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Abstract

State-of-the-art automatic speech recognition and text-to-speech systems are

based on subword units, typically phonemes. This necessitates a lexicon that

maps each word to a sequence of subword units. Development of a phonetic lex-

icon for a language requires linguistic knowledge as well as human effort, which

may not be always readily available, particularly for under-resourced languages.

In such scenarios, an alternative approach is to use a lexicon based on units

such as, graphemes or subword units automatically derived from the acoustic

data. This article focuses on automatic subword unit based lexicon development

using methods that are employed for development of grapheme-based systems.

Specifically, we present a novel hidden Markov model (HMM) based formalism

for automatic derivation of subword units and pronunciation generation using

only transcribed speech data. In this approach, the subword units are derived

from the clustered context-dependent units in a grapheme based system using

the maximum-likelihood criterion. The subword unit based pronunciations are

then generated by learning either a deterministic or a probabilistic relationship

between the graphemes and the acoustic subword units (ASWUs). In this arti-

cle, we first establish the proposed framework on a well-resourced language by

comparing it against related approaches in the literature and investigating the

transferability of the derived subword units to other domains. We then show

the scalability of the proposed approach on real under-resourced scenarios by

conducting studies on Scottish Gaelic, a genuinely under-resourced language,
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and comparing the approach against state-of-the-art grapheme-based ASR ap-

proaches. Our experimental studies on English show that the derived subword

units can not only lead to better ASR systems compared to graphemes, but

can also be transferred across domains. The experimental studies on Scot-

tish Gaelic show that the proposed ASWU-based lexicon development approach

scales without any language specific considerations and leads to better ASR

systems compared to a grapheme-based lexicon, including the case where ASR

system performance is boosted through the use of acoustic models built with

multilingual resources from resource-rich languages.

Keywords: automatic subword unit derivation, pronunciation generation,

hidden Markov model, Kullback-Leibler divergence based hidden Markov

model, under-resourced language, automatic speech recognition

1. Introduction1

Speech technologies such as automatic speech recognition (ASR) systems2

and text-to-speech (TTS) systems typically model subword units as they are3

1) more trainable compared to words and, 2) more generalizable toward unseen4

contexts or words. Subword modeling entails development of a pronunciation5

lexicon that represents each word as a sequence of subword units. Typically in6

the literature, the subword units are the phonemes or phones. Phonetic lexicon7

development requires linguistic expert knowledge about the phone set of the8

language and the relationship between the written form, i.e., graphemes and9

phonemes. Therefore, it is a time consuming and tedious task. To reduce the10

amount of human effort, grapheme-to-phoneme (G2P) conversion approaches11

have been proposed (Pagel et al., 1998; Sejnowski and Rosenberg, 1987; Tay-12

lor, 2005; Bisani and Ney, 2008). The G2P conversion approaches still require13

an initial phonetic lexicon in the target language to learn the relation between14

graphemes and phonemes through data-driven approaches. While majority lan-15

guages such as English and French have well-developed phonetic lexicons, there16

are many other languages such as Scottish Gaelic and Vietnamese that lack17

proper phonetic resources.18

In the absence of a phonetic lexicon, alternatively grapheme subword units19

based on the writing system have been explored in the literature (Kanthak and20

Ney, 2002a; Killer et al., 2003; Dines and Magimai.-Doss, 2007; Magimai-Doss21

et al., 2011; Ko and Mak, 2014; Rasipuram and Magimai.-Doss, 2015; Gales22
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et al., 2015). The main advantage of using graphemes as subword units is that23

they make development of lexicons easy. However, the success of grapheme-24

based ASR systems depends on the G2P relationship of the language. For25

languages with a regular or shallow G2P relationship such as Spanish, the per-26

formance of grapheme-based and phoneme-based ASR systems is typically com-27

parable, whereas for languages with an irregular or deep G2P relationship such28

as English, the performance of a grapheme-based ASR system is relatively poor29

when compared to a phoneme-based system (Kanthak and Ney, 2002a; Killer30

et al., 2003).31

Yet another way to handle lack of phonetic lexicon is to derive subword32

units automatically from the speech signal and build a lexicon based on that.33

In the literature, interest in acoustic subword unit (ASWU) based lexicon devel-34

opment emerged from the pronunciation variation modeling perspective, specif-35

ically with the idea of overcoming the limitations of linguistically motivated36

subword units, i.e., phones (Lee et al., 1988; Svendsen et al., 1989; Paliwal,37

1990; Lee et al., 1988; Bacchiani and Ostendorf, 1998; Holter and Svendsen,38

1997). However, recently, there has been a renewed interest from the perspec-39

tive of handling lexical resource constraints (Singh et al., 2000; Lee et al., 2013;40

Hartmann et al., 2013). A limitation of most of the existing methods for acous-41

tic subword units based lexicon development is that they are not able to handle42

unseen words.43

In this article, building upon the recent developments in grapheme-based44

ASR, we propose an approach to derive “phone-like” subword units and develop45

a pronunciation lexicon given limited amount of transcribed speech data. In this46

approach, first a set of ASWUs is derived by modeling the relationship between47

the graphemes and the acoustic speech signal in a hidden Markov model (HMM)48

framework based on two well-known aspects,49

1. alphabetic writing systems carry information regarding the spoken system.50

Alternatively, a written text embeds information about how it should be51

spoken. Though this embedding can be deep or shallow depending on the52

language; and53

2. the envelope of the short-term spectrum tends to carry information related54

to phones.55

The ASWU-based pronunciation lexicon is then developed by learning the56

grapheme-to-ASWU (G2ASWU) relationship through the acoustic signal, and57
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inferring pronunciations using G2ASWU conversion (analogous to G2P conver-58

sion). The G2ASWU conversion process inherently brings in the capability to59

generate pronunciation for unseen words. The viability of the proposed ap-60

proach has been demonstrated through preliminary studies on English (Razavi61

and Magimai-Doss, 2015) and Scottish Gaelic (Razavi et al., 2015), where a62

probabilistic G2ASWU relationship was learned and pronunciation lexicon was63

developed.64

This article builds on the preliminary works to first extend the approach to65

the case where a deterministic G2ASWU relationship is learned. We then study66

and contrast the two G2ASWU relationship learning methods and investigate67

the following aspects:68

1. Domain-independency of the ASWUs: Subword units such as phones and69

graphemes are by default domain-independent. This enables using a lexi-70

con based on either of them across different domains. ASWUs are derived71

from a limited amount of acoustic speech signal from a domain. Fur-72

thermore, the limited data can have undesirable variabilities based on73

the hardware used and the conditions under which the data is collected.74

Therefore a question that arises is whether the derived ASWUs are domain75

independent. Through a cross-domain study on English, we show that our76

approach indeed yields ASWUs that are domain independent. Further-77

more, the proposed approach inherently enables transfering ASWU based78

lexicon developed on one domain to another.79

2. Potential of ASWUs in improving mulitilingual ASR: It has been shown80

that both acoustic resource and lexical resource constraints can be81

effectively addressed by learning a probabilistic relationship between82

graphemes of the target languages and a multilingual phone set obtained83

from lexical resources of auxiliary languages using acoustic data (Rasipu-84

ram and Magimai.-Doss, 2015). Success of such approaches lies on the85

fact that there exists a systematic relationship between linguistically mo-86

tivated grapheme units and phonemes. Therefore a question that arises is:87

Does the ASWU-based lexicon based on the proposed approach hold the88

advantage over grapheme-based lexicon in such a case? Alternately, do89

the ASWUs exhibit similar systematic relationship to multilingual phones90

and can it be exploited to further improve the under-resourced language91

ASR? Through a study on Scottish Gaelic, a genuinely under-resourced92

language, we show that there exists a systematic relationship between the93
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ASWUs and multilingual phones, which can not only be exploited to yield94

systems better than grapheme-based lexicons, but also to gain insight into95

the derived units.96

It is worth mentioning that, to the best of our knowledge, this is the first97

work that aims to establish these aspects in the context of ASWU-based lexicon98

development. Consequently, it paves the path for adopting ASWU-based lexicon99

development and its use for ASR technology development, especially for under-100

resourced languages.101

The remainder of the article is organized as follows. Section 2 provides102

a background about the grapheme-based ASR and related approaches in the103

literature for subword unit derivation and pronunciation generation. Section 3104

describes the proposed approach. Section 4 presents investigations on the well-105

resourced majority language English and Section 5 presents the investigations106

on the under-resourced minority language Scottish Gaelic. Section 6 provides a107

brief analysis of the derived ASWUs and the generated pronunciations. Finally,108

Section 7 concludes the article.109

2. Background110

This section provides the relevant background for understanding the pro-111

posed approach for ASWU based lexicon development. Sections 2.1 and 2.2112

first present a background on HMM-based ASR and grapheme-based ASR ap-113

proaches, which form the basis for our proposed approach for automatic subword114

unit derivation and pronunciation generation. Section 2.3 then presents a survey115

on the existing approaches for derivation of ASWUs and lexicon development.116

2.1. HMM-based ASR117

In statistical automatic speech recognition, given the acoustic observation

sequence X = [x1, . . . ,xt, . . . ,xT ] with T denoting the total number of frames,

the goal is to find the most probable sequence of words W ∗,

W ∗ = arg max
W∈W

P (W |X,Θ), (1)

= arg max
W∈W

p(W,X|Θ), (2)

where W denotes the set of hypotheses and Θ denotes the set of parameters.118

Eqn. (2) is obtained result of applying Bayes’ rule and assuming p(X) to be119

constant w.r.t all word hypotheses. Hereafter for simplicity, we drop Θ from120

the equations.121
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The HMM-based ASR approach achieves that goal by finding the most prob-

able sequence of states Q∗ representing W ∗ by incorporating lexical and syn-

tactic knowledge:

