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Abstract

Statistical machine translation (SMT) sys-
tems use local cues from n-gram trans-
lation and language models to select the
translation of each source word. Such
systems do not explicitly perform word
sense disambiguation (WSD), although
this would enable them to select transla-
tions depending on the hypothesized sense
of each word. Previous attempts to con-
strain word translations based on the re-
sults of generic WSD systems have suf-
fered from their limited accuracy. We
demonstrate that WSD systems can be
adapted to help SMT, thanks to three key
achievements: (1) we consider a larger
context for WSD than SMT can afford
to consider; (2) we adapt the number of
senses per word to the ones observed in the
training data using clustering-based WSD
with K-means; and (3) we initialize sense-
clustering with definitions or examples ex-
tracted from WordNet. Our WSD system
is competitive, and in combination with a
factored SMT system improves noun and
verb translation from English to Chinese,
Dutch, French, German, and Spanish.

1 Introduction

Selecting the correct translation of polysemous
words remains an important challenge for ma-
chine translation (MT). While some translation
options may be interchangeable, substantially dif-
ferent senses of source words must generally be
rendered by different words in the target language.
In this case, an MT system should identify – im-
plicitly or explicitly – the correct sense conveyed
by each occurrence in order to select the appropri-
ate translation.

Source: And I do really like this shot, be-
cause it shows all the detritus that’s sort
of embedded in the sole of the sneakers.

Baseline SMT: Und ich mag dieses Bild . . .

Online NMT: Und ich mag diesen Schuss
wirklich, . . .

Sense-aware MT: Und ich mag diese Auf-
nahme wirklich, . . .

Reference translation: Ich mag diese Auf-
nahme wirklich, . . .

Figure 1: Example of sense-aware translation that
is closer to a reference translation than a baseline
statistical MT system or an online neural one.

Current statistical or neural MT systems per-
form word sense disambiguation (WSD) implic-
itly, for instance through the n-gram frequency in-
formation stored in the translation and language
models. However, the context taken into account
by an MT system when performing implicit WSD
is limited. For instance, in the case of phrase-
based SMT, it is the order of the language model
(often between 3 and 5) and the size of n-grams
in the phrase table (seldom above 5). In attention-
based neural MT systems, the context extends to
the entire sentence, but is not specifically trained
to be used for WSD.

For instance, Figure 1 shows an English sen-
tence translated into German by a baseline statisti-
cal MT, an online neural MT, and the sense-aware
MT system proposed in this paper. The word shot
is respectively translated as Schuss (gun shot), Bild
(drawing) and Aufnahme (picture) by online NMT,
baseline and our sense-aware system. Our system
selects a correct sense, which is identical to the
reference, while the first two are incorrect (espe-
cially the online NMT).
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WordNet	def./ex.
D0:	[D0_vector]	
D1:	[D1_vector]
…

Labels	for	‘rock’
w0:	cluster	0
w1:	cluster	0
w2:	cluster	1	
…

WordNet	senses for	‘rock’
D0:	a	lump	or	mass	of	hard…
D1: genre	of	popular	music…
…

MT	training	data	with	‘rock’
w0:	…clinging	to	a	rock face…
w1:	…bacteria	off	rock face	
w2:	…like	rock band…
…

MT	training/test	data	with	‘rock’	
w0:	…clinging	to	a	rock|0 face…
w1:	…bacteria	off	rock|0 face	
w2:	…like	rock|1 band…	
…Context	of	‘rock’

w0:	[w0_vector]	
w1:	[w1_vector]
w2:	[w2_vector]
…

Figure 2: Adaptive WSD for MT: vectors from WordNet definitions (or examples) are clustered with
context vectors of each occurrence (here of ‘rock’), resulting in sense labels used as factors for MT.

