able to fully analyze an image and separate all the components present on it.
Furthermore, humans can easily generalize from observing a set of objects to recognizing
objects that have never been seen before. Nevertheless, it has been proved particularly difficult
to build computing machines that can do this task effortlessly.

The main computational difficulty in visual recognition is the problem of variability (Riesenhu-
ber and Poggio, 2000). A vision system is required to generalize objects across huge variations
in pose, appearance, viewpoint, illumination and occlusion. In its general form, visual recog-
nition is a very difficult computational problem, which is likely to be significantly involved in
eventually making intelligent machines.

Modern object recognition can be roughly divided in four different subproblems, according to
its level of complexity (see Figure 1.1):

(a) Image classification deals with giving a label to all the objects present in a scene, indepen-
dent of its location.

(b) Object detection with boxes is interested in not only generating a label for each class but
also define its location with a bounding box surrounding each object present in an image.

1
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Microsoft COCO: Common Objects in Context
Tsung-Yi Lin Michael Maire Serge Belongie Lubomir Bourdev Ross Girshick
James Hays Pietro Perona Deva Ramanan C. Lawrence Zitnick Piotr Dollár

Abstract—We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of
object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex
everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in
precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a
total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via
novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of
the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and
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1 INTRODUCTION

One of the primary goals of computer vision is the
understanding of visual scenes. Scene understanding
involves numerous tasks including recognizing what
objects are present, localizing the objects in 2D and 3D,
determining the objects’ and scene’s attributes, charac-
terizing relationships between objects and providing a
semantic description of the scene. The current object clas-
sification and detection datasets [1], [2], [3], [4] help us
explore the first challenges related to scene understand-
ing. For instance the ImageNet dataset [1], which con-
tains an unprecedented number of images, has recently
enabled breakthroughs in both object classification and
detection research [5], [6], [7]. The community has also
created datasets containing object attributes [8], scene
attributes [9], keypoints [10], and 3D scene information
[11]. This leads us to the obvious question: what datasets
will best continue our advance towards our ultimate goal
of scene understanding?

We introduce a new large-scale dataset that addresses
three core research problems in scene understanding: de-
tecting non-iconic views (or non-canonical perspectives
[12]) of objects, contextual reasoning between objects
and the precise 2D localization of objects. For many
categories of objects, there exists an iconic view. For
example, when performing a web-based image search
for the object category “bike,” the top-ranked retrieved
examples appear in profile, unobstructed near the cen-
ter of a neatly composed photo. We posit that current
recognition systems perform fairly well on iconic views,
but struggle to recognize objects otherwise – in the
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Fig. 1: While previous object recognition datasets have
focused on (a) image classification, (b) object bounding
box localization or (c) semantic pixel-level segmentation,
we focus on (d) segmenting individual object instances.
We introduce a large, richly-annotated dataset comprised
of images depicting complex everyday scenes of com-
mon objects in their natural context.

background, partially occluded, amid clutter [13] – re-
flecting the composition of actual everyday scenes. We
verify this experimentally; when evaluated on everyday
scenes, models trained on our data perform better than
those trained with prior datasets. A challenge is finding
natural images that contain multiple objects. The identity
of many objects can only be resolved using context, due
to small size or ambiguous appearance in the image. To
push research in contextual reasoning, images depicting
scenes [3] rather than objects in isolation are necessary.
Finally, we argue that detailed spatial understanding of
object layout will be a core component of scene analysis.
An object’s spatial location can be defined coarsely using
a bounding box [2] or with a precise pixel-level segmen-
tation [14], [15], [16]. As we demonstrate, to measure
either kind of localization performance it is essential
for the dataset to have every instance of every object
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Figure 1.1 – The four subproblems of object recognition: (a) image classification, (b) object
detection with boxes, (c) semantic segmentation and (d) object detection with segments. See
text for detail. Image taken from (Lin et al., 2014).

(c) Semantic segmentation consists of giving a label to a possible semantic category to each
pixel present in an image.

(d) Object detection with segments consists of localizing all objects on a scene in a pixelwise
manner, that is, generate a segmentation mask to every object.

Note the difference between the third and the fourth subproblem. The objective of the former
is to give a label to every pixel in an image, independent of which instance the object belongs
to. The latter has to, at the same time, label all the pixels that belong to objects and assign each
pixel to a given object instance. Subproblem (d), object detection with segments, is arguably
the most challenging problem in object recognition and can be seen as a generalization of all
previous subproblems.

In the early days of computer vision (1970s and 1980s), researchers believed that vision could
be broken up into three different stages (Malik et al., 2016): (i) low level vision, related to
processes such as edge detection, (ii) mid level vision, leading to representations of surfaces
and (iii) high level features, corresponding to object recognition (Marr, 1982). In the 1990s,
however, this idea slightly disappeared (with the exception of approaches based on multiple
view geometry) to give place to feature-based learning approaches.

Feature-based learning approaches basically consist of extracting strong descriptive features
(usually with a strong domain-specific knowledge) from images and to train a simple classifier
to discriminate between different categories (Figure 1.2, top). Features used in vision problems
evolved from edges and corners in the 1970s and 1980s to the use of linear filters such as
Gaussian derivatives, Gabor and Haar wavelets in the 1990s (Malik et al., 2016). An important
development in feature-based learning was the development of histogram-based features
such as Scale-Invariant Feature Transformation (SIFT) (Lowe, 2004), Histogram of Oriented
Gradients (HOG) (Dalal and Triggs, 2005) and Speeded-Up Robust Features (SURF) (Bay et al.,
2008).

During the 1990s, another machine learning-based paradigm for vision problems also emerged:
that of feature representation learning. In this framework, instead of using hand-crafted dis-
criminative features from pixel values in an image, this class of algorithms allow a machine to
directly discover the features (representations) needed for recognition (Figure 1.2, bottom).
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Hand-crafted
Features

Hierarchical
Feature	learning Classifier

Classifier

Representation	Learning

Feature-based	Learning

jointly	 trained

Figure 1.2 – Schematic representation of feature-based and representation learning for the
problem of semantic segmentation. The former first extract engineered domain-specific
features and train a simple classifier while the latter jointly learn an hierarchy of features and
the classifier at the same time.

An important class of representation learning methods are the ones called deep learning (Le-
Cun et al., 2015). This approach consists of a multiple level of representation, obtained by
composing simple non linear modules that each transform the representation at one level
into a representation at a higher, more abstract level. Deep learning methods trade simple ma-
chine learning models trained with task-specific features for generic (possibly more complex)
machine learning algorithms trained with simple (raw pixels), hierarchical features.

Albeit its success in computer vision in 1990s (e.g. (LeCun et al., 1990, 1998)), deep learning
methods, and in particular Convolutional Neural Networks (CNNs), were not considered as
important as feature-based learning in object recognition. In the last few years, however,
this scenario drastically changed, mainly due to increasing amounts of available data, more
powerful computing machines and some new algorithmic developments. After Krizhevsky
et al. (2012) achieved impressive results in the challenging ImageNet (Deng et al., 2009)
classification problem, deep learning approaches became the de facto paradigm for learning
based methods in computer vision.

1.2 Objectives

Object recognition is a diverse and complex problem which underlie many different mecha-
nisms. The focus of this thesis is to develop different algorithms to tackle large-scale segmen-
tation problems (i.e. subproblems (c) and (d) on Figure 1.1), that is, problems that deal with
pixel-level information. In the context of the “three Rs of computer vision” proposed by Malik
et al. (2016), the work of this thesis encompasses “recognition” and “re-organization”.

The main objective of this thesis is to produce algorithms for different image segmentation
problems that can scale nicely with data and require the least amount of feature engineering
to achieve its goal. Deep learning methods fit particularly well with this motivation and have
proven to be very efficient in different domains, such as natural language processing (Collobert
et al., 2011), speech recognition (Hinton et al., 2012) and computer vision (He et al., 2016;
Krizhevsky et al., 2012). In particular, CNN (LeCun et al., 1998), a specialized neural network
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architecture, performs extremely well on image-based applications.

Throughout this thesis, we develop different algorithms to tackle three different large-scale
segmentation problems:

• Semantic Segmentation. Semantic segmentation (subproblem (c) of Figure 1.1), also
known as scene labeling, is the task of labeling each pixel of an image with the category
it belongs to. This is a challenging task as it consists of solving both segmentation and
multi-label recognition at once. Another challenge is the large-scale nature of the task:
simply labeling one thousand 320£ 240 images with a computer algorithm already
corresponds to producing over 76 million pixel labels. Paradoxically, in a database of
1000 images, most object classes occur only few times. In addition, the per-class pixel
distribution is often quite unbalanced: some objects like ‘sky’ tend to cover much more
pixels than other objects like ‘moon’. To add a level of difficulty, hand-labeling images
are very costly (as it requires segmenting objects at pixel level).

• Segment Object Proposal Generation. Object proposal algorithms aim to find diverse
regions in an image which are likely to contain objects (independent of its category). As
in semantic segmentation, these algorithms output a set of masks from an image. Unlike
semantic segmentation, instead of generating one label for each pixel of an image, the
interest of object proposal is to generate a set of regions that are likely to fully contain
objects. An ideal proposal method should possess three key characteristics: (i) high
recall (i.e. proposed regions should contain the maximum number of possible objects),
(ii) high recall should be achieved with a minimum number of regions as possible and
(iii) the proposal regions should match the object as accurately as possible. Object
proposals have many applications in computer vision, e.g., object detection, weakly
supervised learning, class-agnostic detection.

• Object Detection with Segments. This problem aims at finding regions in an image
that fully delineates an object as well as giving a label to each region. Object proposals
play a key role in modern object detection problems. State-of-the-art object detection
methods consist of two-phases: (i) a rich set of object proposals is generated and (ii)
a powerful classifier (usually a CNN) is applied to each proposal. Using this pipeline,
strong segment object proposal can be coupled with a classifier to deal with object
detection with boxes (subproblem (b)) and with segments (subproblem (d)).

1.3 Thesis Contributions

This thesis contains different contributions for pixel-level object recognition tasks, namely
semantic segmentation, segment object proposals generation and object detection with
segments. The thesis contributions are the following:

• Fully Supervised Semantic Segmentation. The goal of the semantic segmentation is
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to assign a class label to each pixel in an image. To ensure a good visual coherence
and a high class accuracy, it is essential for a model to capture long range (pixel) label
dependencies in images. In a feedforward architecture, this can be achieved simply by
considering a sufficiently large input context patch, around each pixel to be labeled.
The proposed approach consists of a recurrent convolutional neural network which
considers a large input context while limiting the capacity of the model. Contrary to
most standard approaches, our method does not rely on any segmentation technique
nor any task-specific features. The system is trained in an end-to-end manner over
raw pixels, and models complex spatial dependencies with low inference cost. As the
context size increases with the built-in recurrence, the model identifies and corrects its
own errors. Our approach yields good results in different scene labeling datasets.
This work has been first presented at the Deep Learning NIPS Workshop (Pinheiro and
Collobert, 2013), before being published at ICML (Pinheiro and Collobert, 2014).

• Weakly Supervised Semantic Segmentation. Training large scale semantic segmenta-
tion model requires a large amount of pixelwise labeled data, and this require a lot of
human labor. On the other hand, simply having the information of the presence (or
not) of a given object category requires much less effort. It is useful to develop a model
that can infer object segmentation by leveraging only object class information. This
problem can be viewed as a kind of weakly supervised segmentation task, and naturally
fits the multiple instance learning framework: every training image is known to have
(or not) at least one pixel corresponding to the image class label, and the segmentation
task can be rewritten as inferring the pixels belonging to the class of the object (given
one image, and its object class). We propose a CNN-based model, which is constrained
during training to put more weight on pixels which are important for classifying the
image. At test time, the model has learned to discriminate the right pixels well enough,
such that it performs very well on an existing segmentation benchmark, by adding only
few smoothing priors. This algorithm achieves state-of-the-art results in the weakly
supervised object segmentation task.
This work has been published at CVPR (Pinheiro and Collobert, 2015).

• Generating Segment Object Proposal. Another contribution of this thesis, is the devel-
opment of a new algorithm to generate object proposals, i.e. a set of regions in an image
that are likely to contain an object. We introduce an approach to learn object propos-
als based on a discriminative CNN. Such model is trained jointly with two objectives:
given an image patch, the first part of the system outputs a class-agnostic segmentation
mask, while the second part of the system outputs the likelihood of the patch being
centered on a full object. At test time, the model is efficiently applied on the whole test
image and generates a set of segmentation masks, each of them being assigned with a
corresponding object likelihood score. Compared to previous approaches, our model
obtains substantially higher object recall using fewer proposals. The proposed model
is also able to generalize to unseen categories it has not seen during training. Unlike
all previous approaches for generating object masks, this model does not rely on edges,
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superpixels, or any other form of low-level segmentation.
This work has been published at NIPS (Pinheiro et al., 2015) as a “spotlight” paper.

• Refining Object Segments. Object segmentation requires both object-level information
and low-level pixel data. This presents a challenge for feedforward networks: lower
layers in convolutional networks capture rich spatial information, while upper layers
encode object-level knowledge but are invariant to factors such as pose and appearance.
Therefore, we propose to augment feedforward networks for object segmentation with
a novel top-down refinement approach. The resulting bottom-up/top-down architec-
ture is capable of efficiently generating high-fidelity object masks. Similarly to skip
connections, this approach leverages features at all layers of the network. Unlike skip
connections, our approach does not attempt to output independent predictions at each
layer. Instead, the algorithm first output a coarse “mask encoding” in a feedforward
pass, then refines this mask encoding in a top-down pass using features at successively
lower layers. This approach is simple, fast, and effective. We demonstrate the efficiency
of this approach in segment object proposal generation.
This work has been published at ECCV (Pinheiro et al., 2016) as a “spotlight” paper.

• Object Detection. Among many applications in computer vision, object proposal al-
gorithms were found to be particularly important in object detection. Recent object
detection systems rely on two critical steps: (i) a set of object proposals is predicted
as efficiently as possible, and (ii) this set of candidate proposals is then passed to an
object classifier. Such approaches have been shown they can be fast, while achieving
the state of the art in detection performance. We show that the proposals generated by
our approach, when coupled in standard state-of-the-art detection pipeline, achieve
considerably better performance than previous proposal methods.
Part of this work has been published at BMVC (Zagoruyko et al., 2016).

1.4 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2: Background. In this chapter, we introduce the large-scale image segmenta-
tion problems in the context of this thesis and present other approaches to deal with
these problems. Then, we introduce the basics of convolution neural networks, a model
vastly used throughout the thesis.

• Chapter 3: Learning to Segment a Scene with Recurrent Convolutional Networks.
This chapter introduces a recurrent convolutional neural network model to deal with
the problem of scene labeling. This architecture allows us to consider a large input
context (while limiting its capacity), which is essential for a model to capture long range
(pixel) label dependencies. The proposed model is evaluated in two standard semantic
segmentation datasets.
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• Chapter 4: Learning to Segment with Image-Level Labeling. In this chapter, an algo-
rithm that is able to infer object segmentation by leveraging only object class informa-
tion is proposed. The problem can be seen as a kind of weakly supervised segmentation
task. The model is constrained during training to put more weight on pixels which are
important for classifying the image. At test time, the model has learned to discriminate
the right pixels and achieves good results in semantic segmentation benchmarks, by
adding only a few smoothing priors.

• Chapter 5: Learning to Generate Object Proposals. In this chapter, we present a way
to learn object proposals based on discriminative convolutional neural network. The
model is trained to generate a class-agnostic segmentation mask and a score of how likely
an input is to fully contains an object. At test time, the algorithm is efficiently applied
on an image and generate a set of segmentation masks, each of them assigned with a
likelihood score. Compared to previous approaches, our model obtains substantially
higher object recall using fewer proposals.

• Chapter 6: Learning to Refine Object Segments. This chapter proposes a network
augmentation to feedforward convolutional networks with a top-down refinement
approach. This augmentation leverages features at all layers of the network to improve
object segmentation. The improvement of this algorithm is demonstrated on the task of
object proposal generation, although it could be applied in other pixel-level labeling
task. The proposed model achieves a new state of the art performance in segment object
proposal algorithm.

• Chapter 7: Application of Proposals: Learning to Detect Objects. In this chapter, we
study an important application of object proposals: object detection. We show that the
state of the art proposals generated with the method of the previous chapter can achieve
important results on the challenging task of object detection with segments.

• Chapter 8: Conclusion. The last chapter concludes the work developed in this thesis
and propose further directions for research in object segmentation problems.
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2 Background

This thesis mainly focuses on deep learning methods for large-scale image segmentation. In
this chapter, we provide a background on the segmentation problems treated in this thesis
(Section 2.1). Then, we give a brief overview of visual representation learning with deep
networks, and in particular convolutional neural networks, this thesis’ method of choice to
deal with such problems (Section 2.2).

2.1 Large-Scale Segmentation

The objective of image segmentation is to partition a given image into multiple regions
(overlapping or not) that are considered meaningful according to some objective criterion or
homogeneity in some feature space. This definition relies on selecting an objective function
and, depending on this criterion, the purpose of segmentation may change.

A common criterion would be to segment images into different objects. However, the definition
of objects is itself ambiguous. For example, an object may refer to a thing (e.g. an airplane,
a horse, a person, etc. ) or to a stuff (objects of amorfous spatial extent, e.g. sky, road, grass,
etc.) (Forsyth et al., 1996).

The absence of a universal criterion has led to different definitions of segmentation in com-
puter vision. In the following, we briefly describe three different segmentation problems
studied in this thesis: semantic segmentation, object proposals generation and object detec-
tion with segments.

2.1.1 Semantic Segmentation

In semantic segmentation, also known as scene labeling (we use both terms indistinguishably),
we are interested in labeling every pixel in an image (Figure 2.1). Each pixel should receive a
semantic label (e.g. ‘sky’, ‘car’, ‘person’) based on its surrounding information (context). The
two most common approaches for this problem are the grammar-based methods, dated since
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Hand-crafted
Features

Hierarchical
Feature	learning Classifier

Classifier

Representation	Learning

Feature-based	Learning

jointly	 trained

Figure 2.1 – Semantic Segmentation illustration. The picture (left) is segmented into object
regions (right) represented here by different colors. Image from PASCAL-Context dataset (Mot-
taghi et al., 2014).

the origins of computer vision and graphical models-based methods, which rely on Markov
Random Fields (MRF) (Li, 2009) or Conditional Random Fields (CRF) (Lafferty et al., 2001).

Grammar-based methods

The first approach to semantic segmentation was grammar-based methods. This line of
work, known as syntactic pattern recognition, was an active area of research in the 1970s and
1980s (ichi Ohta et al., 1978; Hanson and Riseman, 1978; Fu and Albus, 1982; Ohta, 1985).
Segmenting, in this scenario, consisted of breaking the image into regions and relate these
regions to each other using formal grammar. Generating robust label predictions proven to be
extremely difficult without powerful techniques such as image feature descriptors or statistical
machine learning techniques. For this reason, this line of work almost stopped in the mid
1980s.

In the early 2000s, with the computer vision field more mature and with the help of tools
like powerful image descriptors and statistical machine learning, some researchers started
looking at grammar-based semantic segmentation once again (Zhu and Mumford, 2006;
Zhao and chun Zhu, 2011; Socher et al., 2011). Much of the grammar-based segmentation
involves learning and then enforcing the grammatical relationships, which can be difficult if
the grammatical structure is unknown or the categories are not evenly sampled.

Graphical Models-based methods

In the 2000s, another framework emerged for semantic segmentation based on graphical
models (mainly MRF and CRF). Most systems, followed approximately the same recipe (Tighe,
2013):

1. Extract a set of features for each pixel (or set of pixels, known as superpixels). These
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2.1. Large-Scale Segmentation

features can be basic image statistics or powerful hand-crafted features (e.g. SIFT, HOG,
SURF).

2. Train a local model to produce compatibility between the set of features and the ground-
truth class annotation (local classifier).

3. Use the trained classifier output as the unary term of an MRF or CRF.

4. Define a binary term (smoothing prior to assume consistency of the labelling) of the
MRF/CRF (usually a graph defined over the pixels/superpixels) and train the parameters
of the random field (global classifier).

5. Perform inference on the random field.

Following this pipeline, He et al. (2004) expand the classifier to include both local and global
image classification. Shotton et al. (2009) propose a parsing system that uses random forest
classifiers to represent local spatial layout of texture and uses a CRF as a smoothing prior. Gould
et al. (2009) introduced the idea of using two different label types (semantic and geometric) to
improve labeling performance (by ensuring consistency of both labels on the same region).

Context can also be used to improve semantic segmentation. Contextual relationships be-
tween different categories (e.g. ‘car’ is usually supported by ‘road’, but not ‘sky’) are usu-
ally learned from the labeled dataset. The contextual relationships can be learned by sim-
ple co-occurence statistics (Rabinovich et al., 2007; Tighe and Lazebnik, 2010) or multiple
forms of context, such as co-occurrences, location and appearance (Galleguillos et al., 2008,
2010). Lazebnik and Raginsky (2009) learn contextual smoothing directly from the images.
These relationships are then incorporated into a CRF as a penalty term.

Some authors also considered nonparametric, data-driven approaches for open-universe
dataset. Instead of learning a classifier for the unary terms, these approaches try to retrieve the
most similar images from the training set and transfer the information to a test image. Liu et al.
(2011) propose a nonparametric label transferring based on estimating ‘SIFT Flow’ between
images. Tighe and Lazebnik (2010) transfer labels over different superpixels of the test image
and all training images using several engineered features. More recently, Najafi et al. (2016)
propose to sample labeled superpixels according to an image similarity score and formulate
label transfer as an efficient filtering procedure. This approach achieves state-of-the-art results
for nonparametric approaches.

Graphical models are powerful methods for modeling global spatial consistency in images.
However, they possess certain limitations: (i) they require engineered, domain-specific fea-
tures, (ii) inference is in general slow, as they rely on a huge label space search (and in practice
only approximate inference is computationally possible), (iii) they fail to address parsing
problems with more than few dozen classes, rare classes being challenging to model without
overfitting.

11



Chapter 2. Background

Evaluation Metrics

In the computer vision literature, there are three important accuracy metrics to evaluate the
performance on semantic segmentation: per-pixel accuracy, per-class accuracy and average
precision.

Per-pixel accuracy is defined simply by the ratio of correctly classified pixels and the total
number of pixels in the test set:

accpxl =
N p

N
, (2.1)

where N p is the number of correctly classified pixels and N is the total number of pixels.

However, in many densely labeled semantic segmentation datasets, the per-category pixel
distribution is very unbalanced: some categories like ‘sky’ tend to cover many more pixels
than other objects, like ‘moon’. This fact poses an extra difficulty to semantic segmentation
problem. As an alternative evaluation metric, it is also common to evaluate the performance
of a model by computing the per-class accuracy, defined as follows:

accclass =
1
C

X

c2C

N p
c

Nc
, (2.2)

where C is the total number of categories in the dataset, N p
c is the total number of correctly

classified pixels of class c 2 {1, . . . ,C } and Nc is the total number of pixels of class c.

In case of sparsely labeled semantic segmentation datasets, such as Pascal VOC (Everingham
et al., 2010), the most common metric is the Average Precision (AP). The average precision for
a class is assessed using the intersection over union metric, defined as the number of correctly
labeled pixels of that class, divided by the number of pixels labeled with that class in either the
ground truth labeling or the inferred labeling. That is, for a given category c:

APc =
true positives

true positives+ false positives+ false negatives
. (2.3)

It is also common in the literature to assess the mean average precision (mAP) over all cate-
gories present in the dataset:

mAP = 1
C

X

c2C
APc . (2.4)

2.1.2 Object Proposals

The objective of object proposals algorithms is to extract meaningful regions of an image
that are likely to fully contain an object, independent of its category (see Figure 2.2). This
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2.1. Large-Scale Segmentation

Figure 2.2 – Qualitative illustration of segment object proposal generation. Given an image,
the method needs to output regions that are likely to contain a class-agnostic object.

set of regions can be used in many different computer vision tasks such as object detection,
segmentation, weakly supervised setting, or any object-based image parsing task.

Most object proposal approaches leverage low-level grouping and saliency cues. These models
vary in terms of the type of proposal generated (bounding boxes or segmentation masks) and
if the proposals are ranked or not. These methods usually fall in three categories: objectness
scoring, seed segmentation and superpixel merging (See Figure 2.4).