Q∗ = arg max
Q∈Q

p(Q,X), (3)

= arg max
Q∈Q

T∏

t=1

p(xt|qt = li) · P (qt = li|qt−1 = lj), (4)

= arg max
Q∈Q

T∑

t=1

log(p(xt|qt = li)) + log(P (qt = li|qt−1 = lj)), (5)

where Q denotes all possible state sequences, qt denotes the HMM state at time122

frame t and li ∈ {l1, · · · lI} denotes a subword unit or lexical unit. Eqn. (4) is123

derived as a consequence of i.i.d and first order Markov model assumptions.124

Estimation of p(xt|qt = li) is typically factored through latent variables or

acoustic units {ad}Dd=1 as (Rasipuram and Magimai.-Doss, 2015):

p(xt|qt = li) =

D∑

d=1

p(xt, a
d|qt = li), (6)

=

D∑

d=1

p(xt|ad, qt = li) · P (ad|qt = li), (7)

=

D∑

d=1

p(xt|ad) · P (ad|qt = li)(assuming xt ⊥⊥ qt|ad), (8)

= vT
t yi, (9)

where vt = [v1t , · · · , vdt , · · · , vDt ]T with vdt = p(xt|ad) and yi =125

[y1i , · · · , ydi , · · · , yDi ]T and ydi = P (ad|qt = li).126

As presented above in Eqn. (9), estimation of p(xt|qt = li) can be seen as127

matching acoustic information vt with lexical information yi. In recent years, it128

has been shown that the match can also be obtained by matching posterior dis-129

tributions of ad conditioned on acoustic features and lexical information. One130

such approach is Kullback-Leibler divergence based HMM (KL-HMM) (Aradilla131

et al., 2008), where the local score is estimated as the Kullback-Leibler diver-132

gence between yi and zt:133

SKL(yi, zt) =

D∑

d=1

ydi · log(
ydi
zdt

), (10)

where zt = [z1t , · · · , zdt , · · · , zDt ]T = [P (a1|xt), · · · , P (ad|xt), · · · , P (aD|xt)]
T.134

As KL-divergence is not a symmetric measure, the local score can be esti-
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mated in other ways such as,

SRKL(yi, zt) =

D∑

d=1

zdt log(
zdt
ydi

), (11)

or

SSKL(yi, zt) =
1

2
(SKL + SRKL). (12)

More details about KL-HMM approach are provided in Appendix A.135

The HMM-based ASR approach has been primarily built with the idea of136

having a phonetic lexicon that transcribes each word as a sequence of phones.137

In conventional HMM-based ASR systems, lexical units {li}Ii=1 model context-138

dependent phones and acoustic units {ad}Dd=1 are clustered context-dependent139

phone units. vt and zt are typically estimated using either Gaussian mixture140

models (GMMs) or artificial neural networks (ANNs); and {yi}Ii=1 is a set of141

Kronecker delta distributions based on the one-to-one deterministic map be-142

tween lexical unit li and acoustic unit ad modeled by the state tying decision143

tree. We refer to this case where li and ad are one-to-one related as deter-144

ministic lexical modeling framework. In (Rasipuram and Magimai.-Doss, 2015),145

it has been elucidated that there are HMM-based ASR approaches where the146

relationship between li and ad is probabilistic. KL-HMM approach, probabilis-147

tic classification of HMM states (PC-HMM) approach (Luo and Jelinek, 1999)148

and tied posterior approach (Rottland and Rigoll, 2000) are examples of prob-149

abilistic lexical modeling framework. In KL-HMM, yi is estimated based on zt150

whereas in PC-HMM and tied posterior yi is estimated based on vt. For a de-151

tailed overview on deterministic and probabilistic lexical modeling, the reader152

is referred to (Rasipuram and Magimai.-Doss, 2015).153

2.2. Grapheme-based ASR154

In the literature, the issue of lack of a well-developed phonetic lexicon has155

been addressed by using graphemes as subword units. Most of the studies in this156

direction have been conducted in the framework of deterministic lexical model-157

ing, where {li}Ii=1 model context-dependent graphemes, {ad}Dd=1 are clustered158

context-dependent grapheme units and yi is a decision tree learned while state159

tying based on either singleton question set or phonetic question set (Kanthak160

and Ney, 2002b; Killer et al., 2003).161

In the framework of probabilistic lexical modeling, it has been shown that162

grapheme-based ASR systems can be built with {ad}Dd=1 based on phones163

of auxiliary languages or domains, and {li}Ii=1 based on the target language164
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graphemes. More precisely, a phone class conditional probability zt estimator165

is trained with acoustic and lexical resources from auxiliary languages or do-166

mains, and yi, which captures a probabilistic G2P relationship, is trained on167

target language or domain acoustic data (Magimai.-Doss et al., 2011; Rasipuram168

and Magimai.-Doss, 2015). It has been shown that this approach can effectively169

address both acoustic resource and lexical resource constraints (Rasipuram and170

Magimai.-Doss, 2015; Rasipuram et al., 2013a). As a natural extension of the171

approach, an acoustic data-driven G2P conversion approach has been proposed,172

where the G2P relationship learned in this manner through acoustics is used to173

infer pronunciations (Rasipuram and Magimai-Doss, 2012; Razavi et al., 2016).174

We dwell about the acoustic data-driven G2P conversion approach more in the175

article later, as it is an integral part of the proposed ASWU based lexicon de-176

velopment approach.177

2.3. Literature survey on ASWU derivation and pronunciation generation178

The idea of using lexicons based on ASWUs instead of linguistically mo-179

tivated units has been appealing to the ASR community for three main rea-180

sons: (1) ASWUs tend to rather be data-dependent than linguistic knowledge-181

dependent, as they are typically obtained through optimization of an objective182

function using training speech data (Lee et al., 1988; Bacchiani and Ostendorf,183

1998), (2) they could possibly help in handling pronunciation variations (Livescu184

et al., 2012), and (3) they can avoid the need for explicit phonetic knowledge (Lee185

et al., 2013).186

Typically, the ASWU-based lexicon development process, in addition to the187

speech signal, requires the corresponding transcription in terms of words, i.e., it188

is a weakly supervised process similar to acoustic model development in an ASR189

system.1 This process involves two key challenges: (a) derivation of ASWUs,190

which is commonly done through segmentation and clustering and (b) pronun-191

ciation generation based on the derived ASWUs. The approaches proposed192

in the literature can be grouped into two categories based on how these two193

challenges are addressed. More precisely, there are approaches that decouple194

these two challenges and address them separately (Lee et al., 1988; Svendsen195

et al., 1989; Paliwal, 1990; Hartmann et al., 2013), and there are approaches196

1More recently, in the context of “zero-resourced” ASR system development, there are
efforts toward developing methods that are fully unsupervised (Chung et al., 2013; Lee et al.,
2015). Such methods are at very early stages and are out of the scope of this article.
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that address these two challenges in an unified manner with a common objec-197

tive function (Holter and Svendsen, 1997; Bacchiani and Ostendorf, 1999, 1998;198

Singh et al., 2000, 2002; Lee et al., 2013). Here we discuss the prior works that199

are more relevant to our present work.200

In (Hartmann et al., 2013) an approach was proposed based on the assump-201

tion that the orthography of the words and their pronunciations are related. In202

this approach, the subword units are obtained by clustering context-dependent203

(CD) grapheme models. This is achieved through a spectral based clustering204

approach (Ng et al., 2001). The pronunciations for seen and unseen words are205

generated by employing a statistical machine translation (SMT) framework.206

On the Wall Street Journal task, it was found that the resulting ASWU-based207

lexicon yields a better ASR system than the grapheme-based lexicon.208

In (Bacchiani and Ostendorf, 1999, 1998), a segmentation and clustering209

approach was exploited for jointly determining the ASWUs and the associated210

pronunciations, where (1) in the segmentation step, pronunciation related con-211

straints are applied such that a given word has the same number of segments212

across the acoustic training data, and (2) a maximum-likelihood criteria that213

is consistent for both segmentation and clustering is utilized. On read speech214

DARPA Resource Management task, it was shown that the proposed approach215

leads to improvements over a phone-based ASR system.216

In (Singh et al., 2000, 2002), a maximum likelihood strategy was presented217

which decomposed the ASWU-based ASR system development as the joint esti-218

mation of the pronunciation lexicon (including determination of ASWU set size)219

and acoustic model parameters. More precisely, with an initial pronunciation220

lexicon based on context-independent graphemes, the acoustic model parameters221

and the pronunciation lexicon are updated iteratively. The lexicon update step222

is an iterative process within itself consisting of word segmentation estimation223

given the acoustic model and update of the lexicon based on the segmentation.224

After each iteration of lexicon update and acoustic model update convergence225

is determined by evaluating the ASR system on cross-validation data. If not226

converged, the ASWU set size is increased and the process is repeated. A proof227

of concept was demonstrated on DARPA Resource Management corpus.228

In (Lee et al., 2013) a hierarchical Bayesian model approach was proposed229

to jointly learn the subword units and pronunciations. This is done by modeling230

two latent structures: (1) the latent phone sequence, and (2) the latent letter-to-231

sound (L2S) mapping rules, using an HMM-based mixture model in which each232

component represents a phone unit and the weights over HMMs are indicative233
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of the L2S mappings. It was shown that the proposed approach together with234

the pronunciation mixture model retraining leads to improvements over the235

grapheme-based ASR system on a weather query task.236

3. Proposed Approach237

This section presents an HMM-based formulation to derive ASWUs and238

develop an associated pronunciation lexicon. Essentially, the formulation builds239

on grapheme-based ASR in a deterministic lexical modeling framework as well240

as a probabilistic lexical modeling framework. More specifically, we show that:241