In this paper, we introduce a sense-aware statis-
tical MT system that performs explicit WSD, and
uses for it a larger context than is accessible to
state-of-the-art SMT. Our WSD system performs
context-dependent clustering of word occurrences
and is initialized with knowledge from WordNet,
in the form of vector representations of definitions
or examples for each sense. The labels of the re-
sulting clusters are used as abstract source-side
sense labels within a factored phrase-based SMT
system. The stages of our method are presented
in Figure 2, and will be explained in detail in Sec-
tion 3.

Our results (Section 5) show first that our WSD
system is competitive on the SemEval 2010 WSD
task, but especially that it helps SMT to increase
its BLEU scores and to improve the translation
of polysemous nouns and verbs, when translat-
ing from English into Chinese, German, French,
Spanish or Dutch, in comparison to an SMT base-
line that is not aware of word senses.

With respect to previous work that used WSD
for MT, discussed in Section 2, we innovate on the
following points:

• we design a sense clustering method with ex-
plicit knowledge (WordNet definitions or ex-
amples) to disambiguate polysemous nouns
and verbs;

• we represent each token by its context vec-
tor, obtained from word2vec word vectors in
a large surrounding window;

• we adapt the possible number of senses per
word to the ones observed in the training data
rather than constraining them by the full list
of senses from WordNet;

• we use the abstract sense labels for each ana-
lyzed word as factors in an SMT system.

2 Related Work

Word sense disambiguation aims to identify the
sense of a word appearing in a given context
(Agirre and Edmonds, 2007). Resolving word
sense ambiguities should be useful, in particular,
for lexical choice in MT.

An initial investigation found that an SMT
system which makes use of off-the-shelf WSD
does not yield significantly better quality trans-
lations than a SMT system not using it (Carpuat
and Wu, 2005). However, another study (Vick-
rey et al., 2005) reformulated the task of WSD
for SMT as predicting possible target translations
rather than senses of ambiguous source words, and
showed that WSD can improve such a simplified
word translation task. Subsequent studies which
adopted this formulation (Cabezas and Resnik,
2005; Chan et al., 2007; Carpuat and Wu, 2007),
successfully integrated WSD to hierarchical or
phrase-based SMT. These systems yielded slightly
better translation quality compared to SMT base-
lines in most cases (0.15–0.30 BLEU).

Although the WSD reformulation above proved
helpful for SMT, still it did not answer whether ac-
tual source-side senses are helpful for end-to-end
SMT. Xiong and Zhang (2014) attempted to an-
swer this question by performing word sense in-
duction for large scale data. In particular, they
proposed a topic model that automatically learned
sense clusters for words in the source language.
In this way, on the one hand, they avoided using
a pre-specified inventory of word senses as tradi-
tional WSD does, but on the other hand, they cre-
ated the risk of discovering sense clusters which
do not correspond to the common senses of words
needed for MT. Hence, this study left open an im-
portant question, namely whether WSD based on



semantic resources such as WordNet (Fellbaum,
1998) can be successfully integrated with SMT.

Neale et al. (2016) attempted such an integra-
tion, by using a WSD system based on a sense
graph from WordNet (Agirre and Soroa, 2009).
This system detects the senses of words in con-
text using a random walk algorithm over the sense
graph. The authors used it to specify the senses
of the source words and integrate them as con-
textual features with a MaxEnt-based translation
model for English-Portuguese MT. Similarly, Su
et al. (2015) built a large weighted graph model
of both source and target word dependencies and
integrated them as features to a SMT model. How-
ever, apart from the sense graph, WordNet pro-
vides also textual information such as sense def-
initions and examples, which should be useful for
disambiguating senses, but were not used in the
above studies. Here, we aim to exploit this in-
formation to perform word sense induction from
large scale monolingual data (in a first phase), thus
combining the benefits of semantic ontologies and
word sense induction for WSD.

Several other studies integrate additional infor-
mation from a larger context using factored-based
MT models (Koehn and Hoang, 2007). Birch
et al. (2007) integrated supertags from a Combi-
natorial Categorial Grammar as factors in phrase-
based translation model. Avramidis and Koehn
(2008) added source-side syntactic information for
each word for translating from a morphologically-
poorer language to a richer one (English-Greek).
The levels of improvement achieved with factored
models such as the ones above range from 0.15
to 0.50 BLEU points. Here, we also observe im-
provements in the upper part of this range, and
they are consistent across several language pairs.