Objectness Scoring

In this family of algorithms, the proposals are extracted by measuring the objectness score
of bounding boxes. In Alexe et al. (2012) and Rahtu et al. (2011), boxes are scored based on
multiple visual cues, such as saliency, color contrast and edge density. Once the boxes are
scored, the algorithm outputs the ones with the highest scores. Zitnick and Dollár (2014)
assume that the density of edges (obtained via structured decision forests (Dollár and Zitnick,
2013; Dollár and Zitnick, 2015)) fully enclosed in a box is a good indicator of the presence of
an object. Kuo et al. (2015) propose Deepbox, a method based on CNN that learns to rerank
proposals generated by (Zitnick and Dollár, 2014).

Seed Segmentation

Seed segmentation proposal methods start with a set of seed regions and generate sepa-
rate foreground-background segmentation for each seed. Carreira and Sminchisescu (2012)
(CPMC) compute graph cuts with several different seeds and unaries directly on pixels. The
segments are then ranked using a large pool of features. (Humayun et al., 2014) improves
over CPMC by re-using computation across multiple graph-cuts problems and using fast edge
detectors.

In (Krähenbühl and Koltun, 2014), the seeds are placed with a classifier trained to discover
objects. The authors then generate a foreground/background mask for each seed with a
geodesic distance transform and proposals are computed by identifying critical level sets in
each foreground. In (Krähenbühl and Koltun, 2015), the same authors trained an ensemble of
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figure-ground segmentation models operated on simple image features.

Superpixel Merging

Superpixel merging proposals generate a set of over-segmentation from superpixels and
merge them according to certain heuristics. Selective Search (Uijlings et al., 2013) relies on
multiple hand-crafted features and similarity functions for merging superpixels. Multiscale
Combinatorial Grouping (MCG) (Arbeláez et al., 2014; Pont-Tuset et al., 2015), introduces a
fast algorithm for computing multi-scale hierarchical segmentation. Segments are merged
based on edge strength and the proposals are ranked according to cues such as size, shape,
location and edge strength.

Evaluation Metrics

A good object proposal algorithm needs to have a good coverage of the objects of interest in a
test image. A common practice to evaluate the quality of proposals is, therefore, based on the
recall of the ground truth annotations, in a class-agnostic manner.

Recall is usually measured in terms of segment Intersection over Union (IoU) for each ground
truth annotation. IoU is the intersection of a candidate proposal M and ground truth annota-
tion G divided by the area of their union, that is:

IoU = ar ea(M \G)
ar ea(M [G)

. (2.5)

This metric can also be applied in the bounding box detection scheme, simply by considering
the regions M and G as being a rectangle box of the dimensions of the bounding boxes.

IoU can vary from 0 (no intersection at all) to 1 (perfect matching). Figure 2.3, from Krähenbühl
and Koltun (2014), illustrates what segment IoU means. The first proposal is able to localize
the object correctly, but predicts the shape very poorly (IoU of 0.55). As we move to the right,
the IoU improves up to IoU 0.91, approaching human accuracy.
10 Philipp Krähenbühl, Vladlen Koltun

(a) Ground truth (b) J = 0.554 (c) J = 0.703 (d) J = 0.910

Fig. 5: The relationship between region similarity and the Jaccard coe�cient J . A Jac-
card coe�cient of 0.5 admits rather significant departures from the ground truth shape.
A Jaccard coe�cient of 0.7 is more discriminative and a coe�cient of 0.9 demands a
very tight fit.

It discounts small and thin objects and assigns higher importance to larger
objects.

The recall measure is defined as the fraction of ground truth segments with
a maximum overlap larger than � [5,21]. It is also referred to as the detection
rate [16]. A fairly lenient � = 50% recall threshold has sometimes been used
[21]. However, this threshold allows poorly fitting proposals to qualify, as shown
in Figure 5b. A high recall at 50% can be achieved by covering the image evenly
with generic proposals, rather than producing detailed object shapes. Our work
focuses on generating object proposals with informative spatial support. In the
best case, our pipeline can precisely delineate objects in the image, as shown
in Figure 1. To evaluate the precision of object proposals produced by di�erent
approaches more stringently, we also report results for the tighter � = 70% recall
threshold.

Seed placement. We first compare the geodesic seed placement heuristic de-
scribed in Section 3, the learning-based seed placement approach described in
Section 4, and four alternative seed placement strategies: regular sampling, ran-
dom sampling, saliency-weighted random sampling, and sampling based on an
oversegmentation of the image. The oversegmentation-based seed placement is
modeled on the approach of Carreira et al. [5] and uses a hierarchical segmen-
tation algorithm. For saliency-based seed placement we randomly sample super-
pixels weighted by their saliency as given by the algorithm of Perazzi et al. [17].
For each seed placement strategy we generate a single-seed foreground mask and
use the image boundary as background.

Both saliency-based and regular seeds are able to discover a reasonable num-
ber of objects with up to 3 seeds, as shown in Figure 6a. However, both methods
make less progress after the first few seeds. The saliency-based method biases
the placement to prominent objects, missing less salient ones. Regular and ran-
dom sampling both miss many smaller objects. Oversegmentation-based seeds
generally perform better, but not as well as our geodesic or learned seeds.

Figures 6b shows the ABO of our pipeline for a fixed parameter setting and
an increasing number of seeds. Random, saliency-weighted, and regular sampling
perform equally well and about 5% and 7% worse than geodesic seed placement
in ABO and recall respectively. Segmentation-based seeds perform better, but
still 1-2% worse than geodesic seeds in both metrics. With a high seed budget, the

Figure 2.3 – Three segment proposals (in red) overlapping a given object (leftmost image). The
segment IoUs are: 0.55, 0.70, 0.91. A coefficient of 0.9 demands very tight fit. Figure taken
from (Krähenbühl and Koltun, 2014).

A common metric for evaluating proposals is, for a fixed number of proposals (e.g. 100), the
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(a)	Objectness scoring (b)	Seed	generation (b)	Superpixel merging

Figure 2.4 – Classical approaches for object proposal generation: (a) object scoring (figure
from Alexe et al. (2012)), (b) seed generation (figure from Krähenbühl and Koltun (2014)) and
(c) superpixel merging (figure from Uijlings et al. (2013)). See text for details.

fraction of ground truth annotations covered as the IoU threshold is varied. A complementary
metric is, for a fixed IoU threshold, to measure the proposal recall as the number of proposals
considered varies. Hosang et al. (2016) propose an efficient metric, Average Recall (AR), that
measures the IoU between 0.5 and 1 for a fixed number of proposals. AR has been shown to
correlate extremely well with detector performance (recall at a single IoU threshold is far less
predictive (Hosang et al., 2016)).

2.1.3 Object Detection

The objective of object detection is to find all instances of different objects (assuming a
definition of object) on a given image. The instances can be either in the form of bounding box
comprising the object instance or a segmentation mask delineating the object. Until recently,
the dominant paradigm in object detection was the sliding window framework: a classifier is
applied at every object location and scale. A detector, in this case, can be seen as a classifier
which takes as input an image, a location and a scale and determines whether or not there is
an instance of the target category at the given position and scale.

Viola and Jones (2004) propose a cascading algorithm for face detection based on the AdaBoost
classifier and Haar-based features. Dalal and Triggs (2005) propose a similar approach, in
which they use a single filter on HOG features to represent an object category. A Support
Vector Machine (SVM) classifier is trained on the top of these features to determine if an object
is present or not in a bounding box at a given location and scale. At test time, the classifier is
applied densely in each location and scale. This approach was first validated on pedestrian
detection and then extended to multi-categorical object detection problem.

Felzenszwalb et al. (2010) propose a Deformable Part Model (DPM) for object detection,
which extends this approach by integrating part-based models (Fischler and Elschlager, 1973;
Felzenszwalb and Huttenlocher, 2000) into (Dalal and Triggs, 2005) system. In part-based
models, objects are described as a collection of parts arranged in a deformable configuration.
Each object part is then considered as a latent variable in a classification problem. The
authors use a generalization of SVM which considers the object parts as a latent variable
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Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a significant
performance boost. Since we combine region proposals
with CNNs, we call our method R-CNN: Regions with CNN
features. We also compare R-CNN to OverFeat, a recently
proposed sliding-window detector based on a similar CNN
architecture. We find that R-CNN outperforms OverFeat
by a large margin on the 200-class ILSVRC2013 detection
dataset. Source code for the complete system is available at
http://www.cs.berkeley.edu/˜rbg/rcnn.

1. Introduction
Features matter. The last decade of progress on various

visual recognition tasks has been based considerably on the
use of SIFT [29] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [15], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-

1. Input 
image

2. Extract region 
proposals (~2k)

3. Compute 
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify 
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [39] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.
On the 200-class ILSVRC2013 detection dataset, R-CNN’s
mAP is 31.4%, a large improvement over OverFeat [34], which
had the previous best result at 24.3%.

archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [19], a biologically-
inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training
algorithm. Building on Rumelhart et al. [33], LeCun et
al. [26] showed that stochastic gradient descent via back-
propagation was effective for training convolutional neural
networks (CNNs), a class of models that extend the neocog-
nitron.

CNNs saw heavy use in the 1990s (e.g., [27]), but then
fell out of fashion with the rise of support vector machines.
In 2012, Krizhevsky et al. [25] rekindled interest in CNNs
by showing substantially higher image classification accu-
racy on the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [9, 10]. Their success resulted from train-
ing a large CNN on 1.2 million labeled images, together
with a few twists on LeCun’s CNN (e.g., max(x, 0) rectify-
ing non-linearities and “dropout” regularization).

The significance of the ImageNet result was vigorously
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SPPnet also has notable drawbacks. Like R-CNN, train-
ing is a multi-stage pipeline that involves extracting fea-
tures, fine-tuning a network with log loss, training SVMs,
and finally fitting bounding-box regressors. Features are
also written to disk. But unlike R-CNN, the fine-tuning al-
gorithm proposed in [11] cannot update the convolutional
layers that precede the spatial pyramid pooling. Unsurpris-
ingly, this limitation (fixed convolutional layers) limits the
accuracy of very deep networks.

1.2. Contributions
We propose a new training algorithm that fixes the disad-

vantages of R-CNN and SPPnet, while improving on their
speed and accuracy. We call this method Fast R-CNN be-
cause it’s comparatively fast to train and test. The Fast R-
CNN method has several advantages:

1. Higher detection quality (mAP) than R-CNN, SPPnet

2. Training is single-stage, using a multi-task loss

3. Training can update all network layers

4. No disk storage is required for feature caching

Fast R-CNN is written in Python and C++ (Caffe
[13]) and is available under the open-source MIT Li-
cense at https://github.com/rbgirshick/
fast-rcnn.

2. Fast R-CNN architecture and training
Fig. 1 illustrates the Fast R-CNN architecture. A Fast

R-CNN network takes as input an entire image and a set
of object proposals. The network first processes the whole
image with several convolutional (conv) and max pooling
layers to produce a conv feature map. Then, for each ob-
ject proposal a region of interest (RoI) pooling layer ex-
tracts a fixed-length feature vector from the feature map.
Each feature vector is fed into a sequence of fully connected
(fc) layers that finally branch into two sibling output lay-
ers: one that produces softmax probability estimates over
K object classes plus a catch-all “background” class and
another layer that outputs four real-valued numbers for each
of the K object classes. Each set of 4 values encodes refined
bounding-box positions for one of the K classes.

2.1. The RoI pooling layer
The RoI pooling layer uses max pooling to convert the

features inside any valid region of interest into a small fea-
ture map with a fixed spatial extent of H � W (e.g., 7 � 7),
where H and W are layer hyper-parameters that are inde-
pendent of any particular RoI. In this paper, an RoI is a
rectangular window into a conv feature map. Each RoI is
defined by a four-tuple (r, c, h, w) that specifies its top-left
corner (r, c) and its height and width (h, w).

Deep
ConvNet

Conv
feature map

RoI
projection

RoI
pooling
layer FCs

RoI feature
vector

softmax
bbox

regressor

Outputs:

FC FC

For each RoI

Figure 1. Fast R-CNN architecture. An input image and multi-
ple regions of interest (RoIs) are input into a fully convolutional
network. Each RoI is pooled into a fixed-size feature map and
then mapped to a feature vector by fully connected layers (FCs).
The network has two output vectors per RoI: softmax probabilities
and per-class bounding-box regression offsets. The architecture is
trained end-to-end with a multi-task loss.

RoI max pooling works by dividing the h � w RoI win-
dow into an H � W grid of sub-windows of approximate
size h/H � w/W and then max-pooling the values in each
sub-window into the corresponding output grid cell. Pool-
ing is applied independently to each feature map channel,
as in standard max pooling. The RoI layer is simply the
special-case of the spatial pyramid pooling layer used in
SPPnets [11] in which there is only one pyramid level. We
use the pooling sub-window calculation given in [11].

2.2. Initializing from pre-trained networks
We experiment with three pre-trained ImageNet [4] net-

works, each with five max pooling layers and between five
and thirteen conv layers (see Section 4.1 for network de-
tails). When a pre-trained network initializes a Fast R-CNN
network, it undergoes three transformations.

First, the last max pooling layer is replaced by a RoI
pooling layer that is configured by setting H and W to be
compatible with the net’s first fully connected layer (e.g.,
H = W = 7 for VGG16).

Second, the network’s last fully connected layer and soft-
max (which were trained for 1000-way ImageNet classifi-
cation) are replaced with the two sibling layers described
earlier (a fully connected layer and softmax over K +1 cat-
egories and category-specific bounding-box regressors).

Third, the network is modified to take two data inputs: a
list of images and a list of RoIs in those images.

2.3. Fine-tuning for detection
Training all network weights with back-propagation is an

important capability of Fast R-CNN. First, let’s elucidate
why SPPnet is unable to update weights below the spatial
pyramid pooling layer.

The root cause is that back-propagation through the SPP
layer is highly inefficient when each training sample (i.e.
RoI) comes from a different image, which is exactly how
R-CNN and SPPnet networks are trained. The inefficiency

(a)	Region-based	Convolutional	 Network	method (b)	Fast	RCNN

Figure 2.5 – Modern object detectors are based on two steps: a set of proposals are extracted
from an image, and a classifier is applied to each proposal. In (a) RCNN apply a CNN classifier
to each proposal extracted from the image. In (b) Fast RCNN extract the proposals in the final
CNN feature map. Figures are taken from Girshick et al. (2014); Girshick (2015).

in the optimization problem. Training is done discriminatively using an iterative algorithm
that alternates between estimating latent variables for positive examples and solving an large
convex optimization problem.

Until 2013, DPMs models have dominated the state of the art in object detection. In 2014,
however, this trend changed: Girshick et al. (2014) propose a two-phase approach for object
detection, R-CNN. In this model, first, a rich set of object proposals is generated using a
fast (but possibly imprecise) algorithm. Second, a convolutional neural network classifier is
applied on each of the proposals. This approach provides a notable gain in object detection
accuracy compared to classic sliding window approaches. See Figure 2.5a for a schematic
representation of the method. The next year, Girshick (2015) proposes a variant of RCNN,
dubbed Fast R-CNN, in which the proposals are extracted on the final spatial feature map
of the classifier, speeding up the inference by a non-trivial amount (Figure 2.5b). In both
methods, the authors use the Selective Search (Uijlings et al., 2013) algorithm to extract a set
of proposals.

Currently, most state-of-the-art object detectors rely on object proposals as a first prepro-
cessing step (Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; Bell et al., 2016; He et al.,
2016). Moreover, Hosang et al. (2016) empirically show that the quality of proposals used in
this pipeline can substantially affect the performance of the detection system.

Evaluation Metrics

The most popular way to evaluate the quality of detection is through a precision/recall
curve (Everingham et al., 2010; Lin et al., 2014) for each category. The quantitative mea-
sure in this case is Average Precision (AP) (see the next paragraph). It is important to note that
average precision is defined differently for detection and for semantic segmentation.

A detection is considered true or false positive based on the IoU (as described above), for a
fixed threshold µ. Note that this works for both bounding box and segmentation outputs. For
each category and for a fixed IoU threshold, AP is computed as follows (Everingham et al.,
2010):
16



2.2. Representation Learning with Deep Learning

1. Compute a version of the measured precision/recall curve with precision monotonically
decreasing, by setting the precision for recall r to the maximum precision obtained for
any recall r

0 ∏ r .

2. Compute the AP as the area under this curve by numerical integration.

The AP metric is commonly measured in two different ways: (i) the PASCAL VOC (Everingham
et al., 2010) metric, which considers a fixed threshold µ = 0.5 and (ii) the COCO (Lin et al.,
2014) metric, which considers an average over different µ between 0.5 and 1. The latter metric
takes into account more accurate localization, and thus can be seen as a more realistic metric
for detection. In both cases, the AP is also usually averaged among all categories to give a final
numerical value.

2.2 Representation Learning with Deep Learning

In this section, we present an overview of visual feature representation learning with deep
learning methods. Contrary to standard approaches for vision problems based on hand-
crafted features, deep learning methods aim at learning the features required to the task at
hand.

This section starts with a basic description of the most common Artificial Neural Network
(ANN) model, the Multilayer Perceptron (MLP). We then introduce the Convolutional Neural
Network (CNNs) models, a specialized ANN architecture particularly useful for computer
vision problems. Then, we briefly describe how learning is achieved in such models.

2.2.1 Multilayer Perceptron

The first deep learning model was the multi-layer perceptron. These models were initially
inspired by neuronal systems (Mcculloch and Pitts, 1943) (although today not much more than
the name has relations to biological systems). MLPs are a type of machine learning models
which apply a sequence of non-linear transformations to the input data.

Mathematically, a MLP with L layers can be described with the following equations (we use a
similar notation as Farabet (2014)):

y = f (x,µ) = hL

hl =æl (Wl hl°1 +bl ), 8l 2 {1,2, . . . ,L}

h0 = x ,

(2.6)

where µ = {Wl,bl },8l 2 {1, . . . ,L} is the set of trainable parameters (consisting of bias parame-
ters bl and weight parameters Wl ) for each layer l , x 2Rdi n is the input vector (e.g. a vectorized
image), y 2Rdout is the output of the network (this output can be interpreted in different ways
depending of the task of interest) and æl is the point-wise non-linear activation function at
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layer l .

Common non-linear activation functions for hidden units (æl , l 2 {1, . . . ,L°1}) are the hyper-
bolic tangent

Tanh(x) = e2x°1

e2x+1 , (2.7)

and the Rectified Linear Unit (ReLU)

ReLU(x) = max(0, x) . (2.8)

Note the importance of the activation function: without them, the whole system would be
a stack of linear operations (matrix multiplications) and could be equivalently written as a
single matrix. The choice of activation function is a completely empirical question. If the
network is very deep (i.e. possesses many layers), ReLU activations are popular as they reduce
the likelihood of the gradient to vanish (Krizhevsky et al., 2012).

The output activation function (æL) depends on the problem at hand. For example, if we are
interested in a regression problem, the output activation can be a simple linear or log-linear
function. If we are interested in a classification problem, the output activation is designed so
that the network models the likelihood of the data.

2.2.2 Convolutional Neural Networks

Consider, for example, an image with dimensions 3£200£200 (3 color channels, 200 pixels of
height and 200 pixels of width). A single fully-connected neuron on the first layer of a MLP
would require 3§200§200 = 120000 parameters. Moreover, to learn the complexity of the
world, such a network would require multiple layers, each of them with multiple neurons. The
number of parameters in such a model would quickly increase to an unbearable number and
lead to overfitting and computational issues.

Convolutional Neural Networks (CNNs) (LeCun et al., 1990, 1998) are a natural extension of
MLPs for processing data that has a known, grid-like topology (e.g. images). CNNs use the
spatial correlation of the signal to constrain the architecture in a more sensible way. Their
architecture, somewhat inspired by the biological visual system (Hubel and Wiesel, 1962;
Fukushima, 1980; LeCun et al., 1998), possesses two key properties that make them extremely
useful for image applications: spatially shared weights and spatial pooling. These kind of
networks learn features that are shift-invariant, i.e., filters that are useful across the entire
image (due to the fact that image statistics are stationary). The pooling layers are responsible
for reducing the sensitivity of the output to slight input shift and distortions.

A typical convolutional network is composed of multiple stages, as shown in Figure 2.6. The
output of each stage is made of a set of 2D arrays called feature maps. Each feature map is the
outcome of one convolutional (and an optional pooling) filter applied over the full image. A
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.	.	.
{dog}
{cat}
{car}
{boat}

Input	data
Convolutional	 	layer
+	non-linearity

Pooling	layer

Linear	Classifier

Figure 2.6 – Architecture of a typical convolutional network for object recognition. We rep-
resent one simple block (consisting of convolutional, non-linearity and pooling layer) and a
final linear multi-class classifier.

point-wise non-linear activation function always follows a convolution layer.

In its more general form, a convolutional network can be written as:

Y = f (X,µ) = HL

Hl = pooll (æl (Wl Hl°1 +bl )), 8l 2 {1, . . . ,L}

H0 = X ,

(2.9)

with µ = {Wl ,bl },8l 2 {1, . . . ,L} is the set of trainable parameters, as in MLP, X 2Rc£h£w is the
input image (with c color channels, height of h pixels and width of w pixels), Y 2Rn£h

0£w
0

is an
array (with dimension h

0 £w
0
) of output vectors of dimension n (each vector is an non-linear

encoding of a sub-window of the input), æl is a point-wise non-linearity at layer l and pooll is
a (optional) pooling function at layer l .

The main difference between MLPs and CNNs lies in the parameter matrices Wl : in MLPs,
the matrices can take any general form, while in CNNs these matrices are constraints to
be Toeplitz matrices (Gray, 2005). That is, the matrices have several entries constrained to
be equal to each other (moreover, these matrices are very sparse since the kernel is usually
much smaller than the input image). Therefore, each hidden unit array Hl can be expressed
as a discrete-time convolution between kernels from Wl and the previous hidden unit Hl°1

(transformed through a point-wise non-linearity and possibly pooled). More specifically,

Hl p = pooll (æl (bl p +
X

q2parents(p)
wl q §Hl°1,q )) , (2.10)

where Hl p is the pth component of the l th feature map Hl .

In general, the output of a CNN is usually coupled with a MLP classifier. As before, this output
is connected to a final activation function that depends on the problem considered.

From the mathematical description above, a basic convolutional neural network can thus be
seen as a stack of three distinct components (see Figure 2.6):
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Convolutional Layer. The input of every layer is a 3D array with ci 2D feature maps of size
hi £wi . Each component is denoted by xi j k and each feature map denoted as xi . The output
is also a 3D array, y , corresponding to co feature maps of dimension ho £wo . A trainable filter
wi j (and bias parameter b j ) is a trainable kernel of size k1 £k2 and connect input feature map
xi with output feature map y j . The convolutional module computes:

y j = b j +
X

i
wi j §xi , (2.11)

where § is the 2D discrete-time convolutional operator. Each filter wi j learns a particular
feature at every location on the input (hence, forcing spatial invariance). This convolution can
have stride larger than 1. In recent convolutional layer implementation, it became popular to
pad the input layer so that the output of a convolution layer possesses same dimension as the
input.

Activation Layer. Similar to the MLP case, the point-wise non-linearity is applied to each
location (i j k) of the feature maps.

Pooling Layer. This layer is responsible to reduce the spatial dimension of each feature map
of its input. This property is important in image models for three reasons: (i) it makes the
model robust to small variations in the location of features in previous layers, (ii) it increases
the receptive field of the network and (iii) it controls the capacity of the model. A pooling
operation can be applied (optionally) after each activation layer. Throughout this thesis,
we always consider max pooling layers, which consist of reporting the maximum output
within a rectangular neighborhood. Other popular pooling functions include the average of a
rectangular neighborhood, the L2 norm of a rectangular neighborhood, or a weighted average
based on the distance from the central pixel. It is common practice to choose the stride of the
pooling layer to be equal to its kernel size (e.g. a 2£2 pooling layer takes the maximum value
at each 2£2 window and strided by 2, therefore, reducing the spatial dimension of the feature
maps by a factor 2).

2.2.3 Learning

In this section, we briefly explain how parameter estimation (learning) is carried in the context
of neural networks (the same principle is applied to MLP, CNN or any other architecture type).
The different segmentation problems addressed in this thesis are all defined as discriminative
tasks. Therefore, we will only consider learning for discriminative tasks, in which the network
is designed to model conditional probabilities.

Loss Function

Once a model is defined, its structure can be abstracted and the network can be seen as a
function approximator. In classification problems, neural networks are modeled in a way such
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that its output can be seen as a conditional distribution of the target y , given the input x and
the parameters µ. This probability can be modeled by transforming the output of the network
fc (x,µ) (for each class c 2 {1, . . . ,C }) with a softmax function (Bridle, 1990):

p(yi |xi ,µ) =
CY

c=1

0

BB@
e fc (xi ,µ)

P
j

e f j (xi ,µ)

1

CCA

c (yi )

, (2.12)

where a(x) is the indicator function

a(x) =

8
<

:
1, if x = a

0, otherwise.
(2.13)

In the special case where C = 2, the softmax function is reduced to logistic regression. There-
fore, softmax can be seen as a multiclass generalization of the logistic regression.