1. The problem of derivation of ASWUs can be cast as a problem of find-242

ing phone-like acoustic units {ad}Dd=1 given transcribed speech, i.e., the243

speech signal and its orthographic transcription, in the grapheme-based244

ASR framework. Section 3.1 dwells on this aspect.245

2. Given the derived ASWUs {ad}Dd=1 and the transcribed speech, the pro-246

nunciation lexicon development problem can be cast as a problem akin247

to acoustic data-driven G2P conversion (Razavi et al., 2016). Section 3.2248

deals with this aspect.249

3.1. Automatic subword unit derivation250

State clustering and tying methods in HMM-based ASR have emerged from251

the perspective of addressing the data sparsity issue and handling unseen con-252

texts (Young, 1992; Ljolje, 1994). However, this methodology can be adopted, as253

it is, to derive acoustic subword units in the framework of grapheme-based ASR.254

More precisely, we hypothesize and show that the clustered context-dependent255

grapheme units {ad}Dd=1 obtained in a context-dependent grapheme based ASR256

system can serve as ASWUs.257

The reasoning behind our hypothesis is that the set of acoustic units {ad}Dd=1258

is obtained by maximizing the likelihood of the training data, which is essen-259

tially determined by estimation of p(xt|qt = li), as during training the sequence260

model for each utterance is fixed given the associated transcription and lexicon.261

As observed earlier in Eqn. (9), p(xt|qt = li) estimation involves the matching of262

acoustic information vt with lexical information yi. We know that standard fea-263

tures, such as cepstral features have been designed to model the envelope of the264

short-term spectrum, which carry information related to phones. Similarly it is265

very well known that context-dependent graphemes capture information related266
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to phones. This is one of the central assumptions in most of G2P conversion267

approaches, i.e., the relationship between context-independent graphemes and268

phones can be irregular but the relationship can become regular when contex-269

tual graphemes are considered. Therefore, as illustrated in Figure 1, for the270

likelihood of the training data to be maximized, clustered context-dependent271

grapheme units {ad}Dd=1 should model an information space that is common to272

both the short-term spectrum based feature xt space and the context-dependent273

grapheme based lexical unit li space, which we hypothesize to be a phone-like274

subword unit space.275

m-p+r
e-p+h
i-p+e
…

R=[h]

L=[e] R=[r]

R=[e]

e.g.
base grapheme: 

p

ad

ad Yy

y

y n

n

n

li li

xt

p(xt|qt = li) =

DX

d=1

p(xt|ad) · P (ad|qt = li)

Decision tree

Gaussianp(xt|ad)

P (ad|qt = li)

Figure 1: The clustered states ad of a grapheme-based CD HMM/GMM system obtained
through decision tree based clustering are exploited as ASWUs. As for the likelihood of the
data to be maximized, ads should be related to both CD graphemes li and cepstral features
xt, they are expected to be phone-like.

Our argument is further supported by an ASR study that demonstrated the276

interchangeability of clustered context-dependent phoneme units space and clus-277

tered context-dependent grapheme units space in the framework of probabilis-278

tic lexical modeling (Rasipuram and Magimai-Doss, 2013) as well as by earlier279

works on grapheme-based ASR that have explored integration of phonetic infor-280

mation in clustering context-dependent grapheme units and state tying (Killer281

et al., 2003).282

As shall be seen in the later sections, in the proposed approach the set of283

ASWUs {ad}Dd=1 is chosen in conjunction with grapheme-to-ASWU conversion284

via cross-validation.285
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3.2. Lexicon development through grapheme-to-ASWU conversion286

In order to build speech technologies with the derived ASWUs, we need287

a mechanism to map the orthographic transcription of words to sequences of288

ASWUs for both seen and unseen words. For that purpose, an approach similar289

to automatic G2P conversion is desirable. However, conventional G2P conver-290

sion approaches are not directly applicable, as they necessitate a seed lexicon291

that maps a few word orthographies into sequence of phonemes (in our case292

ASWUs). In this section we present an approach that alleviates the necessity for293

a seed lexicon by exploiting acoustic information. This approach can be essen-294

tially considered as an extension of the grapheme-based ASR approach, where295

either a deterministic lexical model or a probabilistic lexical model {yi}Ii=1 that296

captures G2ASWU relationship is learned and ASWU-based pronunciations are297

inferred. We present below these two frameworks.298

3.2.1. Deterministic lexical modeling based G2ASWU conversion299

This method of lexicon development is a straightforward extension of the300

ASWU derivation. More precisely, in the process of ASWU derivation a deter-301

ministic one-to-one map between context-dependent graphemes ({li}Ii=1) and302

ASWUs ({ad}Dd=1) is learned. The pronunciations are inferred using this infor-303

mation similar to the decision tree based G2P conversion approach (Pagel et al.,304

1998), where given the grapheme context, a trained decision tree maps the cen-305

tral grapheme to a phoneme. In our case, the central grapheme is mapped to306

an ASWU.307

3.2.2. Probabilistic lexical modeling based G2ASWU conversion308

The other method for ASWU-based lexicon development is to exploit the309

acoustic data-driven G2P conversion approach using KL-HMM (Rasipuram and310

Magimai-Doss, 2012; Razavi et al., 2016), which can alleviate the necessity of311

a seed lexicon in the target domain or language. More precisely, the G2ASWU312

conversion involves,313

1. getting an alignment in terms of the ASWUs {ad}Dd=1 using the trained314

grapheme-based HMM/GMM system followed by training of an ANN to315

estimate zt;
2 then316

2If the estimation of zt is based on Gaussians then it would amount to going from single
Gaussian to GMMs (mixture increment step) of ASR system training.
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2. training a context-dependent grapheme-based KL-HMM using zt as fea-317

ture observations; and finally318

3. inferring the pronunciations given the KL-HMM parameters {yi}Ii=1 and319

the orthographies of the words in the lexicon. More precisely, first a320

sequence of ASWU posterior probability vectors is obtained from the KL-321

HMM given the orthography of the target word. The sequence is then322

decoded by an ergodic HMM in which each state represents an ASWU to323

infer the pronunciation.324

The main difference between this approach and the deterministic lexical325

modeling based G2ASWU conversion approach is that the G2ASWU mapping326

is probabilistic as opposed to being deterministic.327

3.3. Summary of the proposed approach328

Figure 2 summarizes our approach. As illustrated, the approach consists of329

three phases. Phase I involves derivation of ASWUs. Phase II involves learn-330

ing G2ASWU relationship given the transcription and acoustic data. Phase331

III deals with lexicon development given the G2ASWU relationship and the332

word orthographies. Phase II is explicitly needed for learning the probabilistic333

G2ASWU relationship. In the case of deterministic G2ASWU conversion, it is334

implicit in Phase I. Phase III can be seen as decoding a sequence of ASWU335

posterior probability vectors yi. It is worth mentioning that the pronunciation336

inference step, i.e., Phase III, for both deterministic and probabilistic lexical337

modeling based approaches is the same. More precisely, in the case of deter-338

ministic lexical modeling based approach, the inference step is equivalent to339

decoding a sequence of Kronecker delta distributions resulting from the one-to-340

one mapping of CD graphemes (in the word orthography) to ASWUs using the341

decision tree (Razavi et al., 2016).342

A central challenge in the proposed approach is how to determine the size343

of the ASWU set {ad}Dd=1. In the studies validating the proposed approach,344

presented in the remainder of the article, we show that this can be achieved345

via cross-validation. Specifically, a range of values for acoustic units set cardi-346

nality D can be considered based on the knowledge that the ratio of number347

of phonemes to number of graphemes is not an extremely high value, and can348

be selected via cross-validation at ASR level. For instance in English, if one349

considers the CMU dictionary, then the ratio is 38
26 or 84

26 (when lexical stress is350

considered). Alternately, the value of D can be chosen relative to the number of351
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Figure 2: Block diagram of the HMM formalism for subword unit derivation and pronunciation
generation. Phase III is shown for the case where the ASWU posterior probability vectors
from KL-HMM are decoded. For the case where the ASWU posterior probability vectors are
obtained from the decision trees (i.e., yis are Kronecker delta distributions), only a single
posterior probability vector per each context-dependent grapheme is generated, i.e., Y AT =
[yA+T