3 Adaptive Sense Clustering for SMT

In this section, we describe our adaptive WSD
method and show how we integrate it with SMT,
as represented in Figure 2 above. In a nutshell, we
consider all source words that have more than one
sense (synset) in WordNet, and extract from Word-
Net the definition of each sense and, if available,
the example. We associate to them word embed-
dings built using word2vec. For each occurrence
of these words in the training data, we also build
vectors for their contexts (i.e. neighboring words)
using the same model. All the vectors are passed
to a clustering algorithm, resulting in the labeling

of each occurrence with a cluster number that will
be used as a factor in statistical MT.

Our method answers several limitations of pre-
vious supervised or unsupervised WSD methods.
Supervised methods require data with manually
sense-annotated labels and are therefore often lim-
ited to a small number of word types: for instance,
only 50 nouns and 50 verbs were targeted in Se-
mEval 20101 (Manandhar et al., 2010). On the
contrary, our method does not require labeled texts
for training, and applies to all word types appear-
ing with multiple senses in WordNet.

Unsupervised methods often pre-define the
number of possible senses for each ambiguous
word before clustering the various occurrences ac-
cording to the senses. If these numbers come from
WordNet, the senses may be too fine-grained for
the needs of translation, especially when a spe-
cific domain is targeted. In contrast, as we explain
below, our WSD method initializes a context-
dependent clustering algorithm with information
from WordNet senses for each word (nouns and
verbs), but then adapts the number of clusters to
the observed training data for MT.

3.1 Representing Definitions, Examples and
Contexts of Word Occurrences

For each noun or verb type Wt appearing in the
training data, as identified by the Stanford POS
tagger,2 we extract the senses associated to it in
WordNet3 by using its Web interface,4 specifically
the definitions Dt = {dtj |j = 1, . . . ,mt} and ex-
amples of use Et = {etj |j = 1, . . . , nt}, each of
them containing multiple words. While most of
the senses are accompanied by a definition, only a
smaller subset also include an example of use, as it
appears from the four last columns of Table 1, but
some senses also contain examples without defini-
tions.

Each definition dtj and example etj is repre-
sented by a vector, which is the average of the
word embeddings over all the words constituting
them. Formally, these are ~dtj = (

∑
wl∈dtj ~wl)/mt

and respectively ~etj = (
∑

wl∈etj ′ ~wl)/nt. While
the entire definition dtj is used to build the vec-
tor, we do not consider all words in the example
etj , but limit the sum to etj ′, by considering only
a window of size c centered around the noun or

1www.cs.york.ac.uk/semeval2010_WSI
2http://nlp.stanford.edu/software/
3https://wordnet.princeton.edu/
4See www.nltk.org/howto/wordnet.html

www.cs.york.ac.uk/semeval2010_WSI
http://nlp.stanford.edu/software/
https://wordnet.princeton.edu/
www.nltk.org/howto/wordnet.html


verb of type Wt (similarly to the window used for
context representation below) to avoid noise from
potentially long examples.

For all the word vectors ~wl above, we use
word2vec pre-trained embeddings from Google5

(Mikolov et al., 2013). If d is the dimensional-
ity of the word vector space, then all vectors ~wl,
~dtj , and ~etj are in Rd. Each definition vector ~dtj

or example vector ~etj for a word type Wt will be
considered as a center vector for each sense during
the clustering procedure.

Similarly, each word token wi in a source sen-
tence is represented by the average vector ~ui of
the words in its context, which is defined as a win-
dow of c words centered in wi. The value c of the
context size needs to be even, since we calculate
the vector ~ui for wi by averaging vectors from c/2
words before wi and from c/2 words after it. We
stop nevertheless at the sentence boundaries, and
filter out stop words before averaging.