In the following, we consider a dataset D = {X,Y} = {xi , yi }, i 2 {1, . . . , N }, where xi is an input
image and yi is its associated target (label). We consider a multi-categorical problem in which
each label yi belongs to one of C categories, yi 2 {1, . . . ,C }. The parameters of the model
are found simply by maximizing the likelihood over the training data D with respect to the
parameters µ:

µ§ = argmax
µ

p(Y|X,µ)

= argmax
µ

p(y1, y2, . . . , y N |x1,x2, ...,xN ,µ)

i.i.d.= argmax
µ

NY

i=1
p(yi |xi ,µ) ,

(2.14)

where the last line assumes that the training set is sampled from an unknown independent,
identically distributed (i.i.d.) distribution. Equivalently, this optimization problem can be seen
as minimizing the negative log-likelihood of the training data (since the logarithm function is
monotonic):

µ§ = argmin
µ

°
X

i

X

c
c (yi )

∑
fc (xi ,µ)° log

≥X

j
e f j (xi ,µ)

¥∏
. (2.15)

Note that this minimization problem is equivalent to minimizing the cross-entropy of the real
target distribution and the distribution generated by the neural network. In classification
problems, it is common to consider one-hot encoding on the target distribution. In this case,
the minimization problem can be rewritten as:

µ§ = argmin
µ

°
X

i

∑
fc§

i
(xi ,µ)° log

≥X

j
e f j (xi ,µ)

¥∏
, (2.16)
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where c§i is the one-hot label encoding of training example i . This problem does not have a
closed solution and we apply an iterative approach to find a minimum. That is, the parameters
µ of the network are estimated by minimizing the following loss function (also know as cost
function, objective function or criterion):

L(µ,X,Y) =°
X

i

∑
fc§

i
(xi ,µ)° log

≥X

j
e f j (xi ,µ)

¥∏
. (2.17)

Optimization

The most common optimization method used in machine learning is the gradient descent
method, which, with a randomly initialized set of parameters µ1, is defined as:

µt+1 √° µt °¥rµL(µ,X,Y) . (2.18)

This method is also know as batch gradient descent method. In large-scale machine learning
problems (e.g., the segmentation problems addressed in this thesis), this method can become
inefficient in practice as it requires a full pass on the data at each iteration. Moreover, batch
gradient descent can be redundant if the dataset contains similar examples.

A common way to address this issue is to consider a stochastic approximation of the gradient,
commonly referred to as Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951; Bottou,
1991). In this case, a random training sample {xi , yi } is used to estimate the gradient and the
parameters are updated as:

µt+1 √° µt °¥rµL(µ,xi , yi ) . (2.19)

More often, we optimize the loss function using a midterm between stochastic and batch
method called mini-batch gradient descent. This approach, which uses a subset of n < |D|
training samples to perform each parameter update is defined as:

µt+1 √° µt °¥rµL(µ,x(i ,...,i+n), y (i ,...,i+n)) . (2.20)

There are many different variants of this learning rule used to reduce the noise in stochastic
directions, for example the Momentum method (Rumelhart et al., 1986), averaged stochastic
gradient descent (Polyak and Juditsky, 1992), Adagrad (Duchi et al., 2011), Rmsprop (Tieleman
and Hinton, 2012) and Adam (Kingma and Ba, 2014). Another important class of algorithms
are the second-order methods, which use second derivative information of the loss function to
improve the optimization. However, these methods are infeasible to compute in the large-scale
problems addressed in this thesis.

The gradients of the loss function with respect to the trainable parameters µ used in the
gradient descent methods introduced above are computed using the backpropagation algo-
rithm (Bryson et al., 1963; Werbos, 1974; Rumelhart et al., 1986).
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2.2. Representation Learning with Deep Learning

Due to the non-linear nature of neural networks, this problem is non-convex and the optimiza-
tion methods applied in practice find local minima instead of a global minimum. In practice,
this has been show to not pose a big problem in deep nets (Dauphin et al., 2014; Choromanska
et al., 2015).

Regularization

Neural networks contain a large number of free parameters that need to be learned. These
models can describe a huge range of phenomena, but require a lot of data to avoid overfitting,
that is, when the model is able to achieve good performance on training data but performs
poorly on the test data.

A very simple way to reduce overfitting in neural networks is to increase the training data to
improve its generalization (assuming the capacity remains constant). However high-quality
labeled data can be expensive to acquire. Fortunately, other techniques exist in the literature
that can reduce overfitting, assuming a fixed network and a fixed training data size. These
methods are called regularization techniques. In this section, we describe the most commonly
applied regularization techniques found in the literature.

The simplest regularization technique is called early stopping. It consists, as the name implies,
to stop the training once the validation error (computed in a hold-off set of training data not
used during training) achieves a minimum error.

Weight decay is another very common regularization technique. It is used to penalize large
weights using certain constraints on their values. These techniques are usually implemented
by adding extra terms to the network cost function. In L2 regularization, an extra term is
added to the cost function that penalizes the square magnitude of all parameters. That is,
for every weight wi in the network, we add a term 1

2∏w2
i to the loss function, where ∏ is the

regularization strength. L2 regularization has the intuitive interpretation of heavily penalizing
peaky weight vectors and preferring diffuse weight vectors. Another common weight decay
regularization is the L1 regularization, which poses sparse constraints on the weight. Similarly
to L2, L1 regularization includes an extra term to the cost function, ∏|wi |. Neurons with L1

regularization end up using only a sparse subset of their most important inputs and become
nearly invariant to the “noisy” inputs.

An extremely effective regularization technique for neural networks is Dropout (Srivastava
et al., 2014). During training, Dropout is implemented by only keeping a neuron active with a
certain probability p (a hyperparameter), or setting it to zero otherwise. It can be interpreted
as sampling a neural network within the full neural network, and only updating the parameters
of the sampled network based on the input data. At test time, we would ideally like to find a
sample average of all possible 2n dropped-out networks. Unfortunately this is unfeasible for
large values of n. However, we can find an approximation by using the full network with each
node’s output weighted by a factor of p, so the expected value of the output of any node is the
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same as in the training stages.

Batch normalization (Ioffe and Szegedy, 2015) is another popular regularization technique for
deep convolutional neural networks. This method partially alleviates the problem of internal
covariate shift in deep networks, that is, the fact that training deep networks is difficult because
the distribution of each layer’s input changes during training, as the parameters of the previous
layers change. During SGD training, each activation of the mini-batch is centered to zero-
mean and unit variance. The mean and variance are measured over the whole mini-batch,
independently for each activation. Batch normalization allows us to use much higher learning
rates and be less careful about initialization.

2.3 Summary

In this chapter we briefly introduced the different aspects of the image segmentation problems
that will be treated in this thesis. We then presented a basic introduction to the deep learning
methods most commonly used to work with vision problems.
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3 Learning to Segment a Scene with
Recurrent Convolutional Networks

In this chapter, we address the problem of fully supervised semantic segmentation (or scene
labeling). That is, given a densely labeled dataset ( in which all pixels are labeled), the objective
is to predict the class label of each pixel in a scene.

Semantic segmentation is most commonly addressed with some kind of local classifier con-
strained in its predictions with a graphical model (e.g. Conditional Random Fields (CRF),
Markov Random Fields (MRF)), in which global decisions are made. These approaches usually
consist of segmenting the image into superpixels or segment regions to assure a visible consis-
tency of the labeling and also to take into account similarities between neighbor segments,
giving a high level understanding of the overall structure of the image. Each segment contains
a series of input features describing it and contextual features describing spatial relation
between the label of neighbor segments. These models are then trained to maximize the
likelihood of correct classification given the features (Verbeek and Triggs, 2008; Gould et al.,
2009; Munoz et al., 2010; Liu et al., 2011; Kumar and Koller, 2010; Socher et al., 2011; Lempitsky
et al., 2011; Tighe and Lazebnik, 2010). The main limitation of scene labeling approaches
based on graphical models is the computational cost at test time, which limits the model to
simple contextual features.

In this chapter, we consider a neural network approach which can take into account long range
label dependencies in the scenes while controlling the capacity of the network. We achieve
state-of-the-art accuracy while keeping the computational cost low at test time, thanks to the
complete feedforward design. Our method relies on a recurrent architecture for convolutional
neural networks: a sequential series of networks sharing the same set of parameters. Each
instance takes as input both an RGB image and the classification predictions of the previous
instance of the network. The network automatically learns to smooth its own predicted labels.
As a result, the overall network performance is increased as the number of instances increases.

Compared to graphical model approaches relying on image segmentation, our method has
several advantages: (i) it does not require any engineered features, since deep learning archi-
tectures train (hopefully) adequate discriminative filters in an end-to-end manner, (ii) the
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Method Task-specific features

Gould et al. (2009) 17-dimensional color and texture features, 9 grid locations around the pixel
and the image row, region segmentation.

Munoz et al. (2010) Gist, pyramid histogram of oriented gradients, color Histogram CIELab, rela-
tive relocation, hierarchical region representation.

Kumar and Koller (2010) Color, texture, shape, percentage pixels above horizontal, region-based seg-
mentation.

Socher et al. (2011) Same as Gould et al. (2009).

Lempitsky et al. (2011) Histogram of visual SIFT, histogram of RGB, histogram of locations, contour
shape descriptor.

Tighe and Lazebnik (2010) Global, shape, location, texture/SIFT, color, appearance, MRF.

Farabet et al. (2013) Laplacian pyramid, superpixels/CRF/tree segmentation, data augmentation.

Our Recurrent CNN Raw pixels.

Table 3.1 – Comparison between different methods for full scene labeling. The advantage of
our proposed method is the simplicity of inference, not relying on any task-specific feature
extraction nor segmentation method.

prediction phase does not rely on any label space searching, since it requires only the forward
evaluation of a function.

This chapter is organized as follows. Section 3.1 briefly presents related works. Section 3.2
describes the proposed strategy. Section 3.3 presents the results of our experiments in two
standard datasets: the Stanford Background Dataset (8 classes) and the SIFT Flow Dataset (33
classes), and compares the performance with other methods. Finally, Section 3.4 provides a
discussion followed by a conclusion.

3.1 Related Work

Recurrent Neural Networks (RNNs) date back from the late 1980s. Already in (Jordan, 1986),
the network was fed (in a time series framework) with the input of the current time step, plus
the output of the previous one. Several variants have been later introduced, such as in (Elman,
1990). RNNs have been successfully applied to a wide variety of tasks, including in natural
language processing (Stoianov et al., 1997; Cho et al.), speech processing (Robinson, 1994;
Graves et al., 2013) and image processing (Graves and Schmidhuber, 2008). Our approach can
be viewed as a particular instance of Jordan’s recurrent network adapted to image processing
(we use a convolutional neural network). Providing feedback from the output into the input
allows the network to model label dependencies, and correct its own previous predictions.

In a preliminary work, Grangier et al. (2009) proposed an innovative approach to scene
labeling without the use of any graphical model. The authors proposed a solution based on
deep convolutional networks relying on a supervised greedy learning strategy. These network
architectures when fed with raw pixels are able to capture texture, shape and contextual
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information.

Socher et al. (2011) also considered the use of deep learning techniques to deal with scene
labeling, where off-the-shelf features of segments are recursively merged to assign a semantic
category label. In contrast, our approach uses the recurrent architecture to parse the scene
with a smoother class annotation.

In (Socher et al., 2012), the authors proposed an approach which combines convolutional and
recursive networks for classifying RGB-D images. The approach first extracts features using
a convolutional network which is then fed to a standard recurrent net. In that respect, our
approach is more end-to-end.

More recently, Farabet et al. (2013) investigated the use of convolutional networks to extract
features from a multiscale pyramid of images. This solution yields satisfactory results for the
categorization of the pixels, but poor visual coherence. In order to improve visual coherence,
three different over-segmentation approaches were proposed: (i) the scene is segmented in
superpixels and a single class is assigned to each of the superpixels, (ii) a conditional random
field is defined over a set of superpixels to model joint probabilities between them and correct
aberrant pixel classification (such as ‘road’ pixel surrounded by ‘sky’), and (iii) the selection of
a subset of tree nodes that maximize the average “purity" of the class distribution, hence maxi-
mizing the overall likelihood that each segment will contain a single object. In contrast, our
approach is simpler and completely feedforward, as it does not require any image segmenta-
tion technique, nor the handling of a multiscale pyramid of input images. Similarly to (Farabet
et al., 2013), Schulz and Behnke (2012) proposed a multiscale convolutional architecture. In
their approach, the authors smooth out the predicted labels with pairwise class filters.

Compared to existing approaches, our method does not rely on any task-specific feature
(see Table 3.1). Furthermore, our scene labeling system is able to extract relevant contextual
information from raw pixels.

On the years following the work presented in this chapter, CNN had become extremely popular
for semantic segmentation, and many different works flourished (Chen et al., 2015; Long et al.,
2015; Sharma et al., 2015; Noh et al., 2015; Caesar et al.; Zheng et al., 2015). These models,
which in general use very deep networks and are pretrained on ImageNet (Deng et al., 2009),
pushed even further the state of the art in fully supervised semantic segmentation.

3.2 Method Description

3.2.1 Convolutional Neural Networks for Scene Labeling

A typical convolutional network is composed of multiple stages, as shown in Figure 3.1. The
output of each stage is made of a set of 2D arrays called feature maps. Each feature map is the
outcome of one convolutional layer (followed by a non-linear activation function) or pooling
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Figure 3.1 – A simple convolutional network. Given an image patch providing a context around
a pixel to classify (here blue), a series of convolutions and pooling operations (filters slid
through input planes) are applied (here, five 4£4 convolutions, followed by one 2£2 pooling,
followed by two 2£2 convolutions. Each 1£1 output plane is interpreted as a score for a given
class.

filter applied over the full image.

In the context of scene labeling, given an image Ik we are interested in finding the label of each
pixel at location (i , j ) in the image. More precisely, the network is fed with a squared context
patch Ii , j ,k surrounding the pixel at location (i , j ) in the kth image. It can be shown (see
Figure 3.1) that the output plane size szl of the l th convolution or pooling layer is computed
as:

szl =
szl°1 °kWl

dWl
+1, (3.1)

where sz0 is the input patch size, kWl is the size of the convolution (or pooling) kernels in
the l th layer, and dWl is the pixel step size used to slide the convolution (or pooling) kernels
over the input planes.1 Given a network architecture and an input image, one can compute
the output image size by successively applying (3.1) on each layer of the network. During the
training phase, the size of the input patch Ii , j ,k is chosen carefully such that the output layer
produces 1£1 planes, which are then interpreted as scores for each class of interest.

The output of a network f with L stages and trainable parameters µ = {Wl ,bl } ,8l 2 {1, . . . ,L},
for a given input patch Ii , j ,k can be formally written as:

f (Ii , j ,k ;µ) = WLHL°1 +bL , (3.2)

with the output of the l th hidden layer computed as:

Hl = pool(tanh(Wl Hl°1 +bl )) , (3.3)

for l = {1, . . . ,L} and denoting H0 = Ii , j ,k . bl is the bias vector of layer l and Wl is the Toeplitz
matrix of connection between layer l °1 and layer l . The pool(·) function is the max-pooling

1Most people use dW = 1 for convolutional layers, and dW = kW for pooling layers.
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operator. In this chapter, we use the point-wise hyperbolic tangent as the activation function.

The network is trained by transforming the scores fc (Ii , j ,k ;µ) (for each class of interest c 2
{1, . . . ,C }) into conditional probabilities, by applying a softmax function (Bridle, 1990):

p(c|Ii , j ,k ;µ) = e fc (Ii , j ,k ;µ)

P
d2{1,...,C }

e fd (Ii , j ,k ;µ)
, (3.4)

and maximizing the likelihood of the training data. More specifically, the parameters µ of
the network f (·) are learned in an end-to-end supervised way, by minimizing the negative
log-likelihood over the training set:

L f (µ) =°
X

I(i , j ,k)

ln p(li , j ,k |Ii , j ,k ;µ) , (3.5)

where li , j ,k is the correct pixel label class at position (i , j ) in image Ik . The minimization is
achieved with the Stochastic Gradient Descent (SGD) algorithm with a fixed learning rate ¥:

µ√° µ°¥
@L f

@µ
. (3.6)

3.2.2 Long Range Label Dependencies

Scene labeling methods leverage long range label dependencies in some way. The most
common approach is to add some kind of graphical model (e.g. CRF) over local decisions,
such that a certain global coherence is maintained. In the case of convolutional networks, an
obvious way to efficiently capture long range dependencies would be to consider large input
patches when labeling a pixel. However, this approach might face generalization issues, as
considering larger context often implies considering larger models (i.e. higher capacity).

In Table 3.2, we review possible ways to control the capacity of a convolutional neural network
by assuming a large input context. The easiest way is probably to increase the filter sizes in
pooling layers, reducing the overall number of parameters in the network. However, perform-
ing large poolings decreases the network label output resolution (e.g., if one performs a 1/8
pooling, the label output plane size will be about 1/8th of the input image size). As shown later
in Section 3.2.4, this problem could be overcome at the cost of a slow inference process.

Yet another approach would be the use of a multiscale convolutional network (Farabet et al.,
2013). Large contexts are integrated into local decisions while making the model still man-
ageable in terms of parameters/dimensionality. Label coherence can then be increased by
leveraging, for instance, superpixels.

Another way to consider a large input context size while controlling the capacity of the model
is to make the network recurrent. In this case, the architecture might be very deep (with many
convolution layers), but parameters between several layers at various depths are shared. We
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Capacity control Speed

graphical model – slow

multiscale scale down input image fast

large input patches
increase pooling

recurrent architecture

slow

fast

Table 3.2 – Long range pixel label dependencies integration in CNN-based scene labeling
models. Methods to control capacity and speed of each architecture is reported.

will now detail our recurrent network approach.

3.2.3 Recurrent Network Approach

The recurrent architecture (see Figure 3.2) consists of the composition of P instances of the
“plain” convolutional network f (·) introduced in Section 3.2.1. Each instance has identical
(shared) trainable parameters µ. For clarity, we drop the µ notation in subsequent paragraphs.
The pth instance of the network (1 ∑ p ∑ P ) is fed with an input “image” Fp of N +3 feature
maps:

Fp = [ f (Fp°1), I p
i , j ,k ] ,

F1 = [0, Ii , j ,k ] ,
(3.7)

which are the output label planes of the previous instance, and the scaled2 version of the raw
RGB squared patch surrounding the pixel at location (i , j ) of the training image k. Note that
the first network instance takes 0 label maps as previous label predictions.

As shown in Figure 3.2, the size of the input patch Ii , j ,k needed to label one pixel increases
with the number of compositions of f . However, the capacity of the system remains constant,
since the parameters of each network instance are shared.

The system is trained by maximizing the likelihood

L( f )+L( f ± f )+ . . .+L( f ±P f ) , (3.8)

where L( f ) is a shorthand for the likelihood introduced in (3.5) in the case of the plain CNN,
and ±p denotes the composition operation performed p times. This way, we ensure that each
network instance is trained to output the correct label at location (i , j ). In that respect, the
system is able to learn to correct its own mistakes (made by earlier instances). It can also learn
label dependencies, as an instance receives as input the label predictions made by the previous
instance around location (i , j ) (see Figure 3.2). Note that maximizing (3.8) is equivalent to

2I p
i , j ,k is Ii , j ,k scaled to the size of f (F p°1).
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f

f

f

f � f

f � f

f � f � f

Figure 3.2 – Representation of the model considering one ( f ), two ( f ± f ) and three ( f ± f ± f )
instances of the network. In all three cases, the architecture produces labels (1£1 output
planes corresponding to the pixel at the center of the input patch. Each network instance is
fed with the previous label predictions, as well as a RGB patch surrounding the pixel of interest.
For space constraints, we do not show the label maps of the first instances, as they are zero
maps. Adding network instances increases the context patch size seen by the architecture
(both RGB pixels and previous predicted labels).

randomly alternating (with equal weight) the maximization of each likelihood L( f ±p f ) (for
1 ∑ p ∑ P ). We chose this approach for simplicity of implementation.

The learning procedure is the same as for a standard CNN (stochastic gradient descent),
where gradients are computed with the Backpropagation Through Time (BPTT) algorithm –
the network is first unfolded as shown in Figure 3.2 and then the standard backpropagation
algorithm is applied.

3.2.4 Scene Inference

Given a test image Ik , for each pixel at location (i , j ) the network predicts a label as:

l̂i , j ,k = argmax
c2{1,...,C }

p(c|Ii , j ,k ; µ) , (3.9)

considering the context patch Ii , j ,k . Note that this implies padding the input image when
inferring label of pixels close to the image border. In practice, simply extracting patches Ii , j ,k

and then feeding them through the network for all pixels of a test image is computationally
very inefficient. Instead, it is better to feed the full test image (also properly padded) to the
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Figure 3.3 – Example of interleaving for efficient scene inference. Convolutional neural net-
works output downscaled label planes (compared to the input image) due to pooling layers.
To alleviate this problem, one can feed several shifted version of the input image (here repre-
sented by pixels 1, . . . ,25) in the X and Y axis. In this example the network is assumed to have a
single 2£2 pooling layer. Downscaled predicted label planes (here in red) are then merged to
get back the full resolution label plane in an efficient manner. Note that pixels represented by
0 are adequate padding.

convolutional network: applying one convolution to a large image is much faster than applying
the same convolution many times to small patches. When fed with the full input image, the
network will output a plane of label scores. However, following (3.1), the plane size is smaller
than the input image size: this is mainly due to pooling layers, but also due to border effects
when applying the convolution. For example, if the network includes two 2£2 pooling layers,
only 1 every 4 pixels of the input image will be labeled. Most convolutional network users
(e.g. (Farabet et al., 2013)) upscale the label plane to the input image size.

In fact, it is possible to compute efficiently the label plane with a fine resolution by interleaving,
that is, feeding to the network several versions of the input image, shifted on the X and Y axis.
Figure 3.3 shows an example for a network which would have only one 2£2 pooling layer, and
one output plane: low resolution label planes (coming out of the network for the input image
shifted by (0,0), (0,1), (1,0) and (1,1) pixels) are “merged” to form the high resolution label
plane. Merging is a simple copy operation which matches a pixel in a low resolution label
plane with the location of the corresponding original pixel to label in the (high resolution)
input plane. The number of forwards is proportional to the number of pooling layers. However,
this would be still much faster than forwarding patches at each location of the test image.
We will see in Section 3.3.3 that having a finer label resolution can increase the classification
performance.

3.3 Experimental Results

We tested our proposed method on two different fully-labeled datasets: the Stanford Back-
ground Dataset (Gould et al., 2009) and the SIFT Flow Dataset (Liu et al., 2011). The Stanford
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dataset has 715 images from rural and urban scenes composed of 8 classes. The scenes have ap-
proximately 320£240 pixels. As in (Gould et al., 2009), we performed a 5-fold cross-validation
with the dataset randomly split into 572 training images and 143 test images in each fold. The
SIFT Flow is a larger dataset composed of 2688 images of 256£256 pixels and 33 semantic
labels.

Each image of the training set was properly padded and normalized such that they have
zero mean and unit variance. All networks were trained by sampling patches surrounding
a randomly chosen pixel from a randomly chosen image from the training set. Contrary to
(Farabet et al., 2013) (i) we did not consider addition of any distortion on the images3, (ii) we
did not use contrastive normalization and (iii) we did not sample training patches according
to balanced class frequencies.

We considered two different accuracy measures to compare the performance of the our
method with other approaches (see Section 2.1.1). The first one is the accuracy per pixel of test
images. This measure is simply the ratio of correctly classified pixels of all images in the test set.
However, in scene labeling (especially in datasets with large number of classes), classes which
are much more frequent than others (e.g. the class ‘sky’ is much more frequent than class
‘moon’) have more impact on this measure. We also consider the averaged per class accuracy
on the test set (all classes have the same weight in this measure). Note that as mentioned
above, we did not train with balanced class frequencies, which would have optimized this
second measure.