1 ,yA−T
1 ]

graphemes and is much smaller than the number of acoustic units considered for352

building context-dependent grapheme-based ASR systems, which is typically in353

the order of thousands.354

4. In-Domain and Cross-Domain Studies on Resource-Rich Lan-355

guages356

In this section, we establish the proposed framework for subword unit deriva-357

tion and lexicon development through experimental studies on a resource-rich358

language using only its word-level transcribed speech data. The rationale for359

studying on a well-resourced language is to enable analyzing the discovered sub-360

word units and relating them to phonetic identities. We selected English as the361

well-resourced language, as it is a challenging language for automatic pronunci-362
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ation generation due to its irregular G2P relationship, and has been the focus363

of many previous works on ASWU derivation and lexicon development. Our364

investigations are organized as follows:365

1. Evaluation of the proposed approach through in-domain studies: We inves-366

tigate the proposed approach for derivation of ASWUs and corresponding367

pronunciations on two English corpora, namely Wall Street Journal (WSJ)368

and Resource Management (RM). We evaluate the ASWU-based lexicons369

through in-domain ASR studies where the performance of the ASWU-based370

ASR systems is compared against grapheme-based and phoneme-based ASR371

systems (Section 4.2).372

2. Investigating the transferability of the ASWUs through cross-domain studies:373

A central challenge in ASWU based lexicon development and its adoption for374

wider use is ascertaining whether the ASWUs derived from limited amount375

of acoustic resources generalize across domains, similar to linguistically moti-376

vated subword units phonemes and graphemes. To the best of our knowledge,377

none of the previous works have tried to ascertain that aspect. In that sense,378

we go a step further to conduct cross-domain studies where the ASWUs are379

derived from the WSJ0 corpus and the lexicon is developed for the RM cor-380

pus. We present three methods for development of lexicons in such a scenario,381

and investigate the transferability of the ASWUs by building and evaluating382

ASR systems using the developed lexicons (Section 4.3).383

3. Comparison to related approaches in the literature: In Section 2.3, we dis-384

cussed a few prominent approaches proposed in the literature for derivation385

of ASWUs and pronunciation generation. We compare the performance of386

the our approach with two of the related approaches in the literature studied387

on WSJ0 and RM corpora (Section 4.4). Indeed, one of the main reasons for388

selecting these two corpora is to enable comparison to these related works in389

the literature.390

4.1. Databases391

This section describes the setup on two corpora used in our experimental392

studies.393

4.1.1. WSJ0 corpus394

The WSJ corpus has been originally designed for large vocabulary speech395

recognition and natural language processing, and it contains a wide range of396

15



vocabulary size (Paul and Baker, 1992). The WSJ corpus has two parts (Wood-397

land et al., 1994) - WSJ0 (Garofolo et al., 1993) with 14 hours of speech and398

WSJ1 with 66 hours of speech. In this article, we use the WSJ0 corpus for399

training, which contains 7106 utterances (about 14 hours of speech) and 83400

speakers. We report recognition studies on Nov92 test set, which contains 330401

utterances from 8 speakers unseen during training. The training set contains402

10k unique words. The recognition vocabulary size is 5k words. The language403

model consists of a bigram model. The grapheme-based lexicon was obtained404

from the orthography of the words and contained 27 subword units including405

silence. We refer to this lexicon as Lex-WSJ -Gr-27. The phoneme lexicon was406

based on UNISYN dictionary.407

4.1.2. DARPA Resource Management corpus408

The DARPA Resource Management (RM) task is a 1000 word continuous409

speech recognition task based on naval queries (Price et al., 1988). The training410

set consists of 3990 utterances spoken by 109 speakers amounting to approxi-411

mately 3.8 hours speech data. The test set, formed by combining Feb89, Oct89,412

Feb91 and Sep92 test sets, contains 1200 utterances amounting to 1.1 hours of413

speech data. The word-pair grammer supplied with the RM corpus was used414

as the language model for decoding. The grapheme-based lexicon was obtained415

from the orthography of the words. In addition to the English characters, si-416

lence, symbol hyphen and symbol single quotation mark were considered as417

separate graphemes. Therefore, the lexicon contained 29 subword units. We418

refer to this lexicon as Lex-RM -Gr-29. The phoneme lexicon was based on419

UNISYN dictionary. As mentioned earlier, the RM corpus is mainly used to in-420

vestigate transferability of the ASWUs across domains. So, it is worth pointing421

out that 507 out of the 990 words in the RM corpus do not appear in the WSJ0422

training set vocabulary.423

4.2. In-domain ASR studies424

In this section we first explain the setup for derivation of ASWUs and devel-425

opment of ASWU-based lexicons. We then present the in-domain ASR studies426

for evaluation of the ASWU-based lexicons.427

4.2.1. ASWU derivation and lexicon development setup428

The setup for subword unit derivation and lexicon development through429

G2ASWU conversion is as follows:430
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Acoustic subword unit derivation: Toward automatic discovery of sub-431

word units, cross-word single preceding and single following CD grapheme-based432

HMM/GMM systems were trained with 39-dimensional PLP cepstral features433

(c0−c12 +∆+∆∆) extracted using HTK toolkit (Young et al., 2000). Each CD434

grapheme was modeled with a single HMM state. The subword units were de-435

rived through likelihood-based decision tree clustering using singleton questions.436

Different numbers of ASWUs were obtained by adjusting the log-likelihood in-437

crease during decision tree based state tying. The numbers of clustered units438

were obtained such that they are within the range of 2 to 4 times the number439

of graphemes, based on the general idea explained in Section 3.3. Therefore, for440

the WSJ0 corpus, ASWUs of size 60, 78 and 90 were investigated, and for the441

RM corpus, ASWUs of size 79, 92 and 109 were studied.442

Deterministic lexical modeling based G2ASWU conversion: Given the443

learned decision trees for each ASWU set, the pronunciation for each word was444

inferred by mapping each grapheme in the word orthography to an ASWU by445

considering its neighboring (i.e., single preceding and single following) grapheme446

context. We denote the lexicons in the form of Lex-DB-Det-ASWU-M where447

DB and M correspond to the database and the number of ASWUs respectively.448

For example, the lexicon generated on WSJ0 corpus using 78 ASWUs is denoted449

as Lex-WSJ -Det-ASWU-78.450

Probabilistic lexical modeling based G2ASWU conversion: In this case,451

given the obtained ASWUs:452

1. A five-layer multilayer Perceptron (MLP) was trained to estimate the pos-453

terior probability of ASWUs. The input to the MLP was 39-dimensional454

PLP cepstral features with four preceding and four following frame context.455

The hyper parameters such as the number of hidden units per hidden layer456

were decided based on the frame accuracy on the development set. Each457

hidden layer had 2000 and 1000 hidden units in the WSJ0 and RM corpora458

respectively. The MLP was trained with output non-linearity of softmax459

and minimum cross-entropy error criterion using Quicknet software (John-460

son et al., 2004).461

2. Using the posterior probabilities of ASWUs as feature observations, a462

grapheme-based KL-HMM system modeling single preceding and single fol-463

lowing grapheme context was then trained. Each CD grapheme was modeled464
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with three HMM states. The parameters of the KL-HMM were estimated465

by minimizing a cost function based on the reverse KL-divergence (SRKL)466

local score (Aradilla et al., 2008), i.e., the MLP output distribution is the467

reference distribution, as previous studies had shown that training KL-HMM468

with SRKL local score enables capturing one-to-many grapheme-to-phoneme469

relationships (Rasipuram and Magimai.-Doss, 2013). Unseen grapheme con-470

texts were handled by applying the KL-divergence based decision tree state471

tying method proposed in (Imseng et al., 2012).472

3. Given the orthography of the word and the KL-HMM parameters, the pro-473

nunciations were inferred by using an ergodic HMM in which each ASWU474

was modeled with three left-to-right HMM states.475

During pronunciation inference, some of the ASWUs with less probable476

G2ASWU relationships were automatically pruned or filtered out. This can477

be observed from Table 1, which shows the properties of the ASWU-based lexi-478

cons together with the MLPs used for the WSJ0 and RM corpora respectively.479

The MLPs are denoted as MLP-DB-N , with DB and N denoting the database480

and the size of the ASWU set respectively. Similarly, the lexicons are shown as481

Lex-DB-Prob-ASWU-M , with M denoting the actual number of ASWUs used482

in the lexicon. As an example, it can be seen that in Lex-RM -Prob-ASWU-101,483

from the 109 original ASWU set, only 101 remained after G2ASWU conversion.484

Table 1: Summary of the ASWU-based lexicons obtained through probabilistic lexical mod-
eling based G2ASWU conversion for WSJ0 and RM corpora.

(a) WSJ0 corpus

Lexicon MLP

Lex-WSJ -Prob-ASWU-58 MLP-WSJ -60
Lex-WSJ -Prob-ASWU-74 MLP-WSJ -78
Lex-WSJ -Prob-ASWU-88 MLP-WSJ -90

(b) RM corpus

Lexicon MLP

Lex-RM -Prob-ASWU-77 MLP-RM -79
Lex-RM -Prob-ASWU-90 MLP-RM -92
Lex-RM -Prob-ASWU-101 MLP-RM -109
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4.2.2. Selection of optimal ASWU-based lexicon485

Given different lexicons obtained through deterministic and probabilistic486

G2ASWU conversion, the optimal lexicon was determined based on the ASR487

accuracy on the development set. More precisely, first HMM/GMM systems488

using different ASWU-based lexicons were trained with 39-dimensional PLP489

cepstral features. Then, the ASWU-based lexicon that led to the best perform-490

ing HMM/GMM ASR system on the development set was selected.3 In our491

experiments, in case of using the deterministic G2ASWU conversion for pro-492

nunciation generation, Lex-Det-WSJ -ASWU-90 and Lex-Det-RM -ASWU-92;493

and in case of using the probabilistic approach, Lex-Prob-WSJ -ASWU-88 and494

Lex-Prob-RM -ASWU-90 were selected as the optimal lexicons and are therefore495

used in the rest of the article.496

4.2.3. Evaluation497

To evaluate the generated ASWU-based lexicons, we compared the perfor-498

mance of ASWU-based ASR systems with the grapheme-based and phoneme499

based ASR systems. Toward that, we trained both context-independent and500

cross-word context-dependent subword unit-based HMM/GMM systems with501

39-dimensional PLP cepstral features.4 Each subword unit was modeled with502

three HMM states. For the CI grapheme-based systems, the number of Gaussian503

mixtures for each HMM state was decided based on the ASR word accuracy on504

the cross-validation set, resulting in 256 and 128 Gaussian mixtures for WSJ0505

and RM corpora respectively. In case of using ASWUs, in order to have a com-506

parable number of parameters to the grapheme based ASR system, each HMM507

state was modeled with 64 and 32 Gaussian mixtures in the WSJ0 and RM cor-508

pora respectively. Similarly, for phone subword units, the number of Gaussian509

mixtures for each HMM state was 128 and 64 in the WSJ0 and RM corpora. In510

the context-dependent case, for tying the HMM states, only singleton questions511

were used. Each tied state was modeled by a mixture of 16 and 8 Gaussians on512

3It is worth mentioning that for WSJ0 and RM corpora there are no explicit development
sets defined. To be more precise, in the case of RM the development set (1110 utterances) was
merged with the training set (2880) to create training set of 3990 utterances in literature. So,
we used the part of the data that was used for early stopping through cross validation in MLP
training as the development data, and trained ASWU-based HMM/GMM systems on the re-
maining part of the training data. For instance, in the case of RM three HMM/GMM systems
corresponding to the lexicons Lex-RM-Prob-ASWU-77, Lex-RM-Prob-ASWU-90, Lex-RM-
Prob-ASWU-101 were trained on 2880 utterances and the lexicon was selected using the 1110
utterances. We followed a similar procedure for WSJ0.