We will now explain how to cluster according to
their senses all vectors ~ui for the occurrences wi

of a given word type Wt, using as initial centers
either the definition or the example vectors.

3.2 Clustering Word Occurrences According
to their Senses

We now aim to group all occurrenceswi of a given
word type Wt into clusters according to the simi-
larity of their senses, which we will model as the
similarity of their context vectors. The correctness
of this hypothesis will be supported by the empiri-
cal results. We will modify the k-means algorithm
in several ways to achieve an optimal clustering of
word senses for MT.

The original k-means algorithm (MacQueen,
1967) aims to partition a set of items, which
are here tokens w1, w2, . . . , wn of a same word
type Wt, represented through their embeddings
~u1, ~u2, . . . , ~un where ~ui ∈ Rd. The goal of
k-means is to partition (or cluster) them into k
sets S = {S1, S2, . . . , Sk} so as to minimize the
within-cluster sum of squares, as follows:

S = argmin
S

k∑
i=1

∑
~u∈Si

||~u− ~µi||2, (1)

where ~µi is the centroid of each set Si. At the
first iteration, when there are no clusters yet, the
algorithm selects k random points to be the cen-
troids of the k clusters. Then, at each subsequent

5code.google.com/archive/p/word2vec/

iteration t, k-means calculates for each candidate
cluster a new point to be the centroid of the obser-
vations, defined as their average vector, as follows:

~µ t+1
i =

1

|St
i |

∑
~uj∈St

i

~uj (2)

We make the following modifications to the
original k-means algorithm, to make it adaptive to
the word senses observed in the training data.

1. We define the initial number of clusters kt
for each ambiguous word type Wt in the data
as the number of its senses in WordNet (but
this number will be possibly reduced by the
final re-clustering described below at point
3). Specifically, we run two series of experi-
ments (the results of which will be compared
in Section 5.1.1): one in which each kt is set
to mt, i.e. the number of senses that possess
a definition in WordNet, and another one in
which we consider only senses that are illus-
trated with an example, hence setting each kt
to nt. These settings avoid fixing the number
of clusters kt arbitrarily for each ambiguous
word type.

2. We initialize the centroids of the clusters
to the vectors representing the senses from
WordNet, either using their definition vectors
~dtj in one series of experiments, or their ex-
ample vectors ~etj in the other one. This sec-
ond modification attempts to provide a rea-
sonably accurate starting point for the clus-
tering process.

3. After running the k-means algorithm, we re-
duce the number of clusters for each word
type by merging the clusters which contain
fewer than 10 tokens with the nearest larger
cluster. This is done by calculating the co-
sine similarity between each token vector ~ui
and the centroids of the larger clusters and
assigning the tokens to the closest large clus-
ter. This re-clustering adapts the final number
of clusters to the observed occurrences in the
training data: indeed, when there are few oc-
currences of a sense for a given ambiguous
word type in the data, the SMT is likely not
able to translate them properly due to the lack
of training samples.

Finally, after clustering the training data, we use
the centroids to assign each new token from the

code.google.com/archive/p/word2vec/


test data to a cluster, i.e. an abstract sense label,
by selecting the closest centroid to it in terms of
cosine distance in the embedding space.

3.3 Integration with Machine Translation

Our adaptive WSD system assigns a sense number
for each ambiguous word token in the source-side
of a parallel corpus. To pass this information to
an SMT system, we use a factored phrase-based
translation model (Koehn and Hoang, 2007). The
factored model offers a principled way to supple-
ment words with additional information – such as,
traditionally, part-of-speech tags – without requir-
ing any intervention in the translation tables. The
features are combined in a log-linear way with
those of a standard phrase-based decoder, and the
goal remains to find the most probable target sen-
tence for a given source sentence. To each source
noun or verb token, we add a sense label to it ob-
tained from our adaptive WSD system. To all the
other words, we assign a NULL label.6 The trans-
lation system will thus take the source-side sense
labels into consideration during the training and
the decoding processes.