We consider three CNNs architectures. A “plain CNN1” was designed to take large input
patches. CNN2 and CNN3 architectures were designed such that their recurrent versions
(with respectively two or three compositions) would still lead to a reasonable input patch size.
We denote rCNNi for the recurrent version of the regular convolutional network CNNi . For
rCNN3, we show results considering both half resolution and full-resolution inference (see
Section 3.2.4), in which we are able to achieve better results (at the cost of a higher computing
time). Table 3.3 compares the performance of our architectures with related works on the
Stanford Background dataset and Table 3.4 compares the performance on the SIFT Flow
dataset. Note that the inference time in the second dataset does not change, since we exclude
the need of any segmentation method. In the following, we provide additional technical details
for each architecture used.

3.3.1 Plain Network

CNN1 was trained with 133£133 input patches. The network was composed of a 6£6 con-
volution with nhu1 output planes, followed by an 8£8 pooling layer, a tanh(·) non-linearity,
another 3£3 convolutional layer with nhu2 output planes, a 2£2 pooling layer, a tanh(·)
non-linearity, and a final 7£7 convolution to produce label scores. The hidden units were
chosen to be nhu1 = 25 and nhu2 = 50 for the Stanford dataset, and nhu1 = 50 and nhu2 = 50

3Which is known to improve the generalization accuracy by few extra percents.
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Pixel
Accuracy (%)

Class
Accuracy (%)

Computing
Time (s)

Gould et al. (2009) 76.4 – 10 to 600

Tighe and Lazebnik (2010) 77.5 – 10 to 300

Munoz et al. (2010) 76.9 66.2 12

Kumar and Koller (2010) 79.4 – < 600

Socher et al. (2011) 78.1 – ?

Lempitsky et al. (2011) 81.9 72.4 > 60

Farabet et al. (2013)? 78.8 72.4 0.6

Farabet et al. (2013)† 81.4 76.0 60.5

Plain CNN1 79.4 69.5 15

CNN2 (±1) 67.9 58.0 0.2

rCNN2 (±2) 79.5 69.5 2.6

CNN3 (±1) 15.3 14.7 0.06

rCNN3 (±2) 76.2 67.2 1.1

rCNN3 1/2 resolution (±3) 79.8 69.3 2.15

rCNN3 1/1 resolution (±3) 80.2 69.9 10.7
? Multiscale CNN + superpixels

† Multiscale CNN + CRF

Table 3.3 – Pixel and averaged per class accuracy and computing time of other methods and
our proposed approaches on the Stanford Background dataset. For recurrent networks, ±n

indicates the number of compositions.

for the SIFT Flow dataset.

3.3.2 Recurrent Architectures

We consider two different recurrent convolutional network architectures.

The first architecture, rCNN2, is composed of two consecutive instances of the convolutional
network CNN2 with shared parameters (system in the center of Figure 3.2). CNN2 is composed
of an 8£ 8 convolution with 25 output planes, followed by a 2£ 2 pooling layer, a tanh(·)
non-linearity, another 8£8 convolutional layer with 50 output planes, a 2£2 pooling layer,
a tanh(·) non-linearity, and a final 1£1 convolution to produce N label scores. As described
in Section 3.2.3, rCNN2 is trained by maximizing the likelihood given in (3.8). As shown in
Figure 3.2, the input context patch size depends directly on the number of network instances
in the recurrent architecture. In the case of rCNN2, the input patch size is 25£ 25 when
considering one instance ( f ) and 121£121 when considering two network instances ( f ± f ).

The second recurrent convolutional neural network rCNN3 is composed of a maximum of
three instances of the convolutional network CNN3 with shared parameters. Each instance of

34



3.3. Experimental Results

Pixel
Accuracy (%)

Class
Accuracy (%)

Liu et al. (2011) 76.67 –

Tighe and Lazebnik (2010) 77.0 30.1

Farabet et al. (2013) 78.5 29.6

Plain CNN1 76.5 30.0

CNN2 (±1) 51.8 17.4

rCNN2 (±2) 76.2 29.2

rCNN3 (±2) 65.5 20.8

rCNN3 (±3) 77.7 29.8

Table 3.4 – Pixel and averaged per class accuracy of other methods and our proposed ap-
proaches on the SIFT Flow dataset. For recurrent networks, ±n indicates the number of
compositions.

CNN3 is composed of a 8£8 convolution with 25 output planes, followed by a 2£2 pooling layer,
a tanh(·) non-linearity, another 8£8 convolution with 50 planes and a final 1£1 convolution
which outputs the N label planes. Following 3.8, we aim at maximizing

L( f )+L( f ± f )+L( f ± f ± f ) . (3.10)

This appeared too slow to train on a single computer in the case of rCNN3. Instead, we
initialized the system by first starting training with two network instances (maximizing L( f ± f )).
We then switched to the training of the full cost function (3.10). The input patch size is 23£23,
67£67 and 155£155 when considering one, two or three instances of the network ( f , f ± f
and f ± f ± f ), respectively. In all cases, the learning rate in (3.6) was equal to 10°4. All hyper-
parameters were tuned with a 10% held-out validation data.

Figure 3.4 and Figure 3.5 illustrate inference of the recurrent network rCNN2 with one and two
instances for images form Stanford and SIFT Flow dataset, respectively. It can be seen that the
network learns by itself how to correct its own label prediction.

3.3.3 Inference Time and Performance

In Table 3.5, we analyze the trade off between inference time and test accuracy by running
several experiments with different output resolutions for recurrent network rCNN3 (see Sec-
tion 3.2.4 and Figure 3.3). Labeling about 1/4th of the pixels seems to be enough to lead to
near state-of-the-art performance, while keeping a very fast inference time.
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Figure 3.4 – Qualitative results on Stanford dataset. The test image is shown on the first column.
The two next columns illustrates the output of rCNN2 with one and two instances, respectively.
Most mistakes of first instance are corrected on the second one.

Output
Resolution

Computing Time
Per Image

Pixel
Accuracy

1/8 0.20s 78.4%

1/4 0.70s 79.3%

1/2 2.15s 79.8%

1/1 10.68s 80.2%

Table 3.5 – Inference time and performance in per-pixel accuracy for the recurrent convolu-
tional network rCNN3 with different label resolution on the Stanford dataset. Our algorithms
were run on a 4-core Intel i7.

3.4 Summary

In this chapter, we presented a novel approach for full scene labeling based on supervised
deep learning strategies which model in a rather simple way non-local class dependencies in a
scene from raw pixels. We demonstrated that the problem of scene labeling can be effectively
achieved without the need of any expensive graphical model or segmentation technique to
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3.4. Summary

Figure 3.5 – Qualitative results on SIFT Flow dataset. The test image is shown on the first
column. The two next columns illustrates the output of rCNN2 with one and two instances,
respectively. Most mistakes of first instance are corrected on the second one.

ensure labeling. The scene labeling is inferred simply by forward evaluation of a function
applied to a RGB image. In terms of accuracy, our system achieves state-of-the-art results on
both Stanford Background and SIFT Flow datasets, while keeping a fast inference time.
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4 Learning to Segment with Image-
Level Label

Segmenting objects is extremely challenging. Each object in the world generates an infinite
number of images with variations in position, pose, lightning, texture, geometrical form and
background. Natural image segmentation systems have to cope with these variations, while
being limited in the amount of available training data. Increasing computing power, and
recent releases of reasonably large segmentation datasets such as PASCAL VOC (Everingham
et al., 2010) and MS COCO (Lin et al., 2014) have nevertheless made the segmentation task a
reality.

Convolutional neural networks (LeCun et al., 1990, 1998) achieve state-of-the-art results on
large object recognition tasks (Krizhevsky et al., 2012; Szegedy et al., 2015; Farabet et al.,
2013). A big advantage of CNNs is that they learn sufficiently general features, and therefore
they can excel in transfer learning: e.g. CNN models trained on the ImageNet classification
dataset (Deng et al., 2009) could be exploited for different vision tasks (Girshick et al., 2014;
Oquab et al., 2014; Hariharan et al., 2014). Their main disadvantage, however, is the need of a
large number of fully-labeled dataset for training. Given that classification labels are much
more abundant than segmentation labels, it is natural to find a bridge between classification
and segmentation, which would transfer efficiently learned features from one task to the other
one.

In the previous chapter, we developed a method to learn how to give a label to every pixel
in a scene in a fully supervised way. In this chapter, the proposed CNN-based model is not
trained with segmentation labels, nor bounding box annotations. Instead, we only consider a
single object class label for a given image, and the model is constrained to put more weight
on important pixels for classification. This approach can be seen as an instance of Multiple
Instance Learning (MIL) (Maron and Lozano-Pérez, 1998). In this context, every image is
known to have (or not) – through the image class label – one or several pixels matching the
class label. However, the positions of these pixels are unknown, and have to be inferred. This
learning paradigm is called weakly supervised learning.

Because of computing power limitations, we built our model over the Overfeat feature extractor,
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Figure 4.1 – A schematic illustration of our method. (Left): (1) The model is trained using
weakly annotated data (only image-level class information) from ImageNet. (2) The CNN
generates feature planes. (3) These planes pass through an aggregation layer to constrain
the model to put more weight on the right pixels. (4) The system is trained by classifying the
correct image-level label. (Right): During test time, the aggregation layer is removed and the
CNN densely classifies every pixel of the image (considering only few segmentation priors).

developed by Sermanet et al. (2014). This feature extractor correspond to the first layers of a
CNN, well-trained over ImageNet. Features are fed into few extra convolutional layers, which
forms our “segmentation network”.

Training is achieved by maximizing the classification likelihood over the classification training
set (we consider a subset of ImageNet), by adding an extra layer to our network, which
constrains the model to put more weight on pixels which are important for the classification
decision. At test time, the constraining layer is removed, and the label of each image pixel is
efficiently inferred. Figure 4.1 shows a general illustration of our approach.

4.1 Related Work

Weakly supervised semantic segmentation Labeling data for segmentation task is difficult
if compared to labeling data for classification. For this reason, several weakly supervised
semantic segmentation systems have been proposed in the past few years. For instance, Vezh-
nevets and Buhmann (2010) proposed an approach based on Semantic Texton Forest (Shotton
et al., 2008), derived in the context of MIL. However, the method fails to model relationship be-
tween superpixels. In order to model these relationships, Vezhnevets et al. (2011) introduced a
graphical model – named Multi-Image Model (MIM) – to connect superpixels from all training
images, based on their appearance similarity. The unary potentials of the MIM are initialized
with the output of Vezhnevets and Buhmann (2010).

In (Vezhnevets et al., 2012), the authors define a parametric family of structured models, where
each model carries visual cues in a different way. A maximum expected agreement model
selection principle evaluates the quality of a model from a family. An algorithm based on
Gaussian processes is proposed to efficiently search the best model for different visual cues.
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Zhang et al. (2014) proposed an algorithm that learns the distribution of spatially structural
superpixel sets from image-level labels. This is achieved by first extracting graphlets (small
graphs consisting of superpixels and encapsulating their spatial structure) from a given image.
Labels from the training images are transfered into graphlets throughout a proposed manifold
embedding algorithm. A Gaussian mixture model is then used to learn the distribution of the
post-embedding graphlets, i.e. vectors output from the graphlet embedding. The inference is
done by leveraging the learned GMM prior to measure the structure homogeneity of a test
image.

In contrast with previous approaches for weakly supervised segmentation, we avoid designing
task-specific features for segmentation. Instead, a CNN learns the features: the model is
trained through a cost function which casts the problem of segmentation into the problem
of finding pixel-level labels from image-level labels. As we will see in Section 4.3, learning
the right features for segmentation leads to better performance compared to existing weakly
supervised segmentation systems. Another difference from our approach is that we train our
model in a different dataset (ImageNet) from the one we validate the results (PASCAL VOC).

Transfer Learning and CNNs In the last few years, convolutional networks have been widely
used in the context of object recognition. A notable system is the one from (Krizhevsky et al.,
2012), which performs very well on ImageNet. Oquab et al. (2014) built upon Krizhevsky’s
approach and showed that a model trained for classification on the ImageNet dataset can
be used for classification in a different dataset (namely PASCAL VOC) by taking into account
the bounding box information. Oquab et al. (2015) adapt an ImageNet-trained CNN to the
PASCAL VOC classification task. The network is fine-tuned on PASCAL VOC, by modifying
the cost function to include a final max-pooling layer. Similar to our aggregation layer, the
max-pooling outputs a single image-level score for each of the classes. In contrast, (1) we do
not limit ourselves to the PASCAL VOC classification problem, but tackle the more challenging
problem of segmentation and (2) our model is not fine-tuned on PASCAL VOC.

In the same spirit, Girshick et al. (2014) showed that a model trained for classification on
ImageNet can be adapted for object detection on PASCAL VOC. The authors proposed to
combine bottom-up techniques for generating detection region candidates with pre-trained
CNNs. The authors achieved state-of-the-art performance in object detection. Based upon
this work, Hariharan et al. (2014) derived a model that detects all instances of a category in
an image and, for each instance, marks the pixels that belong to it. Their model, entitled
Simultaneous Detection and Segmentation (SDS), uses category-specific, top-down figure-
ground predictions to refine bottom-up detection candidates.

As for these existing state-of-the-art approaches, our system leverages features learned over
the ImageNet classification dataset. However, our approach differs from theirs in some
important aspects. Compared to (Girshick et al., 2014; Oquab et al., 2014), we consider the
more challenging problem of object segmentation and do not use any information other than
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Figure 4.2 – Outline of the proposed architecture. The full RGB image is forwarded through
the network (composed of Overfeat and four extra convolutional features), generating output
planes of dimension (C +1)£ho £wo . These output planes can be seen as pixel-level labels of
a sub-sampled version of the input image. The output then passes through a aggrerg layer to
aggregate pixel-level labels into image-level ones. The error is backpropagated through layers
C10-C7.

the image-level annotation. Oquab et al. (2015) consider a weakly supervised scenario, but
only deal with the classification problem. Compared to (Hariharan et al., 2014), we consider
only the image-level annotation to infer the pixel-level one. In that respect, we do not use any
segmentation information (our model is not refined over the segmentation data either), nor
bounding box annotation during the training period. One could argue that a classification
dataset like ImageNet has somewhat already cropped properly objects. While this might be
true for certain objects, it is not the case for many images, and in any case the bounding box
remains quite loose.

After the publication of this work in 2015, many different weakly supervised semantic seg-
mentation methods appeared on the literature. For example Pathak et al. (2015) considers
to use each image-level tag as a constraint in the loss function of the CNN. Papandreou et al.
(2015) also proposes a CNN-based approach that constraint the loss using an expectation-
maximization algorithm. Saleh et al. (2016) propose to extract a foreground/background mask
by directly exploiting the unit activations of some of the hidden layers in the network. Tok-
makov et al. (2016) propose to leverage segmentation information from weakly annotated
videos, using motion segment as soft constraints. Kolesnikov and Lampert (2016) achieve
surprising results using a three step pipeline model: first, they use a pre-trained CNN to find
weak localization cues, second they expand objects based on the information of which object
are present in an image, then they constraint these segmentation using a CRF.

4.2 From Image-level to Pixel-level labeling

As we pointed out, CNNs are very flexible models which can be applied on various image
processing tasks, as they alleviate the need for task-specific features. CNNs learn a hierarchy
of filters, which extract higher level of representations as one goes “deeper” in the hierar-
chy (Zeiler and Fergus, 2014). The type of features they learn is also sufficiently general that
CNNs make transfer learning (to another task) quite easy. The main drawback of these models,
however, is that a large amount of data is necessary during training.
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4.2. From Image-level to Pixel-level labeling

Since the number of image-level object labels is much bigger than pixel-level segmentation
labels, it is thus natural to leverage image classification datasets for performing segmentation.
In the following, we consider a problem of segmentation with a set of classes C = {1, . . . ,C }. We
assume the classification dataset contains at least the same classes. Extra classes available
at classification time, but which are not in the segmentation dataset are mapped to a “back-
ground” class. This background class is essential to limit the number of false positive during
segmentation.

Our architecture is a CNN, which is trained over a subset of ImageNet, to produce pixel-level
labels from image-level labels. As shown in Figure 4.2, our CNN is quite standard, with 10
levels of convolutions and (optional) pooling. It takes as input a 400£400 RGB patch I , and
outputs C +1 planes (one per class, plus the background class) corresponding to the score
of the 12-times downsampled image pixels labels. During training, an extra layer, described
in Section 4.2.1, aggregates pixel-level labels into an image-level label. For computational
reasons, we “froze” the first layers of our CNN, to the ones of some already well-trained (over
ImageNet classification data) CNN model.

We pick Overfeat (Sermanet et al., 2014), trained to perform object classification on the
ILSVRC13 challenge (a subset of ImageNet). The Overfeat model generates feature maps of
dimensions 1024£hi £wi , where hi and wi are functions of the size of the RGB input image,
the convolution kernel sizes, convolution strides and max-pooling sizes. Keeping only the
first 6 convolution layers and 2 pooling layers of Overfeat, our RGB 400£400 image patch I is
transformed into a 1024£29£29 feature representation.

We add four extra convolutional layers (we denote H6 for feature planes coming out from
OverFeat. Each of them (but the last one Y) is followed by a pointwise rectification non-linearity
(ReLU):

Hp = max(0,Wp Hp°1 +bp ) , p 2 {7,8,9} ,

Y = W10H9 +b10 .
(4.1)

The parameters of the pth layer are denoted with (Wp ,bp ). On this step, we do not use any
max-pooling. A dropout regularization strategy (Srivastava et al., 2014) is applied on all layers.
The network outputs C +1 feature planes of dimensions ho £wo , one for each class considered
on training, plus background.

4.2.1 Multiple Instance Learning

The network produces one score sk
i , j = Y k

i , j for each pixel location (i , j ) from the subsampled
image I , and for each class k 2 C. Given that at training time we have only access to image
classification labels, we need a way to aggregate these pixel-level scores into a single image-
level classification score sk = ag g r egi , j (sk

i , j ), that will then be maximized for the right class
label k?. Assuming an aggregation procedure ag g r eg (·) is chosen, we interpret image-level
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class scores as class conditional probabilities by applying a softmax function (Bridle, 1990):

p(k|I ,µ) = esk

P
c2C

esc , (4.2)

where µ = {Wp ,bp }8p represents all the trainable parameters of our architecture. We then
maximize the log-likelihood (with respect to µ), over all the training dataset pairs (I ,k?):

L(µ) =
X

(k?,I )

"

sk? ° log
X

c2C
esc

#

. (4.3)

Training is achieved with stochastic gradient, backpropagating through the softmax, the
aggregation procedure, and up to the first non-frozen layers of our network.

Aggregation

The aggregation should drive the network towards correct pixel-level assignments, such that it
could perform decently on segmentation tasks. An obvious aggregation would be to take the
sum over all pixel positions:

sk =
X

i , j
sk

i , j 8k 2 C. (4.4)

This would however assign the same weight on all pixels of the image during the training
procedure, even to the ones which do not belong to the class label assigned to the image. Note
that this aggregation method is equivalent to applying a traditional fully-connected classifica-
tion CNN with a mini-batch. Indeed, each value in the ho £wo output plane corresponds to
the output of the CNN fed with a sub-patch centered around the correspond pixel in the input
plane. At the other end, one could apply a max pooling aggregation:

sk = max
i , j

sk
i , j 8k 2 C. (4.5)

This would encourage the model to increase the score of the pixel which is considered as
the most important for image-level classification. In our experience, this type of approach
does not train very well. Note that at the beginning of training all pixels might have the same
(wrong) score, but only one (selected by the max) will have its score increased at each step of
the training procedure. It is thus not surprising it takes an enormous amount of time to the
model to converge.

We chose instead a smooth version and convex approximation of the max function, called
Log-Sum-Exp (LSE) (Boyd and Vandenberghe, 2004):

sk = 1
r

log

"
1

ho wo

X

i , j
exp(r sk

i , j )

#

. (4.6)
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4.2. From Image-level to Pixel-level labeling

The hyper-parameter r controls how smooth one wants the approximation to be: high r values
imply having an effect similar to the max, very low values will have an effect similar to the
score averaging. The advantage of this aggregation is that pixels having similar scores will have
a similar weight in the training procedure, r controlling this notion of “similarity”.

Overfeat
C1-C2-C3-C4-C5-C6

Segmentation	Net
C7-C8-C9-C10

.	.	.

aggreg

aggreg

aggreg

aggreg

.	.	.

.	.	.

{	cat	}

Overfeat	+	Pixel-wise	
segmentation

Smoothing	Prior

pi,j(k)

ŷ
�

i,j(k) = pi,j(k|I) � p(k|I)

Figure 4.3 – Inference Pipeline. The test image is forwarded through the segmentation network
to generate a (C +1)£h£w output, one plane for each class. The image-level prior is extracted
from these planes and the class of each pixel is selected by taking the maximum probability for
each pixel. A smoothing prior is also considered to generate a smoother segmentation output.

4.2.2 Inference

At test time, we feed the padded and normalized RGB test image I (of dimension 3£h £w) to
our network, where the aggregation layer has been removed. We thus obtain C +1 planes of
pixel-level scores sk

i , j (1 ∑ i ∑ ho , 1 ∑ j ∑ wo). For convenience, we transform these scores into
conditional probabilities pi , j (k|I ) using a softmax over each location (i , j ).

Due to the pooling layers in the CNN, the output planes labels correspond to a sub-sampled
version of the input test image. As shown in previous chapter, one can efficiently retrieve the
label of all pixels of the image using a CNN model, by simply shifting the input image in both
spatial directions, and forwarding it again through the network.

Adding Segmentation Priors

Given we do not fine-tune our model on segmentation data, we observed our approach
is subject to false positive. To circumvent this issue, we consider simple post-processing
techniques, namely Image-Level Prior (ILP) and three different Smoothing Prior (SP), with
increasing amount of information. Figure 4.3 summarizes the pipeline of our approach during
inference time.

Image-Level Prior The model makes inference using local context based on the patch sur-
rounding a pixel. In order to improve the overall per-pixel accuracy, we add the global context
information of the scene into play. We propose the use of an ILP (Shotton et al., 2008; Vezhn-
evets and Buhmann, 2010) based on the output feature planes. This prior, which is extracted
from the trained network, is important to reduce the number of false positives generated by
the model. As at training time, the probability p(k|I ) of each class k 2 C to be present in the
scene can be computed by applying the softmax in the LSE score of each label plane. This
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Chapter 4. Learning to Segment with Image-Level Label

probability is used as the image-level prior to encourage the likely categories and discourage
the unlikely ones.

The ILP is integrated into the system by multiplying each conditional probability pi , j (k|I ) by
its class ILP, that is:

ŷ 0
i , j (k) = pi , j (k|I )£p(k|I ) , (4.7)

for each location (i , j ) and class k 2 C.

Smoothing Prior Predicting the class of each pixel independently from its neighbors yields
noisy predictions. In general, objects have smooth boundaries and well defined shapes, differ-
ent from the background which tends to be amorphous regions. At test time we considered
three different approaches (of increasing prior knowledge) to impose local regions with strong
boundaries to be assigned to the same label:

(i) SP-sppxl smooths the output using standard superpixels. We followed the method
proposed by (Felzenszwalb and Huttenlocher, 2004), which largely over-segments a
given image into a set of disjoint components. Prediction smoothing is achieved by
simply picking the label that appears the most in each superpixel.

(ii) SP-bb leverages bounding box proposals to improve the smoothing. We picked the
BING algorithm (Cheng et al., 2014) to generate a set of 104 (possibly overlapping)
bounding box proposals given an image, each bounding box having a score. These
scores are normalized to fit the [0,1] interval. Each pixel (i , j ) in the image is assigned a
score (of belonging to an object) by summing the score of all bounding box proposals
that contains the pixel. The score at each pixel is then converted into a probability
p((i , j ) 2 Obj) by normalizing the sum by the number of boxes containing the pixel.
Label smoothing for each pixel (i , j ) is then achieved with:

ŷi , j =

8
<

:
k, if max

k2C
ŷ 0

i , j (k)£p((i , j ) 2 Obj) > ±k

0, otherwise
, (4.8)

where ±k (0 ∑ ±k < 1) is a per-class confidence threshold and ŷi , j = 0 means that the
background class is assigned to the pixel.

(iii) SP-seg is a smoothing prior which has been trained with class-independent segmenta-
tion labels. We consider the Multiscale Combinatorial Grouping (MCG) algorithm (Ar-
beláez et al., 2014), which generates a series of overlapping object candidates with a
corresponding score. Pixel label smoothing is then achieved in the same way as in
SP-bb.

The smoothing prior improves our algorithm in two ways: (i) it forces pixels with low proba-
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bility of being part of an object to be labeled as background and (ii) it guarantees local label
consistency. While the former reduces the number of false positives, the latter increases the
number of true positives. We will see in Section 4.3 that (as it can be expected) more complex
smoothing priors improve performance accuracy.