4The subword units are either graphemes or ASWUs or phonemes.
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WSJ0 and RM corpora respectively. The number of tied states in all the systems513

trained on a corpus was roughly the same to ensure that possible improvements514

in the ASR accuracy are not due to the increase in complexity.5515

Throughout this article, we report the ASR system performances in terms516

word recognition rate (100 - word error rate), denoted as WRR. Further-517

more, for comparing the performance of different systems, we applied the sta-518

tistical significant test presented in (Bisani and Ney, 2004) with the confidence519

level of 95%.520

Table 2 presents the performance of ASR systems based on different lexi-521

cons. In the case of using CI units, the ASWU-based ASR systems perform522

significantly better than the grapheme-based ASR systems in both WSJ0 and523

RM corpora. In the case of CD units, it can be seen that for the WSJ0 corpus,524

the HMM/GMM system using ASWUs performs significantly better than the525

baseline grapheme-based ASR system. For the case of RM corpus, however, the526

improvements are not statistically significant. This could be due to the fact that527

in RM task almost all the words are seen during both training and evaluation.6528

In all cases, the ASWU based lexicon yields a system performance that lies529

between the performance of phoneme-based ASR system and grapheme-based530

ASR system.531

When using CI subword units, it can be seen that the performance of the532

system using probabilistic lexical modeling based G2ASWU conversion is com-533

parable or even better than the system using deterministic lexical modeling534

G2ASWU conversion, whereas when using CD subword units, this is not the535

case. A plausible reasoning for such a trend is that CI subword unit based536

systems using deterministic lexical modeling based G2ASWU conversion may537

require more parameters. We tested that by building CI ASWU-based ASR538

systems using deterministic and probabilistic lexical modeling based pronunci-539

ations with varying number of Gaussian mixtures (from 8 to 256). We observed540

that the difference between the best performing CI ASR systems using determin-541

istic and lexical modeling based G2ASWU conversion is not statistically signif-542

5For the WSJ0 corpus, the number of tied states was roughly 2000, and for the RM corpus
the number of tied states was roughly 3000.

6Only two words of the test set are not seen during training (IT+S and REMARK).
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icant7, thus indicating that the deterministic lexical modeling based G2ASWU543

conversion approach leads to a better ASR system compared to the probabilis-544

tic approach. A potential explanation for this difference could be that, unlike545

the probabilistic lexical modeling based G2ASWU conversion approach, deter-546

ministic lexical modeling based G2ASWU conversion approach avoids ASWU547

deletions and could therefore generate a more consistent pronunciation lexicon548

for English.549

Table 2: HMM/GMM ASR system performances in terms of WRR using CI and CD subword
units.

(a) WSJ0 corpus.

Lexicon CI CD

Lex-WSJ -Gr-26 68.9 85.8

Lex-WSJ -Det-ASWU-90 78.6 88.7
Lex-WSJ -Prob-ASWU-88 78.7 87.3

Lex-WSJ -Ph-45 88.6 93.5

(b) RM corpus.

Lexicon CI CD

Lex-RM -Gr-29 84.2 94.0

Lex-RM -Det-ASWU-92 89.1 94.5
Lex-RM -Prob-ASWU-90 90.7 94.2

Lex-RM -Ph-45 93.5 95.9

4.3. Cross-domain ASR studies550

This section presents a study that investigates the transferability of the551

ASWUs to a condition or domain unobserved during derivation of ASWUs. As552

noted earlier, for ASWUs to be adopted for the mainstream speech technology,553

this characteristic is highly desirable. Toward that we present a cross-database554

study where the ASWU derivation is carried out on out-of-domain (OOD) WSJ0555

corpus and the lexicon is developed for target domain RM corpus. Similar to556

G2P conversion as elucidated in (Razavi et al., 2016), G2ASWU conversion557

(presented earlier in Section 3.2) can be seen as a two step process: 1) learn-558

ing the relationship between the graphemes and the derived ASWUs, and 2)559

inferring the ASWU sequence (pronunciation) given the word orthography and560

the learned G2ASWU relationship. We present three methods for cross-domain561

ASWU-based lexicon development based on that understanding.562

7For the WSJ0 corpus, the best performing CI ASR systems yielded WRR of 80.1 % and
79.7% ASR when using Lex-WSJ-Det-ASWU-90 and Lex-WSJ-Prob-ASWU-88, respectively.
For the RM corpus, the best performing CI ASR systems yielded WRR of 90.2% and 90.7%
ASR word when using Lex-RM-Det-ASWU-92 and Lex-RM-Prob-ASWU-90, respectively.
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Method-I: Applying standard G2P conversion approach on the seed lexicon ob-563

tained from the OOD corpus564

One possible way to generate pronunciations for the in-domain RM corpus565

is to use the ASWU-based lexicon from the WSJ0 corpus as the seed lexicon566

and train a G2ASWU converter. For this purpose, we investigated one of the567

state-of-the-art G2P conversion approaches, namely, the joint multigram ap-568

proach (Bisani and Ney, 2008) for G2ASWU conversion. This was done by569

using the Sequitur software developed at RWTH Aachen University.8 In our570

experiment, the maximum width of the graphone used was one, and the n-gram571

context size was 6.9 As shown in Figure 3, first the G2ASWU relationship572

is learned on the ASWU-based lexicon for the WSJ0 corpus by training the573

G2ASWU converter. Then given the words in the RM corpus and the learned574

G2ASWU relationship, the pronunciations are inferred.10575

Lex-WSJ-Det-ASWU-90  
or  

Lex-WSJ-Prob-ASWU-88 Train the joint 
 multigram 

model

Infer 
pronunciations

RM 
word orthography

(seed lexicon)

Figure 3: Diagram of joint multigram-based pronunciation generation for RM corpus using
the seed lexicon trained on WSJ0 corpus (Method-I ).

Method-II: Using the learned G2ASWU relationship on the OOD corpus for576

pronunciation inference on the in-domain corpus577

Instead of using the ASWU-based lexicon from the WSJ0 corpus, only the578

learned G2ASWU relationships can be exploited for inferring pronunciations579

on the RM corpus. More precisely, we investigate use of the deterministic and580

probabilistic G2ASWU relationships obtained from (a) the decision trees learned581

on WSJ0, and (b) the KL-HMM trained on WSJ0, respectively to generate582

pronunciations for the RM corpus, as illustrated in Figure 4.583

8http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
9As there are no canonical pronunciations in case of using ASWUs are available, we decided

on the optimal n-gram context size based on the ASR accuracy on the cross validation set.
10 The grapheme symbols such as single hyphen that appear in the RM word orthographies

and have not been observed in the WSJ0 word orthographies were removed for the inference.
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Grapheme-based 
HMM/GMM

WSJ 
acoustic data

Lex-WSJ-Gr-27 RM 
word orthography

Pronunciation  
inference

G2ASWU 
relationship

obtained  
from decision tree

(a) Using a deterministic G2ASWU relationship learned on WSJ0 (Method-II-a). The
grapheme-based HMM/GMM system is trained on WSJ0 corpus.

MLP-WSJ-90 Grapheme-based 
KL-HMM

WSJ 
acoustic data

ASWU 
posterior 
features

Lex-WSJ-Gr-27
RM 

word orthography

Pronunciation  
inference

Learned  
G2ASWU 

relationship

(b) Using a probabilistic G2ASWU relationship learned on WSJ0 (Method-II-b).

Figure 4: Illustration of pronunciation generation for RM corpus in Method-II.

Method-III: Learning the G2ASWU relationship on the in-domain corpus584

through acoustics585

Instead of using the learned G2ASWU relationship on the WSJ0 corpus,586

we can use the trained MLP on WSJ0 corpus to estimate ASWU posterior587

probabilities for the RM speech data. Given the ASWU posterior probabilities588

as feature observations, a grapheme-based KL-HMM system can be trained on589

the RM corpus data. The pronunciation inference can then be done given the590

trained KL-HMM and the word orthographies, as shown in Figure 5.

MLP-WSJ-90 Grapheme-based 
KL-HMM

RM 
acoustic data

ASWU 
posterior 
features

Lex-RM-Gr-29
RM 

word orthography

Pronunciation  
inference

Learned  
G2ASWU 

relationship

Figure 5: Illustration of pronunciation generation for RM corpus using Method III.