4 Datasets, Preparation and Settings

We evaluate our sense-aware SMT on the UN Cor-
pus7 (Rafalovitch and Dale, 2009) as well as on
Europarl8 (Koehn, 2005). We select 0.5 million
parallel sentences for each language pair from Eu-
roparl, as shown in Table 1. We also use the WIT3
Corpus9 (Cettolo et al., 2012), a smaller collection
of transcripts of TED talks, to evaluate the impact
of costly model choices, namely the type of the re-
source (definition vs. examples), the length of the
context window, and the k-means method (adap-
tive vs. original).

Before assigning sense labels, we first tokenize
all the texts and identify the parts of speech (POS)
using the Stanford POS tagger10. Then, we fil-
ter out stop words and nouns which are proper
names according to the Stanford Name Entity
Recognizer1. Furthermore, we convert the plural
forms of nouns to their singular form and the verb
forms to infinitive using the stemmer and lem-

6In practice, these labels are simply appended to the to-
kens in the data following a vertical bar, e.g. ‘rock|1’ or
‘great|NULL’.

7http://www.uncorpora.org/
8http://www.statmt.org/europarl/
9http://wit3.fbk.eu/

10http://nlp.stanford.edu/software/

matizer from NLTK11 – this is essential because
WordNet has description entries only for singu-
lar nouns and infinitive form of verbs. The pre-
processed text is used for assigning sense labels to
each occurrence of a noun or verb which has more
than one sense in WordNet. For translation, we
train and tune baseline and factored phrase-based
models with Moses12 (Koehn et al., 2007).

We select the optimal model configuration
based on the MT performance, measured with the
traditional BLEU score (Papineni et al., 2002), on
the WIT3 corpus for EN/ZH and EN/DE. Unless
otherwise stated, we use the following settings
in the k-means algorithm, starting from the im-
plementation provided in Scikit-learn (Pedregosa
et al., 2011):

• we use the definition of each sense for initial-
izing the centroids in the adaptive k-means
methods (and compare this later with using
the examples);

• we also set kt equal to mt, i.e. the number of
senses of an ambiguous word type Wt;

• the window size for the context surrounding
each occurrence is set to c = 8.

For the evaluation of intrinsic WSD perfor-
mance, we use the V -metric, the F1-metric, and
their average, as used for instance at SemEval
2010 (Manandhar et al., 2010). To measure the
impact of WSD on MT, besides BLEU, we also
measure the actual impact on the nouns and verbs
that appear in WordNet with several senses, by
comparing how many of them are translated as
in the reference translation, by our system vs. the
baseline. For a certain set of tokens in the source
data, we note as Nimproved the number of tokens
which are translated by our system as in the ref-
erence translation, but whose baseline translation
differs from it. Conversely, we note as Ndegraded

the number of tokens which are translated by the
baseline system as in the reference, but differently
by our system. We will use the normalized coef-
ficient ρ = (Nimproved − Ndegraded)/T , where T
is the total number of tokens, as a metric focusing
explicitly on the words submitted to WSD.13

11http://www.nltk.org/
12http://www.statmt.org/moses/
13The values of Nimproved and Ndegraded are obtained

using automatic word alignment. They do not capture, of
course, the absolute correctness of a candidate translation, but
only its identity or not with one reference translation.

http://www.uncorpora.org/
http://www.statmt.org/europarl/
http://wit3.fbk.eu/
http://nlp.stanford.edu/software/
http://www.nltk.org/
http://www.statmt.org/moses/


Training Development Testing Definitions Examples
# lines # tokens # lines # tokens # lines # tokens # nouns # verbs # nouns # verbs

EN/ZH WIT3 150,000 3M 10,000 0.3M 50,000 1M 6,052 2,435 2,049 1,932
UN 500,000 13M 5,000 0.14M 50,000 1.5M 8,165 3,382 2,810 2,716

EN/DE WIT3 140,000 2.8M 5,000 0.16M 50,000 1M 8,308 2,384 3,662 2,042
Europarl 500,000 14M 5,000 0.14M 50,000 1.4M 6,373 3,323 2,608 2,668