4.3 Experiments

Given that our model uses only weak supervision labels (class labels), and is never trained
with segmentation data, we compare our approach with current state-of-the-art weakly su-
pervised segmentation systems. We also compare it against state-of-the-art fully supervised
segmentation systems, to demonstrate that weakly supervised segmentation is a promising
and viable solution.

4.3.1 Datasets

We considered the PASCAL VOC dataset (Everingham et al., 2010) as a benchmark for segmen-
tation. This dataset includes 20 different classes, and represents a particular challenge as an
object segmentation task. The objects from these classes can appear in many different poses,
possibly highly occluded, and also possess a very large intra-class variation. The dataset was
only used for testing purposes, not for training.

We created a large classification training set from the ImageNet dataset containing images
of each of the twenty classes and also an extra class labeled as background – set of images
in which none of the classes appear. We consider all the sub-classes located below each of
the twenty classes in the full ImageNet tree, for a total of around 700,000 samples. For the
background, we chose a subset of ImageNet consisting of a total of around 60,000 images not
containing any of the twenty classes1. To increase the size of the training set, jitter (horizontal
flip, rotation, scaling, brightness and contrast modification) was randomly added to each
occurrence of an image during the training procedure. Each image was then normalized for
each RGB channel. No other preprocessing was done during training.

4.3.2 Experimental Setup

Each training sample consists of a central patch of size 400£400 randomly extracted from a
deformed image in the training set. If the image dimensions are smaller than 400£400, it is
rescaled such that its smaller dimension is of size 400.

The first layers of our network are extracted (and “frozen”) from the public available Overfeat2

model. In all our experiments, we use the slow Overfeat model, as described in (Sermanet

160K background images might look surprisingly not large, but we found not easy to pick images where none of
the 20 PASCAL VOC classes were not present.

2http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

47

http://cilvr.nyu.edu/doku.php?id=software:overfeat:start


Chapter 4. Learning to Segment with Image-Level Label

Conv. Layer 1 2 3 4

# channels 1024 768 512 21

Filter Size 3£3 3£3 3£3 3£3

Input Size 29£29 27£27 25£25 23£23

Table 4.1 – Architecture of the segmenter network used in our experiments.

Model VOC2008 VOC2009 VOC2010

MIM 8.11% 38.27% 28.43%

GMIM 9.24% 39.16% 29.71%

PGC 30.12% 43.37% 32.14%

aggreg-max 44.31% 45.46% 45.88%

aggreg-sum 47.54% 50.01% 50.11%

aggreg-LSE 56.25% 57.01% 56.12%

Table 4.2 – Averaged per-class accuracy of weakly supervised models and ours for different
PASCAL VOC datasets. We consider three different aggregation layers.

et al., 2014). With the 400£400 RGB input image, the Overfeat feature extractor outputs 1024
feature maps of dimension 29£29. As detailed in Section 4.2, these feature maps are then fed
into 4 additional convolutional layers followed by ReLU non-linearity. A dropout procedure
with a rate of 0.5 is applied on each layer. The whole network has a total of around 20 million
parameters. Table 4.1 details the architecture used in our experiments.

The final convolution layer outputs a 21 feature maps of dimension 21£21. These feature
maps are passed through the aggregation layer (in the case of LSE, we consider r = 5), which
outputs 21 scores, one for each class (plus background). These scores are then transformed
into posterior probabilities through a softmax layer.

Design architecture and hyper-parameters were chosen considering the validation data of
the PASCAL VOC 2012 segmentation dataset. We considered a learning rate ∏= 0.001 which
decreases by a factor of 0.8 for every 5 million examples seen by the model. We trained our
model using stochastic gradient descent with a batch size of 16 examples, momentum 0.9 and
weight decay of 0.00005.

The optimal class confidence thresholds ±k for smoothing priors (see Section 4.2.2) were
chosen through a grid search. The AP changes in function of the confidence threshold for
each class. The different values for the threshold is due to the variability of each class in the
training data and how their statistics approach the PASCAL VOC images statistics.

Our network takes about a week to train on a Nvidia GeForce Titan GPU with 6GB of memory.
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4.3. Experiments

4.3.3 Experimental Results

Compared to weakly supervised models

We compare the proposed algorithm with three state-of-the-art approaches in weakly super-
vised segmentation scenario: (i) Multi-Image Model (MIM) (Vezhnevets et al., 2011), (ii) a
variant, Generalized Multi-Image Model (GMIM) (Vezhnevets et al., 2012) and (iii) the most re-
cent Probabilistic Graphlet Cut (PGC) (Zhang et al., 2014, 2013). Note that there are variations
in the experimental setup on the experiments. The compared models use PASCAL VOC for
weak supervision while we use ImageNet. Also, (iii) considers additional labels on the data. In
our training framework, the PASCAL VOC dataset was used only for selecting the thresholds
on the class priors. Our system learns features that are independent of the PASCAL VOC data
distribution and would a priori yields similar results in other datasets.

Table 4.2 reports the results of the three compared models and our approach. In our exper-
iments, we consider the ILP and the SP-sppxl smoothing prior, which does not take into
account any segmentation or bounding box information. We consider the three aggrega-
tion layers described in Section 4.2.1. This result empirically demonstrates our choice of the
Log-Sum-Exp layer.

The results for the compared models reported on this table are from (Zhang et al., 2014). We
use the same metric and evaluate on the same datasets (PASCAL VOC 2008, 2009 and 2010)
as the authors. The metric used, average per-class accuracy, is defined by the ratio of correct
classified pixels of each class. We show that our model achieves significantly better results
than the previous state-of-the-art weakly supervised algorithms, with an increase from 30% to
90% in average per-class accuracy.

Compared to fully supervised models

In table 4.3, we compare the performance of our model against the best performers in PASCAL
VOC 2012 segmentation competition3: Second Order Pooling (O2P) (Carreira et al., 2012), Di-
vMBest (Yadollahpour et al., 2013) and Simultaneous Detection and Segmentation (SDS) (Har-
iharan et al., 2014). Average precision metric4, as defined by the PASCAL VOC competition,
is reported. We show results using the image-level prior and all three smoothing priors (as
described in 4.2.2). The performance of our model increases as we consider more complex
priors.

We reach near state-of-the-art performance for several classes (even with the simplest smooth-
ing prior SP-sppxl, which is object and segmentation agnostic) while some other classes
perform worse. This is not really surprising, given that the statistics of the images for some

3These were the leading methods on PASCAL VOC official evaluation server at the time this work was done. The
fully supervised state of the art has now been vastly improved with CNN-based methods (e.g. (Long et al., 2015;
Chen et al., 2015))

4AP = Tr uePosi t i ve
Tr uePosi t i ve+F al sePosi t i ve+F al seNeg ati ve
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Fully Sup.

O2P 86.1 64.0 27.3 54.1 39.2 48.7 56.6 57.7 52.5 14.2 54.8 29.6 42.2 58.0 54.8 50.2 36.6 58.6 31.6 48.4 38.6 47.8

DivMBest 85.7 62.7 25.6 46.9 43.0 54.8 58.4 58.6 55.6 14.6 47.5 31.2 44.7 51.0 60.9 53.5 36.6 50.9 30.1 50.2 46.8 48.1

SDS 86.3 63.3 25.7 63.0 39.8 59.2 70.9 61.4 54.9 16.8 45.0 48.2 50.5 51.0 57.7 63.3 31.8 58.7 31.2 55.7 48.5 51.6

Weak. Sup.

Ours-sppxl 74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 44.8 15.8 49.4 47.3 36.6 36.4 24.3 44.5 21.0 31.5 41.3 35.8

Ours-bb 76.2 42.8 20.9 29.6 25.9 38.5 40.6 51.7 49.0 9.1 43.5 16.2 50.1 46.0 35.8 38.0 22.1 44.5 22.4 30.8 43.0 37.0

Ours-seg 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6

Table 4.3 – Per class average precision and mean average precision (mAP) on PASCAL VOC
2012 segmentation challenge test set. We consider different smoothing priors in our model.

classes (e.g. ‘dog’, ‘cat’, ‘cow’) are closer in the two different datasets than for some other classes
(e.g. ‘bird’, ‘person’). The results on the specific PASCAL VOC challenge could be improved by
“cheating” and considering training images that are more similar to those represented on the
test data (e.g. instead of choosing all bird images from ImageNet, we could have chosen the
bird breeds that are similar to the ones presented on PASCAL VOC).
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base 37.0 10.4 12.4 10.8 5.3 5.7 25.2 21.1 25.15 4.8 21.5 8.6 29.1 25.1 23.6 25.5 12.0 28.4 8.9 22.0 11.6 17.8

base+ILP 73.2 25.4 18.2 22.7 21.5 28.6 39.5 44.7 46.6 11.9 40.4 11.8 45.6 40.1 35.5 35.2 20.8 41.7 17.0 34.7 30.4 32.6

base+ILP+SP-sppxl 77.2 37.3 18.4 25.4 28.2 31.9 41.6 48.1 50.7 12.7 45.7 14.6 50.9 44.1 39.2 37.9 28.3 44.0 19.6 37.6 35.0 36.6

base+ILP+SP-bb 78.6 46.9 18.6 27.9 30.7 38.4 44.0 49.6 49.8 11.6 44.7 14.6 50.4 44.7 40.8 38.5 26.0 45.0 20.5 36.9 34.8 37.8

base+ILP+SP-seg 79.6 50.2 21.6 40.6 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0

Table 4.4 – Effect of image-level and smoothing priors on segmentation results. Per class
average precision on PASCAL VOC 2012 validation set. We consider the inference with no
priors (base), with image-level prior (base+ILP) and different smoothing priors (base+ILP+SP-
sppxl, base+ILP+SP-bb, base+ILP+SP-seg).

Effect of Priors

Table 4.4 shows the average precision of each class on the PASCAL VOC 2012 validation set
considering the inference assuming no prior was used (base), only the image-level prior
(base+ILP) and the image-level together with different smoothing priors (base+ILP+SP-sppxl,
base+ILP+SP-bb, base+ILP+SP-seg). Figure 4.4 illustrates inference in PASCAL VOC images
assuming different steps of inference. Priors have a huge importance to reduce false positives,
and smooth predictions.

4.4 Summary

In this chapter, we proposed a way to segment objects with weakly supervision only. Our model
is built on the top of a CNN pre-trained on ImageNet which is constrained during training to
put more weight on pixels which are important for classifying images. Our algorithm is able to
distinguish, at a pixel level, the differences between distinct classes, assuming only few simple
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4.4. Summary

Figure 4.4 – Qualitative results. For each test image (left), we show the output assuming the
image-level prior (center) and image-level and SP-seg smoothing prior (right).

prior knowledge about segmentation. This is an interesting result as one might circumvent the
necessity of using the very costly segmentation datasets and use only image-level annotations.
Our approach outperforms previously proposed models for weakly supervised segmentation,
with an increase form 30% to 90% in average per-class accuracy, on PASCAL VOC dataset. We
also achieve competitive performance (at least for several classes) compared to state-of-the-art
fully supervised segmentation systems.
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5 Learning to Generate Object Seg-
ments

Object detection is one of the most foundational tasks in computer vision. Until recently,
the dominant paradigm in object detection was the sliding window framework: a classifier is
applied at every object location and scale (Dalal and Triggs, 2005; Felzenszwalb et al., 2010;
Viola and Jones, 2004). More recently, Girshick et al. (2014) proposed a two-phase approach.
First, a rich set of object proposals (i.e., a set of image regions which are likely to contain an
object) is generated using a fast (but possibly imprecise) algorithm. Second, a convolutional
neural network classifier is applied on each of the proposals. This approach provides a notable
gain in object detection accuracy compared to classic sliding window approaches. Since
then, most state-of-the-art object detectors for the PASCAL VOC (Everingham et al., 2010)
ImageNet (Deng et al., 2009) and COCO (Lin et al., 2014) datasets rely on object proposals as a
first preprocessing step (Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; Bell et al., 2016;
He et al., 2016).

In this chapter, we present an object proposal algorithm based on CNN (LeCun et al., 1998)
that satisfies these constraints better than existing approaches. CNNs are an important class of
algorithms which have been shown to be state of the art in many large scale object recognition
tasks. They can be seen as a hierarchy of trainable filters, interleaved with non-linearities
and pooling. Moreover, these models learn sufficiently general image features, which can be
transferred to many different tasks (Girshick et al., 2014; Hariharan et al., 2015; Chen et al.,
2015; Oquab et al., 2015).

Given an input image patch, our algorithm generates a class-agnostic mask and an associated
score which estimates the likelihood of the patch fully containing a centered object (without
any notion of an object category). The core of our model is a CNN which jointly predicts
the mask and the object score. A large part of the network is shared between those two
tasks: only the last few network layers are specialized for separately outputting a mask and
score prediction. The model is trained by optimizing a cost function that targets both tasks
simultaneously. We train on COCO and evaluate the model on two object detection datasets,
PASCAL VOC and COCO.
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By leveraging powerful CNN feature representations trained on ImageNet and adapted on the
large amount of segmented training data available in COCO, we are able to beat the state of the
art in object proposals generation under multiple scenarios. Our most notable achievement is
that our approach beats other methods by a large margin while considering a smaller number
of proposals. Moreover, we demonstrate the generalization capabilities of our model by testing
it on object categories not seen during training. Finally, unlike all previous approaches for
generating segmentation proposals, we do not rely on edges, superpixels, or any other form of
low-level segmentation. This approach is the first to learn to generate segmentation proposals
directly from raw image data.

5.1 Related Work

In recent years, CNNs have been widely used in the context of object recognition. Notable
systems are AlexNet (Krizhevsky et al., 2012) and more recently GoogLeNet (Szegedy et al.,
2015), VGG (Simonyan and Zisserman, 2015) and ResNet (He et al., 2016), which perform ex-
ceptionally well on ImageNet. In the setting of object detection, Girshick et al. (2014) proposed
R-CNN, a CNN-based model that beats by a large margin models relying on hand-designed
features. Their approach can be divided into two steps: selection of a set of salient object
proposals (Uijlings et al., 2013), followed by a CNN classifier (Krizhevsky et al., 2012; Simonyan
and Zisserman, 2015). Currently, most state-of-the-art object detection approaches (Szegedy
et al., 2014; He et al., 2014; Girshick, 2015; Ren et al., 2015) rely on this pipeline. Although they
are slightly different in the classification step, they all share the first step, which consists of
choosing a rich set of object proposals.

Most object proposal approaches leverage low-level grouping and saliency cues. These ap-
proaches usually fall into three categories: (1) objectness scoring (Alexe et al., 2012; Zitnick and
Dollár, 2014), in which proposals are extracted by measuring the objectness score of bounding
boxes, (2) seed segmentation (Humayun et al., 2014; Krähenbühl and Koltun, 2014, 2015),
where models start with multiple seed regions and generate separate foreground-background
segmentation for each seed, and (3) superpixel merging (Uijlings et al., 2013; Pont-Tuset et al.,
2015), where multiple over-segmentations are merged according to various heuristics. These
models vary in terms of the type of proposal generated (bounding boxes or segmentation
masks) and if the proposals are ranked or not. For a more complete survey of object proposal
methods, we recommend the recent survey from (Hosang et al., 2016).

Although our model shares high level similarities with these approaches (we generate a set
of ranked segmentation proposals), these results are achieved quite differently. All previous
approaches for generating segmentation masks, including (Krähenbühl and Koltun, 2015)
which has a learning component, rely on low-level segmentations such as superpixels or
edges. Instead, we propose a data-driven discriminative approach based on a deep-network
architecture to obtain our segmentation proposals.

Most closely related to our approach, Multibox (Erhan et al., 2014; Szegedy et al., 2014) pro-
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posed to train a CNN model to generate bounding box object proposals. Their approach,
similarly to ours, generates a set of ranked class-agnostic proposals. However, our model
generates segmentation proposals instead of the less informative bounding box proposals.
Moreover, the model architectures, training scheme, etc., are quite different between our ap-
proach and (Szegedy et al., 2014). Deepbox (Kuo et al., 2015) proposed a CNN model that learns
to rerank proposals generated by EdgeBox (Zitnick and Dollár, 2014), a bottom-up method for
bounding box proposals. This system shares some similarities to our scoring network. Our
model, however, is able to generate the proposals and rank them in one shot from the test
image, directly from the pixel space. Concurrently with the work in this chapter, (Ren et al.,
2015) proposed “region proposal networks” for generating box proposals that shares similar-
ities with our work. We emphasize, however, that unlike all these approaches our method
generates segmentation masks instead of bounding boxes. Finally, Hayder et al. (2016) present
an approach to co-generate object proposals in multiple images. They use a deep structure
network that jointly predicts the objectness scores and the bounding box locations of multiple
object candidates. Contrary to our work, this method relies in a previously generated set of
object proposals (e.g., EdgeBox) and generates box proposals only.

5.2 DeepMask Proposals

Our object proposal method predicts a segmentation mask given an input patch, and assigns
a score corresponding to how likely the patch is to contain an object.

Both mask and score predictions are achieved with a single convolutional network. CNNs
are flexible models which can be applied to various computer vision tasks and they alleviate
the need for manually designed features. Their flexible nature allows us to design a model in
which the two tasks (mask and score predictions) can share most of the layers of the network.
Only the last layers are task-specific (see Figure 5.1). During training, the two tasks are learned
jointly. Compared to a model which would have two distinct networks for the two tasks, this
architecture choice reduces the capacity of the model and increases the speed of full scene
inference at test time.

Each sample k in the training set is a triplet containing (1) the RGB input patch xk , (2) the
binary mask corresponding to the input patch mk (with mi j

k 2 {±1}, where (i , j ) corresponds
to a pixel location on the input patch) and (3) a label yk 2 {±1} which specifies whether the
patch contains an object. Specifically, a patch xk is given label yk = 1 if it satisfies the following
constraints:

(i) the patch contains an object roughly centered in the input patch,

(ii) the object is fully contained in the patch and in a given scale range.

Otherwise, yk =°1, even if an object is partially present. The positional and scale tolerance
used in our experiments are given shortly. Assuming yk = 1, the ground truth mask mk has
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Figure 5.1 – (Top) Model architecture: the network is split into two branches after the shared
feature extraction layers. The top branch predicts a segmentation mask for the the object
located at the center while the bottom branch predicts an object score for the input patch.
(Bottom) Examples of training triplets: input patch x, mask m and label y . Green patches
contain objects that satisfy the specified constraints and therefore are assigned the label
y = 1. Note that masks for negative examples (shown in red) are not used and are shown for
illustrative purposes only.

positive values only for the pixels that are part of the single object located in the center of the
patch. If yk =°1 the mask is not used. Figure 5.1, bottom, shows examples of training triplets.

Figure 5.1, top, illustrates an overall view of our model, which we call DeepMask. The top
branch is responsible for predicting an object segmentation mask and the bottom branch
predicts the likelihood that an object is present and satisfies the above two constraints.

We next describe in detail each part of the basic architecture (the first version of DeepMask,
introduced in (Pinheiro et al., 2015)), the training procedure, and the fast inference procedure.
In Section 5.3, we describe some efficient variants of this basic architecture that improve speed
without decreasing the performance (introduced in (Pinheiro et al., 2016)).

5.2.1 Network Architecture

In this section we describe the three components of the basic DeepMask architecture: the
common shared trunk, the segmentation branch and the scoring branch.

Common Trunk

The parameters for the layers shared between the mask prediction and the object score pre-
diction are initialized with a network that was pre-trained to perform classification on the
ImageNet dataset (Deng et al., 2009). This model is then fine-tuned for generating object
proposals during training. For the basic architecture, we choose the VGG-A (Simonyan and
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5.2. DeepMask Proposals

Zisserman, 2015) which consists of eight 3£3 convolutional layers (followed by ReLU nonlin-
earities) with 0-padding and five 2£2 max-pooling layers and has shown good performance.

As we are interested in inferring segmentation masks, the spatial information provided in the
convolutional feature maps is important. We therefore remove all the final fully connected
layers of the VGG-A model. Additionally we also discard the last max-pooling layer. The
output of the shared layers has a downsampling factor of 16 due to the remaining four 2£2
max-pooling layers; given an input image of dimension 3£h £w , the output is a feature map
of dimensions 512£ h

16 £
w
16 .

Segmentation Head

The branch of the network dedicated to segmentation is composed of a single 1£1 convolution
layer (and ReLU non-linearity) followed by a classification layer. The classification layer
consists of h£w pixel classifiers, each responsible for indicating whether a given pixel belongs
to the object in the center of the patch. Note that each pixel classifier in the output plane must
be able to utilize information contained in the entire feature map, and thus have a complete
view of the object. This is critical because unlike in semantic segmentation, our network
must output a mask for a single object even when multiple objects are present (e.g., see the
elephants in Figure 5.1).

For the classification layer one could use either locally or fully connected pixel classifiers. Both
options have drawbacks: in the former each classifier has only a partial view of the object while
in the latter the classifiers have a massive number of redundant parameters. Instead, we opt
to decompose the classification layer into two linear layers with no non-linearity in between.
This can be viewed as a “low-rank” variant of using fully connected linear classifiers. Such
an approach massively reduces the number of network parameters while allowing each pixel
classifier to leverage information from the entire feature map. Its effectiveness is shown in the
experiments. Finally, to further reduce model capacity, we set the output of the classification
layer to be ho £wo with ho < h and wo < w and upsample the output to h £w to match the
input dimensions.

Scoring Head

The second branch of the network is dedicated to predicting if an image patch satisfies
constraints (i) and (ii): that is, if an object is centered in the patch and at the appropriate scale.
In its basic form, the scoring head is composed of a 2£2 max-pooling layer, followed by two
fully connected (plus ReLU non-linearity) layers. The final output is a single “objectness” score
indicating the presence of an object in the center of the input patch (and at the appropriate
scale).
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5.2.2 Joint Learning

Given an input patch xk 2 I, the model is trained to jointly infer a pixel-wise segmentation
mask and an object score. The loss function is a sum of binary logistic regression losses, one
for each location of the segmentation network and one for the object score, over all training
triplets (xk ,mk , yk ):

L(µ) =
X

k

µ
1+yk

2w o ho

X

i j
log(1+e°mi j

k f i j
seg m (xk ))+∏ log(1+e°yk fscor e (xk ))

∂
. (5.1)

Here µ is the set of parameters, f i j
seg m(xk ) is the prediction of the segmentation network at

location (i , j ), and fscor e (xk ) is the predicted object score. We alternate between backpropa-
gating through the segmentation branch and scoring branch (and set ∏= 1

32 ). For the scoring
branch, the data is sampled such that the model is trained with an equal number of positive
and negative samples.

Note that the factor multiplying the first term of (5.1) implies that we only backpropagate the
error over the segmentation branch if yk = 1. An alternative would be to train the segmentation
branch using negatives as well (setting mi j

k = 0 for all pixels if yk =°1). However, we found
that training with positives only was critical for generalizing beyond the object categories seen
during training and for achieving high object recall. This way, during inference the network
attempts to generate a segmentation mask at every patch, even if no known object is present.

5.2.3 Full Scene Inference

During full image inference, we apply the model densely at multiple locations and scales. This
is necessary so that for each object in the image we test at least one patch that fully contains
the object (roughly centered and at the appropriate scale), satisfying the two assumptions
made during training. This procedure gives a segmentation mask and object score at each
image location. Figure 5.2 illustrates the segmentation output when the model is applied
densely to an image at a single scale.

The full image inference procedure is efficient since all computations can be computed
convolutionally. The CNN features can be computed densely in a fraction of a second given
a typical input image. For the segmentation branch, the last fully connected layer can be
computed via convolutions applied to the CNN features. The scores are likewise computed by
convolutions on the CNN features followed by two 1£1 convolutional layers.

Finally, note that the scoring branch of the network has a downsampling factor 2£ larger than
the segmentation branch due to the additional max-pooling layer. Given an input test image of
size ht £w t , the segmentation and object network generate outputs of dimension ht

16 £
w t

16 and
ht

32 £
w t

32 , respectively. In order to achieve a one-to-one mapping between the mask prediction
and object score, we apply the interleaving trick right before the last max-pooling layer for the
scoring branch to double its output resolution (we use exactly the implementation described
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image
masks

scores

Figure 5.2 – Output of segmentation masks and object scores generated by the proposed model
on a given test image, with a 16 pixels stride (at a single scale). The model outputs high quality
mask and and high objectness score on object locations.

in (Sermanet et al., 2014)).