591

We generated ASWU-based lexicons for the RM corpus based on the three592

methods presented above. It is worth to reiterate that, in addition to acoustic593

differences between the two corpora, there are also differences at lexicon level,594

i.e., 507 out of the 990 words in the RM lexicon do not appear in the WSJ0595
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lexicon. For each of the lexicons developed, we trained context-independent596

and cross-word context-dependent ASWU-based HMM/GMM systems with 39-597

dimensional PLP cepstral features extracted using the HTK toolkit. Each sub-598

word unit was modeled with three HMM states. Each CI HMM state was599

modeled by 32 Gaussian mixtures similar to in-domain studies in Section 4.3.600

Each tied HMM state was modeled by a mixture of 8 Gaussians. The HMM601

states were tied using a singleton question set.602

Table 3 presents the results in terms of WRR. It can be observed that the603

context-independent ASR systems, regardless of the method used for pronun-604

ciation generation, perform better than the grapheme-based CI ASR system605

(Table 2). The performance of the context-dependent ASWU-based ASR sys-606

tems using the pronunciations generated through Method-I is inferior to the607

performance of the context-dependent grapheme-based ASR system (Table 2).608

The performance of the ASR systems using Method-II for pronunciation gener-609

ation is comparable with the ASR systems obtained through in-domain studies610

(Table 2). Generating pronunciations using Method-III also leads to a com-611

parable system to the in-domain ASWU-based ASR systems. Comparing the612

performance of the systems using Method-I for pronunciation generation with613

the systems using Method-II and Method-III shows that it is better to transfer614

the learned G2ASWU relationship or learn the G2ASWU relationship on target615

domain speech. A potential reason for that is that Method-I relies on availabil-616

ity of ground truths, like availability of seed lexicon obtained through linguistic617

expertise in G2P conversion, which in the present scenario is not available.618

Overall, Method-II leads to the best ASR performance. It may be possible to619

improve Method-III by acoustic model adaptation techniques to adapt the MLP620

trained on the out-of-domain data. This is open for further research. Together621

these studies show that, in the proposed approach, the derived ASWUs and the622

G2ASWU relationship learned from one domain are transferrable to another623

or target domain. Alternately, the proposed approach inherently enables such624

transfer.625

4.4. Comparison to existing approaches626

In this section, we compare the present work with two existing approaches627

in the literature that have reported studies on the WSJ0 and RM corpora with628

the same setup as that used in our studies. More precisely, on WSJ0 corpus,629

Section 4.4.1 compares our approach to the spectral clustering based approach630

proposed in (Hartmann et al., 2013). Section 4.4.2 studies the proposed ap-631
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Table 3: ASR system performances in terms of WRR on RM corpus using different cross-
domain pronunciation generation methods.

Method G2ASWU relationship CI CD

Method-I
Deterministic 87.5 92.3
Probabilistic 85.2 91.3

Method-II
Deterministic 89.0 94.4
Probabilistic 88.8 94.0

Method-III Probabilistic 89.0 94.0

proach in comparison to the approach proposed by Bacchiani and Ostendorf632

in (Bacchiani and Ostendorf, 1999).633

4.4.1. Comparison to Hartmann et al. (2013) approach634

In essence, the proposed approach is similar to the spectral based clustering635

approach proposed in (Hartmann et al., 2013), as they both discover the ASWUs636

from the grapheme-based HMM/GMM system. However, there are two key637

differences between these approaches:638

1. In our approach, the ASWUs are discovered through decision-tree based639

clustering of the HMM states, while in (Hartmann et al., 2013), the sub-640

word units are derived through spectral based clustering, which requires641

computation of similarity matrix between HMMs.642

2. In our approach, the pronunciations are generated using the KL-HMM643

framework, while in (Hartmann et al., 2013), the pronunciations are trans-644

formed using a statistical machine translation approach.645

As the experimental setup in this article on WSJ0 corpus and the work646

in (Hartmann et al., 2013) are the same, we provide a comparison between647

the baseline and the results in both works in Table 4. In (Hartmann et al.,648

2013) there are two grapheme baselines: one based on the standard orthography649

(denoted as grapheme-direct) and the other based on grapheme-to-grapheme650

(G2G) conversion (denoted as grapheme-transformed) employing an approach651

similar to machine translation. Similarly, in the ASWU based study they have652

two systems: one where the pronunciations are generated directly by mapping653

the graphemes to ASWUs based on the spectral clustering (denoted as ASWU-654

direct), and the other where ASWU-to-ASWU conversion is performed like G2G655

case mentioned above (denoted as ASWU-transformed). We ensured that our656

systems have comparable number of parameters in the case of both using CI657
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subword units and CD subword units based systems. It can be observed that the658

ASWU-based lexicon developed by our approach leads to a better ASR system.659

Furthermore, when comparing the best systems there is an absolute difference660

of 2.5% WRR, which indicates that the proposed approach in this article leads661

to a better ASR system.662

Table 4: Comparison with the related work in (Hartmann et al., 2013).

Approach Lexicon CI CD

Approach proposed in
(Hartmann et al., 2013)

Grapheme-direct 60.1 84.2
Grapheme-transformed 68.6 85.5

ASWU-direct 70.7 85.6
ASWU-transformed 76.7 86.2

Present work
Lex-WSJ -Gr-26 68.9 85.8

Lex-WSJ -Det-ASWU-90 78.6 88.7
Lex-WSJ -Prob-ASWU-88 78.7 87.3

4.4.2. Comparison to Bacchiani and Ostendorf (1999) approach663

In a broad sense, the proposed approach and the joint subword unit deriva-664

tion and pronunciation generation method proposed in (Bacchiani and Osten-665

dorf, 1999) can be considered to be similar as,666

1. both approaches consist of segmentation and clustering steps, except667

that in our approach the segmentation and clustering is guided through668

graphemes during the HMM/GMM training; and669

2. both approaches apply the pronunciation length constraint which ensures670

uniformity in the number of segments for training tokens of a word. In our671

approach this is automatically achieved through use of a unique grapheme672

sequence representation for each word.673

In our studies, we have used the RM corpus, which was also used in (Bacchiani674

and Ostendorf, 1999). However there are a few distinctions. In (Bacchiani and675

Ostendorf, 1999), the states of the HMMs were modeled by a single Gaussian676

as opposed to a mixture of Gaussians and the evaluation was carried out only677

on the Feb89 test set. So we also trained a single Gaussian HMM/GMM sys-678

tem using the ASWU lexicon developed by our approach and evaluated on the679

Feb89 test set. Table 5 presents the results in the case where the two approaches680

are similar in terms of number of ASWUs and clustered states. Table 6 pro-681

vides a comparison between the best performance reported in (Bacchiani and682
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Ostendorf, 1999) and the performance achieved with the lexicon based on our683

approach on the Feb89 test set with 2937 clustered states. These results in-684

dicate that the ASWU lexicon developed by the proposed approach can yield685

ASR systems comparable to the ASWU lexicon developed by Bacchiani and686

Ostendorf (1999) approach, which needs additional heuristics to constrain the687

ASWU derivation and pronunciation generation process and necessitates all the688

words to be observed. It seems that our approach requires a higher number of689

tied states to achieve its best performance, though.690

Table 5: Comparison with the related work in (Bacchiani and Ostendorf, 1999) on Feb89 test
set using single Gaussian distributions.

# of # of WRR
base units clustered states

Approach proposed in
(Bacchiani and Ostendorf, 1999)

124 1519 86.3

Present work 92 1559 86.9

Table 6: Comparison of the best result reported in (Bacchiani and Ostendorf, 1999) on Feb89
test set with the result using the present work on the same test set using single Gaussian
distributions.

# of clustered states WRR

Approach proposed in (Bacchiani and Ostendorf, 1999) 1499 91.2
Present work 2937 91.1

5. Application to an Under-Resourced Language691

In the previous section, we demonstrated the potential of the proposed692

framework for subword unit derivation and pronunciation generation on the693

well-resourced language English. Most of the state-of-the-art speech recognition694

approaches have emerged through investigations on English. So it can be ar-695

gued that our approach of deriving ASWUs using grapheme-based HMM/GMM696

system may be well suited just for English. Furthermore, the G2P relationship697

varies across languages. So a question that arises is whether the proposed ap-698

proach is transferable to other languages or not.699

In this section, our goal is two-fold: (1) to show the transferability of the700

approach to a new language, and (2) to show its utility to under-resourced701
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languages, specifically languages that do not have well-developed phonetic re-702

sources. In that direction, we present investigations on a genuinely under-703

resourced language, Scottish Gaelic. Unlike English, which belongs to the family704

of Germanic languages, Scottish Gaelic belongs to the family of Celtic languages.705

Our investigations are organized along two lines,706

1. Monolingual ASR studies: We investigate the potential of the ASWU-based707

lexicons through monolingual ASR studies where we compare the perfor-708

mance of the ASWU-based ASR system with the alternative grapheme-based709

ASR system, as done in the studies on English.710

2. Multilingual ASR studies: In (Rasipuram and Magimai.-Doss, 2015), it has711

been shown that performance of the under-resourced ASR system can be712

significantly improved by (a) training a multilingual acoustic model that es-713

timates multilingual phone posterior probabilities using resources of resource714

rich languages, and then (b) learning a probabilistic lexical model that cap-715

tures the grapheme-to-multilingual phone relationship on the target language716

speech. So we also investigate if the ASWU-based lexicons hold their benefit717

in such a multilingual ASR system scenario as well. As a product of the718

study, later in Section 6, we briefly explain how phonetic identities of the719

derived ASWUs could be discovered.720

The remainder of the section is organized as follows. Section 5.1 presents721

the database and experimental setup used. Section 5.2 presents the details of722

the ASWU-based lexicon development. Finally, Section 5.3 and 5.4 presents the723

monolingual ASR and multilingual ASR studies, respectively.724

5.1. Database725

This section first describes the characteristics of the Scottish Gaelic language.726