EN/FR Europarl ∼ ∼ ∼ ∼ ∼ ∼ 8,279 4,022 2,276 2,054
EN/ES Europarl ∼ ∼ ∼ ∼ ∼ ∼ 8,716 4,048 2,478 2,359
EN/NL Europarl ∼ ∼ ∼ ∼ ∼ ∼ 8,667 4,023 2,439 2,318

Table 1: Statistics of the corpora used for machine translation: ‘∼’ indicates a similar size, though
not identical texts, because the English source texts for the different language pairs from Europarl are
different. Hence, the number of words found in WordNet differ as well.

5 Results

Using the data, settings, and metrics above, we
investigate first the impact of two model choices
on the performance: centroid initialization for k-
means (definition or examples vs. random), and
the length of the context window for each word.
Then, we evaluate our adaptive clustering method
on the WSD task, to estimate its intrinsic quality,
and finally measure WSD+MT performance.

5.1 Optimal Values of the Parameters

5.1.1 Initialization of Adaptive k-means
We examine first the impact of the initialization
of the sense clusters, on the WIT3 Corpus. In
Table 2, we present the BLEU scores of our
WSD+MT system in two conditions: when the k-
means clusters are initialized with vectors from the
definitions vs. from the examples provided in the
WordNet synsets of ambiguous words. Moreover,
we provide BLEU scores of baseline and oracle
(i.e. correct senses as factors) systems, as well as
the ρ score indicating the relative improvement of
ambiguous words in our system wrt. the baseline.
The use of definitions outperforms the use of ex-
amples, probably because there are more words
with definitions than with examples in WordNet
(twice as many, as shown in Table 1 in Section 4),
but also because definitions may provide more
helpful words to build the initial vectors, as they
are more explicit than the examples. All the val-
ues of ρ show clear improvements over the base-
line, with up to 4% for DE/EN. As for the oracle
scores, they outperform the baseline by a factor of
2–3 compared to our system.

In addition, we compare the two initialization
options above with random initializations of k-
means clusters, in Table 3. To offer a fair com-
parison, we set the number of clusters, in the case
of random initializations, respectively to the num-

Pair Resource BLEU
ρ (%)Baseline Factored Oracle

EN/ZH Definitions 15.23 15.54 16.24 +2.25
Examples 15.41 15.85 +1.60

EN/DE Definitions 19.72 20.23 20.99 +3.96
Examples 19.98 20.45 +2.15

Table 2: Performance of our WSD+MT factored
system for two language pairs from WIT3, with
two initialization conditions for the k-means clus-
ters, i.e. definitions or examples for each sense.

ber of synsets with definitions, respectively exam-
ples, for each word type. Clearly, our adaptive,
informed initializations of clusters are beneficial
to MT.

Resource k-means initialization
Specific Random

Definitions 15.54 15.34
Examples 15.41 15.27

Table 3: Performance of our WSD+MT factored
system for EN-ZH from WIT3, comparing the two
initialization conditions for the k-means clusters,
i.e. definitions or examples for each sense, with
random initializations.

5.1.2 Length of the Context Window
We now investigate the effect of the size of the
context window surrounding each ambiguous to-
ken, i.e. the number of words surrounding it that
are considered for building its vector representa-
tion. Figure 3 displays the BLEU score of our
WSD+MT factored system when varying this size,
on EN/ZH translation in the WIT3 Corpus, along
with the (constant) score of the baseline. The per-
formance of our system improves with the size of
the window, reaching a peak around 8–10. This
result highlights the importance of a longer con-
text compared to the typical settings of SMT sys-
tems, which never go beyond 6 (order of language



System V-score F1-score Average
All Nouns Verbs All Nouns Verbs All Nouns Verbs #clusters

B
as

e. MFS 0 0 0 64.85 57.00 72.70 32.42 29.50 25.40 1.00
Random 4.40 4.60 4.20 32.35 30.60 34.10 18.45 17.60 19.30 4.00
1ClusterPerIns 31.70 35.80 25.60 0.12 0.11 0.12 15.40 17.90 12.90 89.15