5.2.4 Implementation Details

During training, an input patch xk is considered to contain a “canonical” positive example if
an object is precisely centered in the patch and has maximal dimension equal to exactly 128
pixels. However, having some tolerance in the position of an object within a patch is critical as
during full image inference most objects will be observed slightly offset from their canonical
position. Therefore, during training, we randomly jitter each “canonical” positive example
to increase the robustness of our model. Specifically, we consider translation shift (of ±16
pixels), scale deformation (of 2±1/4), and also horizontal flip. In all cases we apply the same
transformation to both the image patch xk and the ground truth mask mk and assign the
example a positive label yk = 1. Negative examples (yk = °1) are any patches at least ±32
pixels or 2±1 in scale from any canonical positive example.

During full image inference we apply the model densely at multiple locations (with a stride of
16 pixels) and scales (scales 2°2 to 21 with a step of 21/2). This ensures that there is at least one
tested image patch that fully contains each object in the image (within the tolerances used
during training).

In the first implementation, the model is fed with RGB input patches of dimension 3£224£
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224. Since we removed the fifth pooling layer, the common branch outputs a feature map
of dimensions 512£ 14£ 14. The score branch of our network is composed of 2£ 2 max
pooling followed by two fully connected layers (with 512 and 1024 hidden units, respectively).
Both of these layers are followed by ReLU non-linearity and a dropout (Srivastava et al.,
2014) procedure with a rate of 0.5. A final linear layer then generates the object score (see
Section 5.4.1 for more efficient implementation).

The segmentation branch begins with a single 1£1 convolutional layer with 512 units. This
feature map is then fully connected to a low dimensional output of size 512, which is further
fully connected to each pixel classifier to generate an output of dimension 56£56. As discussed,
there is no non-linearity between these two layers. In total, this implementation of the model
contains around 75M parameters.

A final bilinear upsampling layer is added to transform the 56£56 output prediction to the
full 224£224 resolution of the ground-truth (directly predicting the full resolution output
would have been much slower). We opted for a non-trainable layer as we observed that a
trainable one simply learned to bilinearly upsample. Alternatively, we tried downsampling
the ground-truth instead of upsampling the network output; however, we found that doing so
slightly reduced accuracy.

Design architecture and hyper-parameters were chosen using a subset of the COCO validation
data (Lin et al., 2014) (non-overlapping with the data we used for evaluation). We considered a
learning rate of .001. We trained our model using stochastic gradient descent with a batch size
of 32 examples, momentum of .9, and weight decay of .00005. Aside from the pre-trained VGG
features, weights are initialized randomly from a uniform distribution. Our model takes around
5 days to train on a Nvidia Tesla K40m. To binarize predicted masks we simply threshold the
continuous output (using a threshold of .1 for PASCAL and .2 for COCO).

5.3 Architecture Optimization

The DeepMask architecture described above achieves state of the art in object proposal over
different datasets. We now describe a series of architecture optimization that further improves
its performance in terms of accuracy and inference speed. In the next two subsections we
carefully examine the design of the network “trunk” and “head”.

5.3.1 Trunk Architecture

We begin by identifying model bottlenecks. The architecture defined in the previous section
spends 40% of its time for feature extraction, 40% for mask prediction, and 20% for score
prediction. Given the time of feature extraction, increasing model depth or breadth can incur
a non-trivial computational cost. Simply upgrading the 11-layer VGG-A model (Simonyan and
Zisserman, 2015) to the 16-layer VGG-D model can double run time. Recently, He et al. (2016)
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introduced Residual Networks (ResNet) and showed excellent results. In these architecture
variants, we use the 50-layer ResNet model pre-trained on ImageNet, which achieves the
accuracy of VGG-D but with the inference time of VGG-A.

We explore models with varying input size W, number of pooling layers P, stride density S,
model depth D, and final number of feature channels F. These factors are intertwined but we
can achieve significant insight by a targeted study.

Input size W Given a minimum object size O, the input image needs to be upsampled by
W/O to detect small objects. Hence, reducing W improves speed of both mask prediction
and inference for small objects. However, a smaller W reduces the input resolution which in
turn lowers the accuracy of mask prediction. Moreover, reducing W decreases stride density S
which further harms accuracy.

Pooling layers P Assuming 2£2 pooling, the final kernel width is W/2P. During inference,
this necessitates convolving with a large W/2P kernel in order to aggregate information (e.g.,
14£14 for DeepMask). However, while more pooling P results in faster computation, it also
results in loss of feature resolution.

Stride density S We define the stride density to be S=W/stride (where typically stride is 2P).
The smaller the stride, the denser the overlap with ground truth locations. We found that the
stride density is key for mask prediction. Doubling the stride while keeping W constant greatly
reduces performance as the model must be more spatially invariant relative to a fixed object
size.

Depth D For typical networks (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015;
Szegedy et al., 2015; He et al., 2016), spatial resolution decreases with increasing D while the
number of feature channels F increases. In the context of instance segmentation, reducing
spatial resolution hurts performance. One possible direction is to start with lower layers that
have less pooling and increase the depth of the model without reducing spatial resolution or
increasing F. This would require training networks from scratch which we leave to future work.

Feature channels F The high dimensional features at the top layer introduce a bottleneck
for feature aggregation. An efficient approach is to first apply dimensionality reduction before
feature aggregation. We adopt 1£1 convolution to reduce F and show that we can achieve
large speedups in this manner.

In Section 5.4.1 and Table 5.1 we examine various choices for W, P, S, D, and F.
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Figure 5.3 – Network head architecture. (a) The original DeepMask head. (b-d) Various head
options with increasing simplicity and speed. The heads share identical pathways for mask
prediction but have progressively simplified score branches.

5.3.2 Head Architecture

We also examine the “head” of the DeepMask model, focusing on score prediction. Our goal is
to simplify the head and further improve inference speed.

In the base DeepMask architecture described in the previous section, the mask and scoring
heads branch after the final 512£14£14 feature map (see Figure 5.1 and Figure 5.3a). Both
mask and score prediction require a large convolution, and in addition, the score branch
requires an extra pooling step and hence interleaving to match the stride of the mask network
during inference. Overall, this leads to a slow inference procedure.

We propose a sequence of simplified network structures that have identical mask branches
but that share progressively more computation. A series of model heads A-C is detailed in
Figure 5.3. Head A removes the need for interleaving in DeepMask by removing max pooling
and replacing the 512£7£7 convolutions by 128£10£10 convolutions; overall this network
is much faster. Head B simplifies this by having the 128£10£10 features shared by both the
mask and score branch. Finally, model C further reduces computation by having the score
prediction utilize the same low rank 512£1£1 features used for the mask.

In Section 5.4.1 we evaluate these variants in terms of performance and speed.

5.4 Experimental Results

In this section, we evaluate the performance of our approach on the PASCAL VOC 2007 test
set (Everingham et al., 2010) and on the first 5000 images of the COCO 2014 validation set (Lin
et al., 2014). Our model is trained on the COCO training set which contains about 80,000
images and a total of nearly 500,000 segmented objects. Although our model is trained to
generate segmentation proposals, it can also be used to provide box proposals by taking the
bounding boxes enclosing the segmentation masks. Figure 5.4 and Figure 5.5 show examples
of generated proposals with highest IoU to the ground truth on COCO.
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Figure 5.4 – DeepMask proposals with highest IoU to the ground truth on selected images
from COCO. Missed objects (no matching proposals with IoU > 0.5) are marked with a red
outline.

The accuracy is measured using the common IoU metric. IoU is the intersection of a candidate
proposal and ground-truth annotation divided by the area of their union. This metric can be
applied to both segmentation and box proposals. Following Hosang et al. (2016), we evaluate
the performance of the proposal methods considering the AR between IoU 0.5 and 1.0 for
a fixed number of proposals (see Section 2.1.2 for further details). AR has been shown to
correlate extremely well with detector performance (recall at a single IoU threshold is far less
predictive (Hosang et al., 2016)).

The results are measured in terms of AR at 10, 100, and 1000 proposals and averaged across all
counts (Area Under Curve (AUC)). As the COCO dataset contains objects in a wide range of
scales, it is also common practice to divide objects into roughly equally sized sets according to
object pixel area a: small (a < 322), medium (322 ∑ a ∑ 962), and large (a > 962) objects, and
report accuracy at each scale.
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W P D S kernel F AR ARS ARM ARL time

DeepMaskBase 224 4 8 14 512x14x14 512 36.6 18.2 48.7 50.6 1.32s

W160-P4-D8-VGG 160 4 8 10 1024x10x10 512 35.5 15.1 47.5 53.2 .58s

W160-P4-D39 160 4 39 10 1024x10x10 512 37.0 15.9 50.5 53.9 .58s

W160-P4-D39-F128 160 4 39 10 1024x10x10 128 36.9 15.6 49.9 54.8 .45s

W112-P4-D39 112 4 39 7 1024x7x7 512 30.8 11.2 42.3 47.8 .31s

W112-P3-D21 112 3 21 14 512x14x14 512 36.7 16.7 49.1 53.1 .75s

W112-P3-D21-F128 112 3 21 14 512x14x14 128 36.1 16.3 48.4 52.2 .33s

Table 5.1 – Model performance (upper bound on AR) for varying input size W, number of
pooling layers P, stride density S, depth D, and features channels F. See Section 5.3.1 and
Section 5.4.1 for details. Timing is for multiscale inference excluding the time for score
prediction.

5.4.1 Architecture Variants

We begin by reporting the performance of different variations of DeepMask architecture
presented in previous sections. For our initial results, we measure AR for densely computed
masks (ª104 proposals per image). This allows us to factor out the effect of objectness score
prediction and focus exclusively on evaluating mask quality. In our experiments, AR across all
proposals is highly correlated, hence this upper bound on AR is predictive of performance at
more realistic settings (e.g. at AR100).

Trunk Architecture We begin by investigating the effect of the network trunk parameters
described in Section 5.3.1 with the goal of optimizing both speed and accuracy. Performance
of a number of representative models is shown in Table 5.1. First, replacing the 224£224
DeepMask VGG-A model with a 160£160 version is much faster (over two times). Surprisingly,
accuracy loss for this model, W160-P4-D8-VGG, is only minor, partially due to an improved
learning schedule. Upgrading to a Residual Network (ResNet) trunk, W160-P4-D39, restores
accuracy and keeps speed identical. We found that reducing the feature dimension to 128
(-F128) shows almost no loss, but improves speed. Finally, as input size is a bottleneck, we
also tested a number of W112 models. Nevertheless, overall, W160-P4-D39-F128 gave the best
tradeoff between speed and accuracy.

Head Architecture In Table 5.2 we evaluate the performance of the various network heads
in Figure 5.3 (using standard AR, not upper-bound AR as in Table 5.1). Head A is already
substantially faster than base DeepMask. All heads achieve similar accuracy with a decreasing
inference time as the score branch shares progressively more computation with the mask.
Interestingly, head C is able to predict both the score and mask from a single compact 512
dimensional vector. We chose this variant due to its simplicity and speed.

Based on these experiments, we combine the W160-P4-D39-F128 trunk with the C head. On
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AR10 AR100 AR1K AUCS AUCM AUCL AUC mask score total

DeepMaskBase 12.6 24.5 33.1 2.3 26.6 33.6 18.3 1.32s .27s 1.59s

head A 14.0 25.8 33.4 2.2 27.3 36.6 19.3 .45s .06s .51s

head B 14.0 25.4 33.0 2.0 27.0 36.9 19.1 .45s .05s .50s

head C 14.4 25.8 33.1 2.2 27.3 37.4 19.4 .45s .01s .46s

Table 5.2 – All model variants of the head have similar performance. Head C is a win in terms
of both simplicity and speed. See Figure 5.3 for head definitions.

the following experiments, we refer to this model as DeepMask, while the base DeepMask
architecture (as defined in Section 5.2) is referred to as DeepMaskBase. DeepMask is over 3£
faster than DeepMaskBase (average of .46s versus 1.59s per image on COCO val set). Moreover,
model parameter count is reduced from ª75M to ª17M.

5.4.2 Comparison with State of the Art

Methods We compare to the current top publicly-available proposal methods including:
EdgeBoxes (Zitnick and Dollár, 2014), SelectiveSearch (Uijlings et al., 2013), Geodesic (Krähen-
bühl and Koltun, 2014), Rigor (Humayun et al., 2014), MCG (Pont-Tuset et al., 2015) and Region
Proposal Networks (RPN) (Ren et al., 2015). Among these results, only the most recent, RPN, is
based on CNNs (we obtain improved RPN proposals from the authors of (Bell et al., 2016)).
These methods achieve top results on object detection (when coupled with R-CNNs (Girshick
et al., 2014)) and also obtain the best AR (Hosang et al., 2016).

Results Tables 5.3 and 5.4 compare the performance of our approach, DeepMask, to existing
proposal methods on COCO (using both boxes and segmentations) and PASCAL (using boxes),
respectively. The tables show the AR at selected proposal counts and averaged across all counts
(AUC). Under all scenarios DeepMask (and its variants) achieves substantially better AR for
all numbers of proposals considered. Notably, DeepMask achieves an order of magnitude
reduction in the number of proposals necessary to reach a given AR under most scenarios. For
example, with 100 segmentation proposals DeepMask achieves an AR of 25.8 on COCO while
competing methods require nearly 1000 segmentation proposals to achieve similar AR.

Generalization To see if our approach can generalize to unseen classes, we train two ad-
ditional versions of our model, DeepMask20 and DeepMask20§. DeepMask20 is trained
only with objects belonging to one of the 20 PASCAL categories (subset of the full 80 COCO
categories). DeepMask20§ is similar, except we use the scoring network from the original
DeepMask. Results for the two models when evaluated on all 80 COCO categories (as in all
other experiments) are shown in Table 5.3. Compared to DeepMask, DeepMask20 exhibits a
drop in AR (but still outperforms all previous methods). DeepMask20§, however, matches the
performance of DeepMask. This surprising result demonstrates that the drop in accuracy is
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Box Proposals Segmentation Proposals

AR10 AR100 AR1K AUC AR10 AR100 AR1K AUCS AUCM AUCL AUC

EdgeBoxes (Zitnick and Dollár, 2014) 07.4 17.8 33.8 13.9 – – – – – – –
Geodesic (Krähenbühl and Koltun, 2014) 04.0 18.0 35.9 12.6 02.3 12.3 25.3 01.3 08.6 20.5 08.5
Rigor (Humayun et al., 2014) – 13.3 33.7 10.1 – 09.4 25.3 02.2 06.0 17.8 07.4
SelectiveSearch (Uijlings et al., 2013) 05.2 16.3 35.7 12.6 02.5 09.5 23.0 00.6 05.5 21.4 07.4
MCG (Pont-Tuset et al., 2015) 10.1 24.6 39.8 18.0 07.7 18.6 29.9 03.1 12.9 32.4 13.7
RPN (Ren et al., 2015; Bell et al., 2016) 12.8 29.2 42.6 21.4 – – – – – – –
DeepMaskBase 15.3 31.3 44.6 23.3 12.6 24.5 33.1 02.3 26.6 33.6 18.3
DeepMask20 17.0 31.8 44.9 24.4 12.4 22.6 31.4 01.9 23.3 35.3 17.4
DeepMask20§ 18.5 34.1 45.0 25.6 14.0 24.5 31.4 01.9 26.4 35.7 18.6
DeepMask 18.7 34.9 46.5 26.2 14.4 25.8 33.1 02.2 27.3 37.4 19.4

Table 5.3 – Results on the COCO dataset for both bounding box and segmentation proposals.
We report AR at different number of proposals (10, 100 and 1000) and also AUC (AR averaged
across all proposal counts). For segmentation proposals we report overall AUC and also AUC
at different scales (small/medium/large objects indicated by superscripts S/M/L). See text for
details.

PASCAL VOC07 AR10 AR100 AR1K AUC

EdgeBoxes (Zitnick and Dollár, 2014) 20.3 40.7 60.1 30.9
Geodesic (Krähenbühl and Koltun, 2014) 12.1 36.4 59.6 23.0
Rigor (Humayun et al., 2014) 16.4 32.1 58.9 23.9
SelectiveSearch (Uijlings et al., 2013) 08.5 34.7 61.8 24.1
MCG (Pont-Tuset et al., 2015) 23.2 46.2 63.4 34.4
DeepMask 41.2 62.6 71.9 48.8

Table 5.4 – Quantitative results on PASCAL VOC 2007 test.

due to the discriminatively trained scoring branch (DeepMask20 is inadvertently trained to
assign low scores to the other 60 categories). The segmentation branch generalizes extremely
well even when trained on a reduced set of categories.

Speed Inference takes an average of .46s per image in the COCO dataset (.34s on the smaller
PASCAL images). Our method is much faster than other state of the art segmentation pro-
posal methods: Geodesic (Krähenbühl and Koltun, 2015) runs at ª1s per PASCAL image and
MCG (Pont-Tuset et al., 2015) takes ª30s. Inference time can further be dropped by ª30% by
parallelizing all scales in a single batch (eliminating GPU overhead). We do, however, require
use of a GPU for efficient inference.

5.5 Summary

In this chapter, we proposed a new way to generate segmentation object proposals directly
from image pixels. Our model consists of a discriminative convolutional neural network that is
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capable to, at same time, generate a class-agnostic segmentation mask and an object score for
a given input patch. At test time, the model is applied densely over the entire image at multiple
scales and generates a set of ranked segmentation proposals. We show that learning features
for object proposal generation is not only feasible but effective. Our approach surpasses
the previous state of the art by a large margin (an increase of ª40%-50% in AUC) in box and
segmentation proposal generations, and in both PASCAL and COCO datasets. Moreover, our
method performs faster than previous methods (although we require GPU for a fast inference).
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Figure 5.5 – Additional DeepMask proposals with highest IoU to the ground truth on selected
images from COCO. Missed objects (no matching proposals with IoU > 0.5) are marked with a
red outline.
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6 Learning to Refine Object Segments

As object detection (Felzenszwalb et al., 2010; Sermanet et al., 2013; Szegedy et al., 2014; He
et al., 2014; Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; Bell et al., 2016) has rapidly
progressed, there has been a renewed interest in object instance segmentation (Lin et al.,
2014). As the name implies, the goal is to both detect and segment each individual object in
an image. The task is related to both object detection with bounding boxes (Lin et al., 2014;
Everingham et al., 2010; Deng et al., 2009) and semantic segmentation (Shotton et al., 2008;
Everingham et al., 2010; Farabet et al., 2013; Pinheiro and Collobert, 2014; Eigen and Fergus,
2015; Zheng et al., 2015; Chen et al., 2015; Schwing and Urtasun, 2015; Noh et al., 2015). It
involves challenges from both domains, requiring accurate pixel-level object segmentation
coupled with identification of each individual object instance.

A number of recent papers have explored the use of CNNs (LeCun et al., 1998) for object
instance segmentation (Hariharan et al., 2014; Dai et al., 2016; Hariharan et al., 2015). Standard
feedforward CNNs (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; Szegedy et al.,
2015; He et al., 2016) interleave convolutional layers (with pointwise nonlinearities) and
pooling layers. Pooling controls model capacity and increases receptive field size, resulting in
a coarse, highly-semantic feature representation. While effective and necessary for extracting
object-level information, this general architecture results in low resolution features that are
invariant to pixel-level variations. This is beneficial for classification and identifying object
instances but poses challenge for pixel-labeling tasks. Hence, CNNs that utilize only upper
network layers for object instance segmentation (Hariharan et al., 2014; Dai et al., 2016), as
in Figure 6.1a, can effectively generate coarse object masks but have difficulty generating
pixel-accurate segmentations.

For pixel-labeling tasks such as semantic segmentation and edge detection, “skip” connec-
tions (Sermanet et al., 2013; Long et al., 2015; Hariharan et al., 2015; Xie and Tu, 2015), as
shown in Figure 6.1b, are popular. In practice, common skip architectures are equivalent to
making independent predictions from each network layer and upsampling and averaging
the results (see Fig. 2 in (Hariharan et al., 2015), Fig. 3 in (Long et al., 2015), and Fig. 3 in (Xie
and Tu, 2015)). This is effective for semantic segmentation as local receptive fields in early
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Figure 6.1 – Architectures for object instance segmentation. (a) Feedforward nets, such as
DeepMask (Pinheiro et al., 2015), predict masks using only upper-layer CNN features, resulting
in coarse pixel masks. (b) Common “skip” architectures are equivalent to making independent
predictions from each layer and averaging the results (Long et al., 2015; Hariharan et al., 2015;
Xie and Tu, 2015), such an approach is not well suited for object instance segmentation. (c,d)
In this work we propose to augment feedforward nets with a novel top-down refinement
approach. The resulting bottom-up/top-down architecture is capable of efficiently generating
high-fidelity object masks.

layers can provide sufficient data for pixel labeling. For object segmentation, however, it
is necessary to differentiate between object instances, for which local receptive fields are
insufficient (e.g. local patches of sheep fur can be labeled as such but without object-level
information it can be difficult to determine if they belong to the same animal).

In this chapter, we propose a novel CNN which efficiently merges the spatially rich information
from low-level features with the high-level object knowledge encoded in upper network layers.
Rather than generating independent outputs from multiple network layers, our approach first
generates a coarse mask encoding in a feedforward manner, which is simply a semantically
meaningful feature map with multiple channels, then refines it by successively integrating
information from earlier layers. Specifically, we introduce a refinement module and stack
successive such modules together into a top-down refinement process. See Figures 6.1c and
6.1d. Each refinement module is responsible for “inverting” the effect of pooling by taking a
mask encoding generated in the top-down pass, along with the matching features from the
bottom-up pass, and merging the information in both to generate a new mask encoding with
double spatial resolution. The process continues until full resolution is restored and the final
output encodes the object mask. The refinement module is efficient and fully backpropable.

We apply our approach in the context of object proposal generation (although it could be
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applied to other pixel-labeling tasks). As shown in Chapter 5, training a discriminative CNN
can largely improve the performance of object proposals if compared to classic approaches
that utilize low-level grouping and saliency clues (Hosang et al., 2016). However, DeepMask
was designed to use a standard feedforward CNN which, as mentioned above, poses problems
to pixel-labeling tasks.

In this chapter we utilize the DeepMask architecture (described in the previous chapter) as
our starting point for object instance segmentation due to its simplicity and effectiveness.
We augment the basic DeepMask architecture with our refinement module (see Figure 6.1)
and refer to the resulting approach as SharpMask to emphasize its ability to produce sharper,
higher-fidelity object segmentation masks.

SharpMask improves the segmentation mask quality relative to DeepMask. For object proposal
generation, this improvement boosts average recall of on the COCO dataset (Lin et al., 2014)
by 10-20%, establishing the new state of the art on this task.

This chapter is organized as follows: Section 6.1 presents related work, Section 6.2 introduces
our novel top-down refinement network and Section 6.3 validates our approach experimentally
on the context object proposal generation.

6.1 Related Work

Following their success in image classification (Krizhevsky et al., 2012; Simonyan and Zisser-
man, 2015; Szegedy et al., 2015; He et al., 2016), CNNs have been adopted with great effect
to pixel-labeling tasks such as depth estimation (Eigen and Fergus, 2015), optical flow (Doso-
vitskiy et al., 2015), and semantic segmentation (Farabet et al., 2013). Below we describe
architectural innovations for such tasks, and discuss how they relate to our approach. Aside
from skip connections (Sermanet et al., 2013; Hariharan et al., 2015; Long et al., 2015; Xie
and Tu, 2015), these techniques can be roughly classified as multiscale architectures, de-
convolutional networks, and graphical model networks. We discuss each in turn next. We
emphasize, however, that most of these approaches are not applicable to our domain due to
severe computational constraints: we must refine hundreds of proposals per image implying
the marginal time per proposal must be minimal.

Multiscale architectures (Farabet et al., 2013; Eigen and Fergus, 2015) compute features
over multiple rescaled versions of an image. Features can be computed independently at each
scale (Farabet et al., 2013), or the output from one scale can be used as additional input to
the next finer scale (Eigen and Fergus, 2015). Our approach relies on a similar intuition but
does not require recomputing features at each image scale. This allows us to apply refinement
efficiently to hundreds of locations per image as necessary for object proposal generation.
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Deconvolutional networks (Zeiler and Fergus, 2014) proposed to invert the pooling process
in a CNN to generate progressively higher resolution input images by storing the “switch”
variables from the pooling operation. Deconvolutional networks have recently been applied
successfully to semantic segmentation (Noh et al., 2015). Deconvolutional layers share simi-
larities with our refinement module, however, “switches” are communicated instead of the
feature values, which limits the information that can be transferred. Finally, Dosovitskiy et al.
(2015) proposed to progressively increase the resolution of an optical flow map. This can be
seen as a special case of our refinement approach where: (1) the “features” for refinement are
set to be the flow field itself, (2) no feature transform is applied to the bottom-up features, and
(3) the approach is applied monolithically to the entire image. Restricting our method in any
of these ways would cause it to fail in our setting as discussed in Section 6.3.