It then explains the Scottish Gaelic corpus used in our studies.727

5.1.1. Scottish Gaelic language728

Scottish Gaelic belongs to the class of Celtic languages. There are six Celtic729

languages that are still spoken. These languages are divided into two groups of730

Goidelic languages and Brythonic languages. Scottish Gaelic belongs to Goidelic731

languages along with Irish and Manx. It can be considered as a truly endangered732

language as it is spoken by only about 60,000 people. There are about 51733

phonemes in the language (Wolters, 1997). However, the number of phonemes734
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can change depending on the dialect. The language lacks a proper phonetic735

lexicon and the available transcribed speech data are also limited.736

Scottish Gaelic alphabet has 18 letters, consisting of ten vowels and thirteen737

consonants. The long vowels are represented with grave accents (À, È, Ì, Ò, Ù).738

There are thirteen basic consonant types in Scottish Gaelic (B, C, D, F, G , H739

, L, M, N, P, R, S, T):740

• Each consonant is either fortis or lenis (i.e., they are produced with greater or741

less energy). The lenited consonants are presented in the orthography with a742

grapheme [H] next to them.743

• Each consonant is either broad (velarized) or slender (palatalized). Broad744

consonants are surrounded by broad vowels (A, O or U), while slender con-745

sonants are surrounded by slender vowels (E or I).746

Scottish Gaelic orthography is less complicated than English. The compli-747

cations partly arise due to the reason that modern orthography is based on748

Classical Irish orthography and the letter-to-sound rule may depend on the di-749

alect (Wolters, 1997). The number of graphemes in Gaelic words is typically750

greater than the number of phones in the word due to the effect of lenited and751

broad/slender graphemes on the pronunciation. The grapheme-to-phoneme re-752

lationship in Scottish Gaelic can therefore be many-to-one.11 For example,753

the ratio of the number of graphemes to phonemes in the Gaelic word SUID-754

HEACHADH with pronunciation ”sMj@x@G” (in the SAMPA format) is 1.7.755

5.1.2. Scottish Gaelic corpus756

The Scottish Gaelic corpus was collected by the University of Edinburgh in757

2010 and contains recordings from broadcast news and discussion programs.In758

this article, the database is partitioned into training, development and test sets759

according to the structure provided in (Rasipuram et al., 2013b). The overview760

of the Scottish Gaelic corpus is given in Table 7.761

The database does not provide any phonetic lexicon. The graphemic lexicon762

can be simply obtained from the orthography of the words. As the corpus also763

contains borrowed English words, the graphemes J, K, Q, V, W, X, Y and Z764

are also present in the lexicon. Therefore the lexicon consists of 32 graphemes765

11The many-to-one G2P relationship can actually be seen in other languages as well, e.g.,
English.
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Table 7: Overview of the Scottish Gaelic corpus in terms of number of utterances, hours of
speech data and speakers in the train, cross-validation and test sets.

Number of Train Cross-validation Test

Utterances 2389 1112 1317
Hours 3 1 1
Speakers 22 12 12

including silence as shown in Table 8. We refer to this lexicon as Lex-SG-Gr-32.766

The lexicon contains 5083 unique words.767

As the corpus does not provide a language model, we used a bigram language768

model trained on the sentences from the test set, as done in (Rasipuram et al.,769

2013b).12

Table 8: Graphemes used in the Scottish Gaelic corpus.

Vowels A, E, I, O, U, À, È, Ì, Ò, Ù
Consonants B, C, D, F, G , H, L, M, N, P, R, S, T
English Graphemes J, K, Q, V, W, X, Y, Z

770

5.2. ASWU derivation and pronunciation generation setup771

The setup for subword unit derivation and pronunciation generation for Scot-772

tish Gaelic is as follows:773

Acoustic subword unit derivation: For automatic discovery of subword774

units, cross-word CD grapheme-based HMM/GMM systems were trained using775

39-dimensional PLP cepstral features. Each CD grapheme was modeled with776

a single HMM state. Different numbers of ASWUs were obtained by adjusting777

the log-likelihood increase during decision tree clustering. The range for the778

number of ASWUs was decided to be similar to the range investigated in the779

studies on English, resulting in 85, 91 and 97 units.780

Deterministic lexical modeling based G2ASWU conversion: For deter-781

ministic lexical modeling based G2ASWU conversion, the learned decision trees782

during ASWU derivation were exploited to map each grapheme in the word783

to an ASWU. We denote the lexicons generated using the deterministic lexi-784

12 This was mainly done as the corpus does not include a language model, and for Scottish
Gaelic the resources are limited.
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cal modeling based G2ASWU conversion as Lex-SG-Det-ASWU-M where M785

denotes the number of ASWUs.786

Probabilistic lexical modeling based G2ASWU conversion: For prob-787

abilistic lexical modeling based G2ASWU conversion, first a five-layer MLP788

classifying ASWUs was trained in which each hidden layer had 1000 hidden789

units. The input to the MLP was 39-dimensional PLP cepstral features with790

four preceding and four following frame context. Then given the ASWU poste-791

rior probabilities from the ANN as feature observations, a CD grapheme-based792

KL-HMM was trained. Each CD grapheme in the KL-HMM was modeled with793

three left-to-right HMM states. For the pronunciation inference, the ASWU794

posterior probabilities were decoded through the ergodic HMM in which each795

ASWU was modeled with three left-to-right HMM states.796

Table 9 shows the properties of the ASWU-based lexicons generated using a797

probabilistic lexical modeling based G2ASWU conversion. Similar to the studies798

on English, it can be observed that some of the ASWUs are pruned out during799

the pronunciation generation given the probabilistic G2ASWU mapping.

Table 9: Summary of the ASWU-based lexicons obtained through probabilistic lexical mod-
eling based G2ASWU conversion for Scottish Gaelic corpus.

Lexicon MLP

Lex-SG-Prob-ASWU-76 MLP-SG-85
Lex-SG-Prob-ASWU-82 MLP-SG-91
Lex-SG-Prob-ASWU-86 MLP-SG-97

800

We selected the optimal number of ASWUs and the corresponding lexicon801

based on the WRR on the development set. Lex-SG-Det-ASWU-85 and Lex-802

SG-Prob-ASWU-82 yielded the best ASR systems and are therefore used in the803

ASR studies presented below.804

5.3. Monolingual ASR system studies805

As mentioned earlier, there is no well-developed phonetic lexicons for Scot-806

tish Gaelic. So we evaluate the utility of the developed ASWU-based lexi-807

con against a grapheme-based lexicon by conducting monolingual ASR studies.808

Specifically, we compare them across two frameworks, namely, HMM/GMM809

framework and KL-HMM framework.810
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HMM/GMM framework. We trained CI and cross-word CD HMM/GMM sys-811

tems with 39-dimensional PLP cepstral features extracted using the HTK812

toolkit. Each subword unit was modeled with three HMM states. In the case813

of using CI subword units, the optimal number of Gaussian mixtures for the814

grapheme-based ASR system was 64 based on the best WRR obtained on the815

development set. For the ASWU-based ASR systems, the number of Gaussian816

mixtures was set to 16 so as to have a comparable number of parameters to the817

grapheme-based system. In the case of using CD subword units, for tying the818

HMM states singleton questions were used. Each HMM state was modeled by819

a mixture of 8 Gaussians. The number of tied states in all the systems were820

roughly the same.821

KL-HMM framework. This is done by using the posterior based framework of822

KL-HMM directly for speech recognition. More precisely, instead of using the823

KL-HMM parameters for capturing a probabilistic G2ASWU relation for pro-824

nunciation inference, they are used in the KL-HMM ASR framework. In this825

case, we can visualize it as an approach that integrates pronunciation learn-826

ing implicitly as a phase in ASR system training (Rasipuram et al., 2015).827

Our main motivation for performing this study was to ascertain whether doing828

lexicon development and ASR training as two separate stages can bring any ad-829

vantage over doing direct speech recognition using grapheme-based KL-HMM830

system. For this purpose, we compared three KL-HMM systems, as illustrated831

in Figure 6, corresponding to lexicons Lex-SG-Gr-32, Lex-SG-Det-ASWU-85832

and Lex-SG-Prob-ASWU-82, respectively. All the systems use the same MLP,833

which is MLP-SG-91, as the acoustic model to estimate posterior feature obser-834

vations.835

Table 10 presents the HMM/GMM systems and KL-HMM systems per-836

formance in terms of WRR. It can be observed that Lex-SG-Prob-ASWU-82837

yields significantly better CI and CD systems than Lex-SG-Gr-32 in both the838

HMM/GMM framework and the KL-HMM framework. Lex-SG-Det-ASWU-839

85 yields a better system in the KL-HMM framework but a worse system in840

the HMM/GMM framework against Lex-SG-Gr-32. A possible reason for such841

a trend could be that, as discussed earler, in Scottish Gaelic the G2P rela-842

tionship is many-to-one due to lenition and broad and slender consonants. So,843

when inferring pronunciations using the deterministic G2ASWU mappings, each844

grapheme in the word is invariably mapped into an ASWU. This can result in845

systematic erroneous pronunciations, which could lead to mismatch between846
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Figure 6: Illustration of KL-HMM based ASR system based on Lex-SG-Gr-32, Lex-SG-Det-
ASWU-85 and Lex-SG-Prob-ASWU-82

acoustics and pronunciation model, as in the case of pronunciation variation.847

In the literature, it has been observed that KL-HMM approach is capable of848

handling pronunciation variation (Imseng et al., 2011; Razavi and Magimai.-849

Doss, 2014). As a consequence, unlike HMM/GMM framework, we observe850

that Lex-SG-Det-ASWU-85 yields a better system than SG-Gr-32 in KL-HMM851

framework.852

Table 10: Performance of HMM/GMM and KL-HMM systems in terms of WRR using context-
independent (CI) and context-dependent (CD) subword units. For the KL-HMM systems,
MLP-SG-91 is used as the acoustic model.