To
p

sy
st

em
s

Hermit (Jurgens and Stevens, 2010) 16.20 16.70 15.60 25.55 26.70 24.40 20.85 21.70 20.00 10.78
UoY (Korkontzelos and Manandhar, 2010) 15.70 20.60 8.50 49.80 38.20 66.60 32.75 29.40 37.50 11.54
KSU KDD (Elshamy et al., 2010) 15.70 18.00 12.40 36.90 24.60 54.70 26.30 21.30 33.50 17.50
Duluth-WSI (Pedersen, 2010) 9.00 11.40 5.70 41.10 37.10 46.70 25.05 24.20 26.20 4.15
Duluth-WSI-SVD-Gap (Pedersen, 2010) 0.00 0.00 0.10 63.30 57.00 72.40 31.65 28.50 36.20 1.02
KCDC-PT (Kern et al., 2010) 1.90 1.00 3.10 61.80 56.40 69.70 31.85 28.70 36.40 1.50
KCDC-GD (Kern et al., 2010) 6.90 5.90 8.50 59.20 51.60 70.00 33.05 28.70 39.20 2.78
Duluth-Mix-Gap (Pedersen, 2010) 3.00 2.90 3.00 59.10 54.50 65.80 31.05 29.70 34.40 1.61

O
ur

s Adaptive k-means + definition 13.65 14.70 12.60 56.70 53.70 59.60 35.20 24.20 36.10 4.45
Adaptive k-means + example 11.35 11.00 11.70 53.25 47.70 58.80 32.28 29.30 35.25 3.58

Table 4: WSD results from the SemEval 2010 shared task in terms of V -score, F1 score and their
average. Our adaptive k-means using definitions (last but one line) outperforms all the other systems on
the average of V and F1, when considering both nouns and verbs, or nouns only.

model and maximum size of phrases in the trans-
lation model). It also suggests that MT systems
which exploit effectively longer context, as we
show here with a sense-aware factored MT sys-
tem for ambiguous nouns and verbs, can signifi-
cantly improve their lexical choice and their over-
all translation quality.

Figure 3: BLEU scores of our WSD+MT factored
system on EN/ZH WIT3 data, along with the base-
line score (constant), when the size of the context
window around each ambiguous token (for build-
ing its context vector) varies from 2 to 14.

5.2 Word Sense Disambiguation Results

We evaluate in this section our WSD system on the
dataset from the SemEval 2010 shared task (Man-
andhar et al., 2010), to assess how competitive it
is, while acknowledging that our system uses ex-
ternal knowledge not available to SemEval partic-
ipants.

Table 4 shows the WSD results in terms of V -
score and F1-score, comparing our method (bot-

tom two lines) with other WSD systems that par-
ticipated in SemEval 2010 (top four systems for
each metric). We add three baselines provided
by the task organizers for comparison: (1) Most
Frequent Sense (MFS), which groups all occur-
rences of a word into one cluster, (2) 1Cluster-
PerInstance, which produces one cluster for each
occurrence of a word, and (3) Random, which ran-
domly assigns an occurrence to 1 out of 4 clusters
(4 is the average number of senses from ground-
truth).

The V-score is biased towards systems generat-
ing a higher number of clusters than the number
of gold standard senses. F1-score measures the
classification performance, i.e. how well a method
assigns two occurrences of a word belonging to
the same gold standard class. Hence, this metric
favors systems that generate fewer clusters (for in-
stance, if all instances were grouped into 1 cluster,
the F1-score would be high). As these two metrics
are biased towards either small or large numbers
of clusters, their average is a useful metric as well.