Graphical model networks a number of recent papers have proposed integrating graphical
models into CNNs by demonstrating they can be formulated as recurrent nets (Zheng et al.,
2015; Chen et al., 2015; Schwing and Urtasun, 2015). Good results were demonstrated on
semantic segmentation. While too slow to apply to multiple proposals per image, these
approaches likewise attempt to sharpen a coarse segmentation mask.

6.2 Learning Mask Refinement

We apply our proposed bottom-up/top-down refinement architecture to object instance seg-
mentation. Specifically, we focus on object proposal generation, which forms the cornerstone
of modern object detection (Girshick et al., 2014). We note that although we test the proposed
refinement architecture on the task of object segmentation, it could potentially be applied to
other pixel-labeling tasks.

As seen in the previous chapter, object proposal algorithms aim to find diverse regions in an
image which are likely to contain objects. Both proposal recall and quality correlate strongly
with detector performance (Hosang et al., 2016). We adopt the DeepMask network as the
starting point for proposal generation. DeepMask is trained to jointly generate a class-agnostic
object mask and an associated “objectness” score for each input image patch. At inference time,
the model is run convolutionally to generate a dense set of scored segmentation proposals.
We refer readers to Chapter 5 for full details.

A simplified diagram of the segmentation branch of DeepMask is illustrated in Figure 6.1a.
The network is trained to infer the mask for the object located in the center of the input patch.
It contains a series of convolutional layers interleaved with pooling stages that reduce the
spatial dimensions of the feature maps, followed by a fully connected layer to generate the
object mask. Hence, each pixel prediction is based on a complete view of the object, however,
its input feature resolution is low due to the multiple pooling stages.

As a result, DeepMask generates masks that are accurate on the object level but only coarsely
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(a)	DeepMask Proposals (b)	SharpMask Proposals

Figure 6.2 – Qualitative comparison of DeepMask versus SharpMask segmentations. Propos-
als with highest IoU to the ground truth are shown for each method. Both DeepMask and
SharpMask generate object masks that capture the general shape of the objects. However,
SharpMask improves the masks near object boundaries.

align with object boundaries, see Figure 6.2a. In order to obtain higher-quality masks, we
augment the basic DeepMask architecture with a refinement approach. We refer to the
resulting method as SharpMask to emphasize its ability to produce sharper, pixel-accurate
object masks, see Figure 6.2b. We begin with a high-level overview of our approach followed
by further details.

6.2.1 Refinement Overview

Our goal is to efficiently merge the spatially rich information from low-level features with the
high-level semantic information encoded in upper network layers. This approach is guided by
three principles:

(i) object-level information is often necessary to segment an object,

(ii) given object-level information, segmentation should proceed in a top-down fashion,
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successively integrating information from earlier layers,

(iii) the approach should invert the loss of resolution from pooling (with the final output
matching the resolution of the input).

To satisfy these principles, we augment standard feedforward networks with a top-down
refinement process. An overview of our approach is shown in Figure 6.1c. We introduce a
“refinement module” R that is responsible for inverting the effect of pooling and doubling the
resolution of the input mask encoding. Each module Ri takes as input a mask encoding M i

generated in the top-down pass, along with matching features F i generated in the bottom-up
pass, and learns to merge the information to generate a new upsampled object encoding M i+1.
In other words: M i+1 = Ri (M i ,F i ), see Figure 6.1d. Multiple such modules are stacked (one
module per pooling layer). The final output of our network is a pixel labeling of the same
resolution as the input image. Full details are presented next.

6.2.2 Refinement Details

The feedforward pathway of our network outputs a “mask encoding” M 1, or simply, a low-
resolution but semantically meaningful feature map with k1

m channels. M 1 serves as the input
to the top-down refinement module, which is responsible for progressively increasing the
mask encoding’s resolution. Note that using k1

m > 1 allows the mask encoding to capture more
information than a simple segmentation mask, which proves to be key for obtaining good
accuracy.

Each refinement module Ri aggregates information from a coarse mask encoding M i and
features F i from the corresponding layer of the bottom-up computation (we always use the
last convolutional layer prior to pooling). By construction, M i and F i have the same spatial
dimensions; the goal of Ri is to generate a new mask encoding M i+1 with double spatial
resolution based on inputs M i and F i . We denote this via M i+1 = Ri (M i ,F i ). This process is
applied iteratively n times (where n is the number of pooling stages) until the feature map
has the same dimensions as the input image patch. Each module Ri has separate parameters,
allowing the network to learn stage-specific refinements.

The refinement module aims to enhance the mask encoding M i using features F i . As M i

and F i have the same spatial dimensions, one option is to first simply concatenate M i and
F i . However, directly concatenating F i with M i poses two challenges. Let ki

m and ki
f be the

number of channels in M i and F i respectively. Typically, ki
f can be quite large in modern

CNNs, so using F i directly would be computationally expensive. Second, typically ki
f ¿ ki

m ,

so directly concatenating the features maps risks drowning out the signal in M i .

Instead, we opt to first reduce the number of channels ki
f (but preserving the spatial dimen-

sions) of these features through a 3£3 convolutional module (plus ReLU), generating “skip”
features Si , with ki

s ø ki
f channels. This substantially reduces computational requirements,
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moreover, it allows the network to transform F i into a form Si more suitable for use in refine-
ment. An important but subtle point is that during full image inference, as with the features
F i , skip features are shared by overlapping image patches, making them highly efficient to
compute. In contrast, the remaining computations of Ri are patch dependent as they depend
on the local mask M i and hence cannot be shared across locations.

The refinement module concatenates the mask encoding M i with the skip features Si resulting
in a feature map with ki

m +ki
s channels, and applies another 3£3 convolution (plus ReLU)

to the result. Finally, the output is upsampled using bilinear upsampling by a factor of 2,
resulting in a new mask encoding M i+1 with ki+1

m channels (ki+1
m is determined by the number

of 3£3 kernels used for the convolution). As with the convolution for generating the skip
features, this transformation is used to simultaneously learn a nonlinear mask encoding from
the concatenated features and to control the capacity of the model. See Figure 6.1d for a
complete overview of the refinement module R. Further optimizations to R are possible, for
details see Figure 6.3.

Note that the refinement module uses only convolution, ReLU, bilinear upsampling, and
concatenation, hence it is fully backpropable and highly efficient. In Section 6.3.1, we analyze
different architecture choices for the refinement module in terms of performance and speed.
As a general design principle, we aim to keep ki

s and ki
m large enough to capture rich infor-

mation but small enough to keep computation low. In particular, we can start with a fairly
large number of channels but as spatial resolution is increased the number of channels should
decrease. This reverses the typical design of feedforward networks where spatial resolution
decreases while the number of channels increases with increasing depth.

6.2.3 Training and Inference

We train SharpMask with an identical data definition and loss function as the original Deep-
Mask model. Each training sample is a triplet containing an input patch, a label specifying
if the input patch contains a centered object at the correct scale, and for positive samples a
binary object mask. The network trunk parameters are initialized with a network that was
pre-trained on ImageNet (Deng et al., 2009). All the other layers are initialized randomly from
a uniform distribution.

Training proceeds in two stages: first, the model is trained to jointly infer a coarse pixel-
wise segmentation mask and an object score, second, the feedforward path is “frozen” and
the refinement modules trained. The first training stage is identical to the one described
in Chapter 5. Once learning of the first stage converges, the final mask prediction layer of
the feedforward network is removed and replaced with a linear layer that generates a mask
encoding M 1 in place of the actual mask output. We then add the refinement modules to the
network and train using standard stochastic gradient descent, backpropagating the error only
on the horizontal and vertical convolution layers on each of the n refinement modules.
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Figure 6.3 – (a) Original refinement model. (b) Refactored but equivalent model that leads to a
more efficient implementation. The models are equivalent as concatenating along depth and
convolving along the spatial dimensions can be rewritten as two separate spatial convolutions
followed by addition. The green “conv” boxes denote the corresponding convolutions (note
also the placement of the ReLUs). The refactored model is more efficient as skip features (both
Si and Si

§) are shared by overlapping refinement windows (while M i and M i
§ are not). Finally,

observe that setting ki
m = 1, 8i , and removing the top-down convolution would transform our

refactored model into a standard “skip” architecture (however, using ki
m = 1 is not effective in

our setting).

This two-stage training procedure was selected for three reasons. First, we found it led to
faster convergence. Second, at inference time, a single network trained in this manner can be
used to generate either a coarse mask using the forward path only or a sharp mask using our
bottom-up/top-down approach. Third, we found the gains of fine-tuning through the entire
network to be minimal once the forward branch had converged.

During full-image inference, most computation for neighboring windows is shared through
the use of convolution, including for skip layers Si . However, as discussed, the refinement
modules receive a unique input M 1 at each spatial location, hence, computation proceeds
independently at each location for this stage. Rather than refining every proposal, we simply
refine only the most promising locations. Specifically, we select the top N scoring proposal
windows and apply the refinement in a batch mode to these top N locations.

6.3 Experimental Results

We train our model on the training set of the COCO dataset (Lin et al., 2014), which contains
80k training images and 500k instance annotations. For most of our experiments, results are
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(a) schedule a (b) schedule b

Figure 6.4 – Performance and inference time for multiple SharpMask variants with two different
schedules, a and b. See text for detail.

reported on the first 5k COCO validation images. Mask accuracy is measured by Intersection
over Union (IoU) which is the ratio of the intersection of the predicted mask and ground truth
annotation to their union. A common method for summarizing object proposal accuracy is
using the Average Recall (AR) between IoU 0.5 and .95 for a fixed number of proposals. Hosang
et al. (2016) show that AR correlates well with object detector performance.

Our results are measured in terms of AR at 10, 100, and 1000 proposals and averaged across
all counts (AUC) (as described Section 2.1.2). As the COCO dataset contains objects in a wide
range of scales, it is also common practice to divide objects into roughly equally sized sets
according to object pixel area a: small (a < 322), medium (322 ∑ a ∑ 962), and large (a > 962)
objects, and report accuracy at each scale.

We use a different subset of the COCO validation set to decide architecture choices and hyper-
parameter selection. We use a learning rate of 1e-3 for training the refinement stage, which
takes about 2 days to train on an Nvidia Tesla K40m GPU. To mitigate the mismatch of per-
patch training with convolutional inference, we found that training deeper model such as
ResNet requires adding extra image content (32 pixels) surrounding the training patches and
using reflective-padding instead of 0-padding at every convolutional layer. Finally, similar to
DeepMask, we binarize our continuous mask prediction using a threshold of 0.2.

6.3.1 SharpMask Analysis

We begin by analyzing different parameter settings for the top-down refinement network. As
described in Section 6.2, each of the four refinement modules Ri in SharpMask is controlled
by two parameters ki

m and ki
s , which denote the size of the mask encoding M i and skip

encoding Si , respectively. These parameters control network capacity and effect inference
speed. We experiment with two different schedules for these parameters: (a) ki

m = ki
s = k and

(b) ki
m = ki

s = k
2i°1 for each i ∑ 4.

Figure 6.4 shows performance for the two schedules for different k both in terms of AUC and
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Box Proposals Segmentation Proposals

AR10 AR100 AR1K AUC AR10 AR100 AR1K AUCS AUCM AUCL AUC

EdgeBoxes (Zitnick and Dollár, 2014) 7.4 17.8 33.8 13.9 - - - - - - -
Geodesic (Krähenbühl and Koltun, 2014) 4.0 18.0 35.9 12.6 2.3 12.3 25.3 1.3 8.6 20.5 8.5
Rigor (Humayun et al., 2014) - 13.3 33.7 10.1 - 9.4 25.3 2.2 6.0 17.8 7.4
SelectiveSearch (Uijlings et al., 2013) 5.2 16.3 35.7 12.6 2.5 9.5 23.0 0.6 5.5 21.4 7.4
MCG (Pont-Tuset et al., 2015) 10.1 24.6 39.8 18.0 7.7 18.6 29.9 3.1 12.9 32.4 13.7
RPN (Bell et al., 2016; Ren et al., 2015) 12.8 29.2 42.6 21.4 - - - - - - -
DeepMaskBase 15.3 31.3 44.6 23.3 12.6 24.5 33.1 2.3 26.6 33.6 18.3
DeepMask 18.7 34.9 46.5 26.2 14.4 25.8 33.1 2.2 27.3 37.4 19.4
DeepMaskZoom 18.3 36.3 50.3 27.2 14.5 27.4 36.6 6.5 27.0 34.3 20.5
SharpMask 19.7 36.4 48.2 27.4 15.6 27.6 35.5 2.5 29.1 40.4 20.9
SharpMaskZoom 20.1 39.4 52.8 29.1 16.1 30.3 39.2 6.9 29.7 38.4 22.4
SharpMaskZoom2 19.2 39.9 55.0 29.2 15.4 30.7 40.8 10.6 27.3 36.0 22.5

Table 6.1 – Results on the COCO validation set on box and segmentation proposals. AR at
different proposals counts is reported and also AUC (AR averaged across all proposal counts).
For segmentation proposals, we also report AUC at multiple scales. SharpMask has largest for
segmentation proposals and large objects.

inference time (measured when refining the top 500 proposals per image, at which point object
detection performance saturates, see Figure 7.4). We consistently observe higher performance
as we increase the capacity, with no sign of overfitting. Parameter schedule b, in particular
with k = 32, has the best trade-off between performance and speed, so we chose this as our
final model.

We note that we were unable to obtain good results with schedule a for k ∑ 2, indicating the
importance of using sufficiently large k. Also, we observed that a single 3£3 convolution
encounters learning difficulties when (ki

s ø ki
f ). Therefore, in all experiments we used a

sequence of two 3£3 convolutions (followed by ReLUs) to generate Si from F i , reducing F i to
64 channels first followed by a further reduction to ki

s channels.

Finally, we performed two additional ablation studies. First, we removed all downward con-
volutional layers, set ki

m = ki
s = 1, and averaged the output of all layers. Second, we kept the

vertical convolutions but removed all horizontal convolutions. These two variants are related
to “skip” and “deconvolutional” networks, respectively. Neither setup showed meaningful
improvement over the baseline feedforward network. In short, we found that both horizontal
and vertical connections were necessary for this task.

6.3.2 Comparison with State of the Art

We train SharpMask using DeepMask as the feedforward network. As the two networks have
an identical score branch, we can disentangle the performance improvements achieved by
our top-down refinement approach. We observe a considerable boost in performance on AR
due to the top-down refinement. We note that improvement for segmentation predictions is
bigger than box predictions, which is not surprising, as sharpening masks might not change

78



6.4. Summary

the tight box around the objects in many examples. Inference for SharpMask is .76s per image.
Moreover, the refinement modules require fewer than 3M additional parameters.

Table 6.1 compares the performance of our model, SharpMask, to other existing methods
on the COCO dataset and, in particular, to DeepMask. We compare results both on box and
segmentation proposals (for box proposals we extract tight bounding boxes surrounding our
segmentation masks). Figure 6.5 (a-b) compares the performance of SharpMask to existing
proposal methods COCO (using both boxes and segmentations). Shown is the AR of each
method as a function of the number of generated proposals. SharpMask achieves the state of
the art in all metrics for both speed and accuracy by a large margin.

The COCO dataset contains objects in a wide range of scales. Figure 6.5 (c-e) shows perfor-
mance at each scale (according to equally divided set of objects by its area a); all models
perform poorly on small objects. To improve accuracy of DeepMask and SharpMask to small
objects, we apply it at additional one or two smaller scales (DeepMaskZoom and Sharp-
MaskZoom) and achieves a large boost in AR for small objects (at a cost of increased inference
time).

Figure 6.5 (f-h) shows the recall each model achieves as the IoU varies, shown for different
number of proposals per image. SharpMask achieves a higher recall in every scenario.

In Figure 6.2, we show direct comparison between SharpMask and DeepMask and we can see
SharpMask generates higher-fidelity masks that more accurately delineate object boundaries.
In Figure 6.6, we show more qualitative results.

6.4 Summary

In this chapter, we introduce a novel architecture for object instance segmentation, based on
an augmentation of feedforward networks with top-down refinement modules. This network
is able to merge the high-level semantic information with the low-level spatial information of
the network. We show that this refinement improves the quality of object segmentations and,
when applied in segmentation object proposal generation, it achieves a new state of the art in
terms of performance. Building on the top of DeepMask for generating object proposals, we
show accuracy improvements of 10-20% in average recall for various setups. Moreover, the
proposed refinement approach is general and could be applied to other pixel-labeling tasks.
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(a) Bounding box proposals
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(b) Segmentation proposals
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(c) Small objects (a < 322)
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(d) Medium objects
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(e) Large objects (a > 962)
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(f) Recall @10 proposals

0.5 0.6 0.7 0.8 0.9 1

IoU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
ca

ll

SharpMask
SharpMaskZoom
DeepMask
MCG
SelectiveSearch
Rigor
Geodesic

(g) Recall @100 proposals
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Figure 6.5 – (a-b) Average recall versus number of box and segment proposals on COCO. (c-e)
AR versus number of proposals for different object scales on segment proposals. (f-h) Recall
versus IoU threshold for different number of segment proposals.
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Figure 6.6 – SharpMask proposals with highest IoU to the ground truth on selected COCO
images. Missed objects (no matching proposals with IoU > 0.5) are marked in red. The last
row shows a number of failure cases.
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7 Application of Proposals: Learning to
Detect Objects

In the two previous chapters, we presented a novel set of discriminative trainable algorithms
to generate state-of-the-art (both in terms of performance and inference time) segmentation
proposals. It was also argued that one of the most important applications of object proposals
is in object detection (object recognition subproblems (b) and (d)): the current state-of-the-art
pipeline consists of applying a CNN classifier on the set of generated proposals (He et al., 2014;
Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; Bell et al., 2016).

In this final chapter, we show how the proposal algorithm presented on last chapter can
achieve state-of-the-art performance on object detection with boxes and segments, utilizing
the Fast R-CNN framework (Girshick, 2015) and the MultiPath Network (MPN) (Zagoruyko
et al., 2016) as the classifier.

We start by giving a brief overview of the Fast R-CNN pipeline for object detection (Section 7.1).
Then, we quickly describe the main components of MPN, the classifier of choice for our
experiments (Section 7.2). Finally, in Section 7.3, we show how SharpMask proposals, when
coupled with the MPN classifier, can achieve state-of-the-art results in object detection with
both bounding boxes and segments on the challenging COCO (Lin et al., 2014) dataset.

7.1 Overview of Fast R-CNN

Fast R-CNN (Girshick, 2015) is a convolutional neural network that takes an image and a set
of proposals as input and outputs, for each proposal, softmax probabilities and per-class
bounding box regression offsets.

First the image is processed through multiple convolutional and pooling layers to produce
a final feature map. Then, for each object proposal, a Region of Interest (RoI) pooling layer
extracts a fixed-length feature vector from the feature map. Each feature vector passes through
a sequence of fully connected layers and branches into two different outputs: one that pro-
duces the softmax probabilities over all K classes on the training set (plus the background) and
another that outputs 4 real-valued numbers for each of the K object classes (see Figure 7.1).
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Tech report (v5)

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik
UC Berkeley

{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a significant
performance boost. Since we combine region proposals
with CNNs, we call our method R-CNN: Regions with CNN
features. We also compare R-CNN to OverFeat, a recently
proposed sliding-window detector based on a similar CNN
architecture. We find that R-CNN outperforms OverFeat
by a large margin on the 200-class ILSVRC2013 detection
dataset. Source code for the complete system is available at
http://www.cs.berkeley.edu/˜rbg/rcnn.

1. Introduction
Features matter. The last decade of progress on various

visual recognition tasks has been based considerably on the
use of SIFT [29] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [15], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-

1. Input 
image

2. Extract region 
proposals (~2k)

3. Compute 
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify 
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [39] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.
On the 200-class ILSVRC2013 detection dataset, R-CNN’s
mAP is 31.4%, a large improvement over OverFeat [34], which
had the previous best result at 24.3%.

archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [19], a biologically-
inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training
algorithm. Building on Rumelhart et al. [33], LeCun et
al. [26] showed that stochastic gradient descent via back-
propagation was effective for training convolutional neural
networks (CNNs), a class of models that extend the neocog-
nitron.

CNNs saw heavy use in the 1990s (e.g., [27]), but then
fell out of fashion with the rise of support vector machines.
In 2012, Krizhevsky et al. [25] rekindled interest in CNNs
by showing substantially higher image classification accu-
racy on the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [9, 10]. Their success resulted from train-
ing a large CNN on 1.2 million labeled images, together
with a few twists on LeCun’s CNN (e.g., max(x, 0) rectify-
ing non-linearities and “dropout” regularization).

The significance of the ImageNet result was vigorously

1

ar
X

iv
:1

31
1.

25
24

v5
  [

cs
.C

V
]  

22
 O

ct
 2

01
4

SPPnet also has notable drawbacks. Like R-CNN, train-
ing is a multi-stage pipeline that involves extracting fea-
tures, fine-tuning a network with log loss, training SVMs,
and finally fitting bounding-box regressors. Features are
also written to disk. But unlike R-CNN, the fine-tuning al-
gorithm proposed in [11] cannot update the convolutional
layers that precede the spatial pyramid pooling. Unsurpris-
ingly, this limitation (fixed convolutional layers) limits the
accuracy of very deep networks.

1.2. Contributions
We propose a new training algorithm that fixes the disad-

vantages of R-CNN and SPPnet, while improving on their
speed and accuracy. We call this method Fast R-CNN be-
cause it’s comparatively fast to train and test. The Fast R-
CNN method has several advantages:

1. Higher detection quality (mAP) than R-CNN, SPPnet

2. Training is single-stage, using a multi-task loss

3. Training can update all network layers

4. No disk storage is required for feature caching

Fast R-CNN is written in Python and C++ (Caffe
[13]) and is available under the open-source MIT Li-
cense at https://github.com/rbgirshick/
fast-rcnn.

2. Fast R-CNN architecture and training
Fig. 1 illustrates the Fast R-CNN architecture. A Fast

R-CNN network takes as input an entire image and a set
of object proposals. The network first processes the whole
image with several convolutional (conv) and max pooling
layers to produce a conv feature map. Then, for each ob-
ject proposal a region of interest (RoI) pooling layer ex-
tracts a fixed-length feature vector from the feature map.
Each feature vector is fed into a sequence of fully connected
(fc) layers that finally branch into two sibling output lay-
ers: one that produces softmax probability estimates over
K object classes plus a catch-all “background” class and
another layer that outputs four real-valued numbers for each
of the K object classes. Each set of 4 values encodes refined
bounding-box positions for one of the K classes.

2.1. The RoI pooling layer
The RoI pooling layer uses max pooling to convert the

features inside any valid region of interest into a small fea-
ture map with a fixed spatial extent of H � W (e.g., 7 � 7),
where H and W are layer hyper-parameters that are inde-
pendent of any particular RoI. In this paper, an RoI is a
rectangular window into a conv feature map. Each RoI is
defined by a four-tuple (r, c, h, w) that specifies its top-left
corner (r, c) and its height and width (h, w).

Deep
ConvNet

Conv
feature map

RoI
projection

RoI
pooling
layer FCs

RoI feature
vector

softmax
bbox

regressor

Outputs:

FC FC

For each RoI

Figure 1. Fast R-CNN architecture. An input image and multi-
ple regions of interest (RoIs) are input into a fully convolutional
network. Each RoI is pooled into a fixed-size feature map and
then mapped to a feature vector by fully connected layers (FCs).
The network has two output vectors per RoI: softmax probabilities
and per-class bounding-box regression offsets. The architecture is
trained end-to-end with a multi-task loss.

RoI max pooling works by dividing the h � w RoI win-
dow into an H � W grid of sub-windows of approximate
size h/H � w/W and then max-pooling the values in each
sub-window into the corresponding output grid cell. Pool-
ing is applied independently to each feature map channel,
as in standard max pooling. The RoI layer is simply the
special-case of the spatial pyramid pooling layer used in
SPPnets [11] in which there is only one pyramid level. We
use the pooling sub-window calculation given in [11].

2.2. Initializing from pre-trained networks
We experiment with three pre-trained ImageNet [4] net-

works, each with five max pooling layers and between five
and thirteen conv layers (see Section 4.1 for network de-
tails). When a pre-trained network initializes a Fast R-CNN
network, it undergoes three transformations.

First, the last max pooling layer is replaced by a RoI
pooling layer that is configured by setting H and W to be
compatible with the net’s first fully connected layer (e.g.,
H = W = 7 for VGG16).