Table 4 shows that k-means initialized with
definitions achieves high performance and ranks
among the top systems for each metric individu-
ally, outperforming all other systems on the aver-
aged metric (especially on “All” and “Noun” anal-
ysis). Moreover, the adaptive k-means method
finds an average number of senses of 4, which is
close to the ground-truth value provided by Se-
mEval (4.46). These results show that our method,
despite its simplicity, is effective and provides
competitive performance against prior art, partly
thanks to additional knowledge not available to the



Language pair Corpus BLEU
ρ (%)Baseline Factored Oracle

EN/ZH UN 23.25 23.69 24.44 +2.26
EN/DE Europarl 20.78 21.32 21.95 +1.57
EN/FR Europarl 31.96 32.20 32.98 +1.21
EN/ES Europarl 39.95 40.37 41.06 +1.04
EN/NL Europarl 23.56 23.84 24.79 +1.38

Table 5: BLEU scores of our WSD+MT factored system, with both noun and verb senses, along with
baseline MT and oracle WSD+MT, on five language pairs.

Language pair Baseline
Factored (Nouns) Factored (Verbs)

nouns nouns + verbs Oracle verbs nouns + verbs OracleBLEU ρ (%) ρ (%) BLEU ρ (%) ρ (%)
EN/ZH 23.25 23.61 +1.78 +1.93 24.05 23.35 +3.30 +3.14 24.17
EN/DE 20.78 21.31 +1.65 +1.48 21.45 21.30 +1.81 +1.79 21.87
EN/FR 31.96 32.08 +0.90 +0.82 32.36 32.15 +2.03 +2.13 32.98
EN/ES 39.95 40.28 +1.05 +0.96 40.59 40.24 +2.08 +1.15 41.06
EN/NL 23.56 23.79 +1.13 +0.87 24.05 23.70 +2.58 +2.71 24.46

Table 6: BLEU scores of our WSD+MT factored system, trained separately on disambiguated nouns vs.
verbs, and tested separately or jointly, along with baseline MT and oracle WSD+MT, on five language
pairs.

shared task systems.

5.3 Machine Translation Results
Table 5 displays the performance of our factored
MT system trained with noun and verb senses on
five language pairs. Our system performs consis-
tently better than the MT baseline on all pairs, with
the largest improvements achieved on EN/ZH and
EN/DE. To better understand the improvements
over the baseline MT, we also provide the BLEU
score of an oracle system which has access to
the reference translation of the ambiguous words
through the alignment provided by GIZA++. Ac-
cording to the results, our factored MT system
bridges around 40% of the BLEU gap between
the baseline MT system and the oracle system on
EN/DE and 30% on EN/ZH.

As shown in Table 6, the translation quality of
our factored MT outperforms the baseline when
trained with either noun senses or verb senses sep-
arately. However, in some cases, our factored MT
system trained with both noun and verb senses per-
forms worse than with noun and verb senses sep-
arately. This may be due to the lack of sufficient
training data to learn reliably using all the addi-
tional factors – as we observed when training on
the smaller WIT3 Corpus.

Lastly, Table 7 shows the confusion matrix for
our factored MT and the baseline MT systems
when comparing the reference translation of nouns
and verbs separately, using GIZA++ alignment. In
particular, the confusion matrix displays the num-

ber of labeled tokens the translation of which is
identical to the reference or not (Y, N). As we can
observe, the number of tokens that our factored
MT system finds correctly while the baseline MT
does not, are twice as many as the numbers of to-
kens that the baseline MT system finds correctly
while our factored MT does not.

6 Conclusion

We presented a sense-aware statistical MT system
which obtains access to a longer context than stan-
dard ones, through an adaptive context-dependent
k-means clustering algorithm for WSD. The al-
gorithm utilizes semantic information from Word-
Net to identify the dominant clusters, which cor-
respond to senses in the source side of a par-
allel corpus. The proposed adaptive k-means
method is straightforward, yet it provides com-
petitive WSD performance on data from the Se-
mEval 2010 shared task. For MT, our experiments
with five language pairs show that our sense-aware
MT system consistently improves over the base-
line. As future work, we plan to integrate sense in-
formation for ambiguous words to neural MT and
investigate other effective ways to enable access to
longer context.
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