Second, the network’s last fully connected layer and soft-
max (which were trained for 1000-way ImageNet classifi-
cation) are replaced with the two sibling layers described
earlier (a fully connected layer and softmax over K +1 cat-
egories and category-specific bounding-box regressors).

Third, the network is modified to take two data inputs: a
list of images and a list of RoIs in those images.

2.3. Fine-tuning for detection
Training all network weights with back-propagation is an

important capability of Fast R-CNN. First, let’s elucidate
why SPPnet is unable to update weights below the spatial
pyramid pooling layer.

The root cause is that back-propagation through the SPP
layer is highly inefficient when each training sample (i.e.
RoI) comes from a different image, which is exactly how
R-CNN and SPPnet networks are trained. The inefficiency

(a)	Region-based	Convolutional	 Network	method (b)	Fast	RCNN
Figure 7.1 – Fast R-CNN architecture. The network has as input an image and a set of region of
interests (RoI), stemmed from the proposals. Each proposals is pooled into a fixed-size feature
map, and mapped into a vector by fully connected layers. The network has two outputs: one
for the probability of the class present on the RoI and per-class bounding-box regression
offsets. Image taken from (Girshick, 2015).

Fast R-CNN is trained to optimize two sibling output layers (for each RoI). The first outputs
a discrete probability distribution per RoI, p = (p0, ..., pK ), over K + 1 categories (which is
computed with a softmax). The second layer outputs bounding-box regression offsets, t k =
(t k

x , t k
y , t k

w , t k
h ), for each K category. t k is parametrized such that it specifies a scale-invariant

translation and log-scale height/width shift relative to an object proposal.

Each RoI is labeled with a ground-truth class u and a ground truth bounding box regression
target v . Training is achieved by jointly minimizing the classification and the box regression
losses:

L(p,u, t u , v) =Lcls(p,u)+∏ (u > 0)Lloc(t u , v) . (7.1)

The first term in the loss, Lcls =° log pu , is the log loss of true class u. The second task loss, Lloc,
is defined over a tuple of true bounding box regression targets for class u, v = (vx , vy , vw , vh),
and the predicted tuple t u = (t u

x , t u
y , t u

w , t u
h ), again for class u. By convention, the background

class is labeled u = 0, so the localization loss only applies to object categories different of
background (i.e. u > 0). For bounding box regression, the loss is:

Lloc(t u , v) =
X

i2{x,y,w,h}
L(t u

i ° vi ) , (7.2)

in which

L(x) =

8
<

:
0.5x2, if |x| < 1

|x|°0.5, otherwise,
(7.3)

is a robust L1 loss.

For each image during training, a set of N RoIs are sampled from the image. As in the original
implementation of Fast R-CNN, 25% of the RoIs are taken from the set of object proposals that
have an intersection over union (IoU) overlap with ground truth bounding box of at least 0.5.
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Figure 1: Proposed MultiPath architecture. The COCO dataset [21] contains objects at multiple scales,
in context and among clutter, and under frequent occlusion. Moreover, the COCO evaluation metric
rewards high quality localization. To addresses these challenges, we propose the MultiPath network
pictured above, which contains three key modifications: skip connections, foveal regions, and and an
integral loss function. Together these modifications allow information to flow along multiple paths
through the network, enabling the classifier to operate at multiple scales, utilize context effectively,
and perform more precise object localization. Our MultiPath network, coupled with DeepMask object
proposals [23, 24], achieves major gains on COCO detection.

scales, including a high percentage of small objects, (2) objects are less iconic, often in non-
standard configurations and amid clutter or heavy occlusion, and (3) the evaluation metric
encourages more accurate object localization.

In this paper, we revisit recent improvements in object detection by performing extensive
experiments on the COCO dataset. In particular, we begin with the Fast R-CNN object
detector [10], and test a number of intuitive modifications to explicitly address the unique
challenges of this dataset, including small object detection, detection of objects in context,
and improved localization. Our goal is to adapt the highly successful Fast R-CNN object
detector to perform better in these settings, and we use COCO to drive our experiments.

Inspired by recent advances in object detection, we implement three network modifica-
tions: (1) a multi-stage feature aggregator that implements skip connections in intermediate
network layers to more accurately detect objects at multiple scales, (2) a foveal structure in
the classifier network that helps improve localization by looking at multiple image contexts,
and (3) a novel loss function and corresponding network adjustment that optimize an inte-
gral of localization overlaps and encourage higher-precision localization. These three mod-
ifications allow information to flow along multiple paths in our network, including through
features from multiple network layers and from multiple object views, see Figure 1. We
therefore refer to our approach as a ‘MultiPath’ network.

We train our MultiPath detector using the recently proposed DeepMask object propos-
als [23, 24], which, like our model, are well adapted to the COCO dataset. Our combined
system, using DeepMask proposals and our MultiPath classifier, achieves a detection score
of 33.5 average precision (AP) for detection with an ensemble of 6 models. Compared to the
baseline Fast R-CNN detector [10] with Selective Search proposals [32], which achieves an
AP of 19.3, this represents a 66% improvement in performance. Moreover, for small objects
we improve AP by nearly 4�. We also adopt our system to generate segmentation masks,
and achieve an AP of 25.1 on the segmentation task.

Figure 7.2 – MultiPath Network architecture contains three key modifications over standard
CNN classifiers: skip connections, foveal regions, and and an integral loss function. Together
these modifications allow information to flow along multiple paths through the network,
enabling the classifier to operate at multiple scales, utilize context effectively, and perform
more precise object localization. Image taken from (Zagoruyko et al., 2016).

These are the RoIs corresponding to object classes (i.e. u > 0). The remaining RoIs are taken
from proposals which have a maximum IoU with the ground truth in the interval [0.1,0.5)
(following (Girshick et al., 2014)). These are the background examples (i.e. u = 0).

Fast R-CNN is trained with stochastic gradient descent by backpropagating the error through
the fully connected layers, the RoI layer and the convolutional layers. In the experiments in
this chapter, we use the exact same hyper-parameters as in (Girshick, 2015).

7.2 The MultiPath Network

The MultiPath network (Zagoruyko et al., 2016) is a CNN-based image classifier based on the
VGG-D network (Simonyan and Zisserman, 2015). VGG-D is a standard deep CNN containing
a series of small filters interleaved by pooling layers. MPN extends VGG-D in three ways: foveal
structure, skip connections and integral loss function.

Context plays an important role in object classification (Torralba, 2003). To incorporate more
context in the model and improve its performance, MPN adds four region crops with different
“foveal” views (see Figure 7.2). RoI pooling is used to generate feature maps of same spatial
dimension given differently-sized foveal regions.

Effective localization of small objects requires higher-resolution features from earlier lay-
ers (Bell et al., 2016; Hariharan et al., 2015). To improve performance of small objects, MPN
concatenates the RoI-pooled normalized features from different convolutions layers, and
provides these as input to each foveal classifier (see Figure 7.2).
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Figure 4: Selected detection results on COCO. Only high-scoring detections are shown. While there
are missed objects and false positives, many of the detections and segmentations are quite good.

AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

ResNet [15] 27.9 51.2 27.6 8.6 30.2 45.3 25.4 37.1 38.0 16.6 43.3 57.8
MultiPath 25.0 45.4 24.5 7.2 28.8 39.0 23.8 36.6 38.5 17.0 46.7 53.5
ResNet [15] 37.1 58.8 39.8 17.3 41.5 52.5 31.9 47.5 48.9 26.7 55.2 67.9
MultiPath 33.2 51.9 36.3 13.6 37.2 47.8 29.9 46.0 48.3 23.4 56.0 66.4
ION [3] 30.7 52.9 31.7 11.8 32.8 44.8 27.7 42.8 45.4 23.0 50.1 63.0
Fast R-CNN* [10] 19.3 39.3 19.9 3.5 18.8 34.6 21.4 29.5 29.8 7.7 32.2 50.2
Faster R-CNN* [25] 21.9 42.7 — — — — — — — — — —

Table 3: Top: COCO test-standard segmentation results. Bottom: COCO test-standard bounding box
results (top methods only). Leaderboard snapshot from 01/01/2016. *Note: Fast R-CNN and Faster
R-CNN results are on test-dev as reported in [25], but results between splits tend to be quite similar.

We submitted our results the COCO 2015 Object Detection Challenge. Our system
placed second in both the bounding box and segmentation tracks. Table 3 compares our
results to the top COCO 2015 challenge systems and additional baselines. Only the deeper
ResNet classifier [15] outperformed our approach (and potentially ResNet could be inte-
grated as the feature extractor in our MultiPath network, leading to further gains). Compared
to the baseline Fast R-CNN, our system showed the largest gains on small objects and local-
ization, improving AP on small objects by 4� and AP75 by 82%.

Figure 4 and Figure 5 show selected detection results from our system. Figure 6 shows
a breakdown of errors of our system. Most of the overall error comes from false positives
and negatives, with little inter-class classification error. Despite our improvements on small
objects, small object detection remains quite challenging.

6 Conclusion
In this paper, we proposed three modifications to Fast R-CNN: (1) skip connections to give
the network access to multi-scale features, (2) foveal regions to provide context, and (3)
the integral loss to improve localization. We coupled our resulting MultiPath classifier with
DeepMask proposals and achieved a 66% improvement over the baseline Fast R-CNN with
Selective Search. All source code for our approach will be released. Our hope is that our
model can serve as a baseline system on COCO and prove useful to the detection community.

Acknowledgements: We would like to thank Ross Girshick, Rob Fergus, Bharath Hariharan, Spyros
Gidaris, Nikos Komodakis, and Francisco Massa for helpful discussion and suggestions.

Figure 7.3 – Selected detection results on COCO. Only high-scoring detections are shown.
While there are missed objects and false positives, many of the detections and segmentations
are quite good.

In the original Fast R-CNN loss (Equation 7.1), the classification loss Lcls does not prefer object
proposals with high IoU: all proposals with IoU greater than .5 are treated equally. Ideally,
proposals with higher overlap to the ground truth should be scored more highly. MPN thus,
utilizes a modified Lcls to explicitly measure integral loss over all IoU thresholds.

For more detail about the MPN architecture, we refer the reader to (Zagoruyko et al., 2016).

7.3 Experimental Results

In the following experiments, we coupled SharpMask proposal with a CNN classifier and use
the Fast R-CNN pipeline to detect objects (Zagoruyko et al., 2016). Figure 7.3 and Figure 7.5
show selected detection results from this system.

The experiments are done in the COCO (Lin et al., 2014) object detection dataset, which was
recently introduced to push object detection to more challenging settings. COCO introduces
a number of new challenges compared to previous object detection datasets (Everingham
et al., 2010; Deng et al., 2009): (i) objects appears in a broad range of scales, including a high
percentage of small objects, (ii) objects are less iconic, often in non-standard configurations
and occlusion and (iii) the evaluation metric encourages more accurate object localization.

In the experiments in this section, we report both the average precision (AP) averaged over
multiple IoUs, COCO official evaluation metric, and the average precision at IoU threshold of
.5 (AP50), PASCAL VOC (Everingham et al., 2010) official metric.

Effectiveness of SharpMask Proposals

We first compare the the performance of Fast R-CNN with MPN using two different types
of proposals: Selective Search (SelSearch) (Uijlings et al., 2013), the most common proposal
algorithm for object detection (and the proposal of choice on the original implementation of
Fast R-CNN Girshick (2015)) and SharpMask.
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Figure 3: AP50 and AP versus number and type of proposals. Accuracy saturates using 400 DeepMask
proposals per image and using �50 DeepMask proposals matches 2000 Selective Search proposals.

AP50 AP
base +bb � base +bb �

SS + Fast R-CNN 38.2 39.8 +1.6 18.1 21.6 +3.5
SS + MultiPath 38.0 38.5 +0.5 20.9 22.8 +1.9
DM + Fast R-CNN 42.5 43.4 +0.9 23.5 25.2 +1.7
DM + MultiPath 44.5 44.8 +0.3 26.8 27.9 +1.1

AP50 � AP �
baseline 44.8 27.9
+ trainval 47.5 +2.7 30.2 +2.3
+ hflip 48.3 +0.8 30.8 +0.6
+ FMP 49.6 +1.3 31.5 +0.7
+ ensembling 51.9 +2.3 33.2 +1.7

Table 2: Left: Bounding box regression is key when using Selective Search (SS) proposals and
the Fast R-CNN classifier (our implementation). However, with DeepMask (DM) proposals and our
MultiPath network, box regression increases AP by only 1.1 points (and AP50 by 0.3) as our pipeline
already outputs well-localized detections. Right: Final enhancements to our model. Use of additional
training data, horizontal flip at inference, fractional max pooling (FMP), and ensembling gave a major
cumulative boost. These are common approaches for maximizing accuracy, see appendix for details.

4.3 DeepMask Proposals
Object proposals play a central role in determining detector accuracy. The original imple-
mentation of Fast R-CNN with Selective Search proposals [32] has an AP of 19.3. Our Mul-
tiPath network improves this to 22.8 AP using these same proposals. Switching to DeepMask
proposals [23, 24] increases accuracy by a further very substantial 5.1 points to 27.9 AP.

Figure 3 shows AP50 and AP for varying number and type of proposals. Not only is
accuracy substantially higher using DeepMask, fewer proposals are necessary to achieve top
performance. Our results saturate with around 400 DeepMask proposals per image and using
just 50 DeepMask proposals matches accuracy with 2000 Selective Search proposals.

Interestingly, our setup substantially reduces the benefits provided by bounding box re-
gression. With the original Fast R-CNN and Selective Search proposals, box regression
increases AP by 3.5 points, but with our MultiPath model and DeepMask proposals, box
regression only increases AP by 1.1 points. See Table 2, left, for details.

5 COCO 2015 Results
To maximize accuracy prior to submitting to the COCO leaderboard, we added validation
data to training, employed horizontal flip and fractional max pooling [12] at inference, and
ensembled 6 models. Together, these four enhancements boosted AP from 27.9 to 33.2 on
the held-out validation images, see Table 2, right. More details are given in the appendix.
Finally, to obtain segmentation results, we simply fed the bounding box regression outputs
back to the DeepMask segmentation system. Note that as discussed in §4.3, box regression
only improved accuracy slightly. In principle, we could have used the original DeepMask
segmentation proposals without box regression; however, we did not test this variant.

SharpMask
SelSearch

SharpMask
SelSearch

Figure 7.4 – AP50 and AP versus number and type of proposals. Accuracy saturates using 400
SharpMask proposals per image and using ª50 SharpMask proposals matches 2000 Selective
Search proposals.

Figure 7.4 shows the comparison of bounding box detection results for SharpMask and
SelSearch for AP50 and AP and for varying number of proposals. The SharpMask bound-
ing box proposals are taken by extracting the smaller box fully containing each proposal.
SharpMask achieves 28 AP, which is 5 AP higher than SelSearch. Not only accuracy is substan-
tially higher using SharpMask, but fewer proposals are necessary to achieve top performance.
SharpMask results saturates with ª400 SharpMask proposals per image and using only 50
SharpMask proposals matches accuracy with 2000 Selective Search proposals.

Next, we compare the result of the model with two important published baseline: Fast R-
CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2015) (and considering the same classifier,
VGG-D, in all of them). Table 7.1 shows results of these baselines without bells and whis-
tles, trained on the train set only. SharpMask achieves top results with the VGG classifier,
outperforming both RPN (Ren et al., 2015) and SelSearch (Uijlings et al., 2013).

AP AP50

SelSearch + VGG (Girshick, 2015) 19.3 39.3

RPN + VGG (Ren et al., 2015) 21.9 42.7

SharpMask + VGG 25.2 43.4

Table 7.1 – COCO bounding box results of various baselines without bells and whistles, trained
on the train set only, and reported on test-dev set (results for (Girshick, 2015; Ren et al., 2015)
obtained from original papers). We denote methods using “proposal+classifier” notation for
clarity. SharpMask achieves top results, outperforming both RPN and SelSearch proposals.

Comparison with other methods

Finally, Table 7.2 shows results from the 2015 COCO detection challenges1. The performance is
reported with model ensembling and the MPN classifier. The ensemble model achieve 33.5 AP
for boxes and 25.1 AP for segments, and achieved second place in the challenges. Note that for
the challenges, both SharpMask and MPN used the VGG trunk (ResNets were concurrent work,

1http://mscoco.org/dataset/#detections-leaderboard
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AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

ResNet++ (He et al., 2016) 28.2 51.5 27.9 9.3 30.6 45.2 25.7 37.4 38.2 16.8 43.9 57.6
SharpMask+MPN (Zagoruyko et al., 2016) 25.1 45.8 24.8 7.4 29.2 39.1 24.1 36.8 38.7 17.3 46.9 53.9
ResNet++ (He et al., 2016) 37.3 58.9 39.9 18.3 41.9 52.4 32.1 47.7 49.1 27.3 55.6 67.9
SharpMask+MPN (Zagoruyko et al., 2016) 33.5 52.6 36.6 13.9 37.8 47.7 30.2 46.2 48.5 24.1 56.1 66.4
ION (Bell et al., 2016) 31.0 53.3 31.8 12.3 33.2 44.7 27.9 43.1 45.7 23.8 50.4 62.8
CMU_A2 (Shrivastava et al., 2016) 25.7 46.0 26.1 5.90 28.7 41.7 24.8 35.5 36.5 10.5 43.0 58.2

Table 7.2 – Top: Winners of the 2015 COCO segmentation challenge. Bottom: Winners of the
2015 COCO bounding box challenge.

and won the competitions). We have not re-run our model with ensembling and additional
bells and whistles after integrating ResNets into SharpMask.

7.4 Summary

In this chapter, we study how SharpMask performs in an important application of object pro-
posals: object detection. We consider the Fast R-CNN framework, which consists of generating
a set of proposals and classifying them with a classifier. We show that by simply changing the
set of generated proposals to SharpMask, an object detection system can improve the perfor-
mance in terms of AP by a big margin (around 5 points). Moreover, a much smaller number of
SharpMask proposals per image is required to bypass the performance using Selective Search
(the most common set of proposals used in detection): using only 50 SharpMask proposals,
we are able to match the accuracy of Selective Search with 2000 proposals.

88



7.4. Summary
10 ZAGORUYKO et al.: A MULTIPATH NETWORK FOR OBJECT DETECTION

Figure 5: Selected detection results on COCO. Only high-scoring detections are shown. While there
are missed objects and false positives, many of the detections and segmentations are quite good.
Figure 7.5 – Extra selected detection results on COCO. Only high-scoring detections are shown.
While there are missed objects and false positives, many of the detections and segmentations
are quite good.
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8 Conclusion

8.1 Overview

In this thesis, we studied different large-scale image segmentation problems. The lack of a
universal criterion for segmentation led to different definitions of segmentation in the context
of computer vision. Therefore, we addressed three different important segmentation problems:
semantic segmentation (Chapters 3 and 4), object proposals generation (Chapters 5 and 6)
and object detection with segments (Chapters 7).

We advocate the use of algorithms that learn from raw data (e.g. pixels) and are easy to scale.
Deep learning methods, and in particular CNNs, fit well with this objective. Throughout this
thesis, we proposed different CNN-based algorithms to deal with the three segmentation
problems mentioned above.

In Chapter 3, we studied the problem of fully supervised semantic segmentation. We proposed
a recurrent convolutional neural network that allows us to consider a larger input context
(while limiting its capacity). The proposed approach is able to model non local class de-
pendencies in a scene directly from raw pixels in a rather simple way. This is essential for a
model to capture long range (pixel) label dependencies. Our approach achieves competitive
results (in two standard semantic segmentation datasets, Stanford Background and SIFT Flow
dataset) without the need of any expensive graphical model or segmentation technique to
ensure labeling.

Large-scale fully supervised semantic segmentation dataset, however, require a lot of human
labor to be annotated. In Chapter 4, we proposed a model that is able to infer object segmen-
tation by leveraging only object class information. The proposed model, based on a CNN
architecture, is designed in a way it is constrained to put more weight on pixels which are
important for classifying the image with its image-level label. We also proposed a number
of different smoothing priors that are able to boost the performance further and achieve
competitive results to fully supervised methods. The model is trained on a large corpus of
image-level annotated images extracted from ImageNet. We are able to surpass previous
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state-of-the-art models for weakly supervised semantic segmentation by a large margin on the
challenging PASCAL VOC dataset (an increase form 30% to 90% in average per-class accuracy).

In Chapter 5, we studied the problem of object proposal generation. Most of the previous
approaches rely on low level vision cues to generate object proposals. We proposed, instead,
a CNN-based model that is able to discriminatively learn a set of segmentation proposals
directly from pixels. Our method shows that learning features for object proposal generation
is not only feasible but effective and efficient. This approach surpasses the previous state of
the art, on both PASCAL VOC and COCO datasets, by a large margin on both performance (an
increase of ª40%-50% in AUC) for box and segmentation proposals and for both PASCAL VOC
and COCO datasets. Moreover, our method performs faster than previous methods (although
we require GPU for a fast inference).

In Chapter 6, a new architecture for object instance segmentation was introduced. We pro-
posed an augmentation of feedforward network with top-down refinement modules. The
top-down augmentation uses the object-level information of the higher layers of the network
with spatial information from the lower level features. Our new architecture is able to increase
the quality of object instance segmentation masks by iteratively refining a mask encoding
using lower level features of the bottom-up path. We used the new proposed architecture in
the same object proposal problem studied in the previous chapter. We showed qualitatively
and quantitatively that the top-down refinement augmentation improves the quality of the
masks (an accuracy improvements of 10-20% in average recall for various setups). Although
we applied the proposed architecture to the problem of proposal, this approach is suitable to
other object instance segmentation problems.

Finally, in Chapter 7, we studied how the proposal algorithm described in previous chapter
performs in an important application: object detection. We considered the Fast R-CNN
framework, which consists of generating a set of proposals and classifying them with a classifier.
We showed that by simply changing the set of generated proposals to SharpMask, an object
detection system can improve the performance in terms of AP by a big margin (around 5
points). Moreover, a much smaller number of SharpMask proposals per image is required to
bypass the performance when using Selective Search (the most common set of proposals used
in detection).

8.2 Perspectives for Future Work

Full pipeline for object detection Current state-of-the-art detection systems are based on
two steps: proposal generation and classification of these proposals. DeepMask/SharpMask
models could be extended to deal with object detection directly and circumvent this two-step
system. The simplest extension (although possibly not the optimal) would be to instead
of detecting the presence or not of an object, detect directly one of the classes present in
the training set. Some work would be necessary, however, to deal with the amount of false
positives that would possibly be generated by such system.
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Less supervision Deep learning methods are changing the landscape of computer vision.
These methods, although quite powerful, require a large amount of data to be able to learn
the necessary representation. At the same time, a huge amount of unlabeled/weakly-labeled
data is being generated everyday. New learning algorithms are required to make use of so
much data. Recently, many authors start to learn visual features in convolutional networks
using only the structure of images and videos (Doersch et al., 2015; Wang and Gupta, 2015;
Pathak et al., 2016; Isola et al., 2015), although there still exists much space to be explored. The
temporal coherence in videos is also a strong signal that could be exploited in vision learning
algorithms. For example, we could consider the flow of moving objects in videos as a weak
supervision for class agnostic object masks.

Hierarchical semantic constraints Object segmentation can also be improved by leveraging
high level semantic constraints. One approach would be to infer and integrate global scene
aspects (such as ‘outdoor’ or ‘indoor’) into a deep learning system (such constraints would
avoid predictions of labels in unlikely situations). Another direction would be to infer and
leverage hierarchy of semantic labels, e.g., if the model could learn constraints such that a
bike is made of two ‘wheels’ and one ‘seat’ (which is more complex than only knowing that a
‘wheel’ is nearby a ‘seat’, as current systems infer), this would constrain its predictions in a
much better way. (Gould et al., 2009; Socher et al., 2011) proposed systems which go along
these lines. However, the fact they considered only datasets with few categories must have
limited the kind of semantic they could reach.

Language Language is a very special form of regularity in the world. Babies have shown
to use language to improve their perception of the world (Smith and Gasser, 2005). Another
research direction to improve segmentation would be to constrain the hierarchy of semantic
labels with additional semantic knowledge coming form language processing. These semantics
could be exploited from knowledge bases such as WordNet1, e.g., relations such as ‘door has
part lock’ could consolidate relations extracted from labeled images. Other types of relations
such as ‘auto has instance SUV’ might also help when two labels in the database have some
kind of meaning overlap. Semantic knowledge could also be exploited from large unlabeled
corpora: class labels which co-occurs often in a same paragraph have possibly higher chances
to occur in the same scene. Leveraging natural language information could also help in
zero-shot or one-shot detection.

1http://wordnet.princeton.edu
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