Lexicon
HMM-GMM KL-HMM

CI CD CI CD

Lex-SG-Gr-32 46.0 64.6 35.6 66.8
Lex-SG-Det-ASWU-85 54.5 63.3 52.2 69.1
Lex-SG-Prob-ASWU-82 59.6 66.4 57.5 69.5

5.4. Multilingual ASR system studies853

As mentioned earlier, the under-resourced ASR system performance can be854

improved by first using an acoustic model or ANN that classifies multilingual855
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phones and then learning a probabilistic relationship between the graphemes856

and multilingual phones using KL-HMM. We compared the grapheme-based857

lexicon and the ASWU-based lexicon in that framework by858

1. first training a five-layer multilingual MLP on five auxiliary languages859

from SpeechDat(II) corpus namely British English, Swiss French, Swiss860

German, Italian and Spanish to estimate posterior probabilities of mul-861

tilingual phones. The multilingual phoneset was formed by merging the862

phones that are shared across the aforementioned languages, leading to863

117 phone units. We refer to this MLP as MLP-MULTI -117; and then864

2. training a KL-HMM based ASR system corresponding to each of the lexi-865

cons Lex-SG-Gr-32, Lex-SG-Det-ASWU-85 and Lex-SG-Prob-ASWU-82,866

as illustrated in Figure 7.867

KL-HMM

Lex-SG-Det-ASWU-85

MLP-MULTI-117

KL-HMM

Lex-SG-Gr-32 

Acoustic data Posterior 
features

KL-HMM

Lex-SG-Prob-ASWU-82

Different multilingual KL-HMM systems

Figure 7: Illustration of KL-HMM based ASR system on Lex-SG-Gr-32, Lex-SG-Det-ASWU-
85 and Lex-SG-Prob-ASWU-82 that exploits auxiliary multilingual resources.

Table 11 presents the performance of the different KL-HMM based systems868

in terms of WRR. It can be observed that the ASWU-based lexicon yields869

a significantly better system than the grapheme-based lexicon, thus showing870

that the proposed approach of ASWU-based lexicon development generalizes to871

multilingual resource sharing scenarios.872
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Table 11: Performance of KL-HMM based ASR systems exploiting auxiliary resources from
resource-rich languages in terms of WRR. In these systems, MLP-MULTI -117 is used as the
acoustic model.

Lexicon CI CD

Lex-SG-Gr-32 36.7 69.1
Lex-SG-Det-ASWU-85 52.1 70.7
Lex-SG-Prob-ASWU-82 57.7 72.6

6. Analysis873

The ASR studies validated the proposed ASWU based lexicon from a speech874

technology perspective. As explained in Section 3.1, one of our hypotheses in875

this article is that the ASWUs obtained from the clustered CD grapheme units876

are “phone-like”. This section focuses on that aspect through an analysis of the877

derived ASWUs (Section 6.1) and the generated pronunciations (Section 6.2).878

It is worth mentioning that a fully fledged quantitative analysis and concretely879

linking the derived ASWUs and the lexicons to existing linguistic knowledge880

would need a separate investigation, and is thus out of the scope of the article.881

In this section, our main goal is to provide a qualitative analysis and demonstrate882

how links to existing linguistic knowledge can be established to gain a better883

understanding. We notate phones as / / and graphemes as [ ]. Furthermore,884

we notate the derived ASWUs with the notation used by HTK to represent885

clustered CD units. For example, ASWU [ST A 26] means a clustered CD unit886

with the center grapheme [A] (root node in the decision tree). For brevity, the887

analysis focuses only on the WSJ0 English corpus.888

6.1. Relating the derived ASWUs to phonetic units889

In order to analyze the relationship between the derived ASWUs and pho-

netic identities, we computed the KL-divergence between the Gaussian distri-

bution modeling a mono-phone unit and the Gaussian distribution modeling an

ASWU in the HMM/GMM setup on the WSJ0 corpus.13 We computed the KL-

divergence between single Gaussians, as this is the step at which the ASWUs

are derived by clustering context-dependent graphemes. The KL-divergence be-

tween the Gaussian N0(µ0,Σ0) modeling a mono-phone unit as the reference

distribution and the Gaussian N1(µ1,Σ1) modeling an ASWU as the measured

13In both cases, single-state models are used.
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distribution is computed as (Duchi, 2007):

0.5{Tr(Σ−11 Σ0) + (µ1 − µ0)T Σ−11 (µ1 − µ0)−K − ln
|Σ0|
|Σ1|
},

where µ, Σ and K are the mean vector, the covariance matrix and dimension890

of the vector space respectively.891

Table 12 provides a few ASWUs along with the five most related phones ac-892

cording to the KL-divergence matrix. For each grapheme, we have presented the893

ASWU that is most frequently used in the generated lexicon (they are marked894

in the table with a *). In addition to that, for each grapheme we have presented895

some of the other ASWUs that map to different sounds than the most frequently896

used ASWU.14 Furthermore, the table also provides example English words that897

contain the ASWUs within their pronunciations. The example pronunciations898

were randomly selected from the lexicon. In each example, the grapheme that899

has been mapped to the ASWU in the pronunciation is highlighted.900

It can be observed from the table that a consistent relationship between the901

ASWUs and phones exists. This relationship can be clearly observed in the case902

of consonant graphemes (such as [L], [M], [N] and [R]). For example, the ASWU903

belonging to grapheme [L] ([ST L 24]) is more related to /l/ and /el/ sounds904

and the ASWU belonging to grapheme [R] ([ST R 24]) is more related to /r/,905

/er/, and /axr/ sounds. These observations here are also consistent with the906

empirical observations made in an earlier grapheme-based ASR study on En-907

glish (Rasipuram and Magimai.-Doss, 2013), where the grapheme-to-phoneme908

relationship is also learned through acoustics.909

6.2. Generated pronunciations910

This section provides a brief analysis on the generated pronunciations911

through deterministic and probabilistic G2ASWU modeling for the English912

WSJ0 corpus. Table 13 presents a few words selected from ASWU-based lexi-913

cons generated for the WSJ0 corpus. As one important aspect when generating914

pronunciations is generalization of the approach for the unseen contexts, we have915

provided examples from both the words that are seen during training, and the916

words that are not seen during training. We have highlighted the words that are917

unseen during training with underline. For each word, the first pronunciation918

is based on deterministic G2ASWU conversion and the second pronunciation919

14Note that some of the ASWUs do not map to different sounds than the most frequently
used ASWUs. They are only presented in the table as they are used in the generated pronun-
ciations explained later in Section 6.2
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Table 12: Relation between example automatically derived subword units on the WSJ0 corpus
and phone units based on the KL-divergence matrix. The five most related phones are shown in
the left to right order. The example pronunciations are obtained from Lex-WSJ-Det-ASWU-
90. For each grapheme, the ASWU that is most frequently used in the generated lexicon is
marked with a *.

ASWU
mapped
phone

example
word

ASWU
mapped
phone

example
word

[ST A 28]* /ae/,/ey/,/eh/,/ay/,/aw/ ATTACKED [ST N 24]* /n/,/en/,/ng/,/m/,/em/ INTERMEDIATE
[ST A 23] /er/,/ey/,/r/,/ae/,/aw/ EARNED [ST N 23] /n/,/en/,/ng/,/m/,/em/ BILLION

[ST B 21]* /b/,/d/,/v/,/dh/,/p/ BOOM [ST N 21] /em/,/en/,/ng/,/n/,/m/ BLACKBURN

[ST C 23]* /k/,/t/,/p/,/d/,/th/ CREATING [ST O 27]* /ah/,/ow/,/aa/,/l/,/ao/ DEPOSITS
[ST C 21] /s/,/z,/sh/,/f/,/zh/ CERTIFICATES [ST O 26] /ax/,/uw/,/ah/,/uh/,/ih/ FOUNDATION
[ST C 22] /k/, /p/,/t/,/dh/,/th/ CONFRONTATION [ST O 29] /aa/,/ah/,/aw/,/l/,/ow/ CONSEQUTIVE

[ST D 23]* /d/,/dx/,/b/,/g/,/dh/ LONGITUDINAL [ST P 21]* /p/,/th/,/t/,/dh/,/k/ EXAMPLE

[ST D 21] /d/,/p/,/th/,/t/,/k/ BOND [ST Q 21]* /k/,/p/,/th/,/dh/,/t/ CONSEQUENCES

[ST E 29]* /ih/,/ax/,/uh/,/uw/,/eh/ EXPENSIVE [ST R 24]* /r/,/er/,/axr/,/uh/,/ay/ CONTRACTING

[ST E 21] /f/,/hh/,/th/,/em/,/p/ OTHERWISE [ST S 21]* /s/,/f/,/z/,/th/,/hh/ DIRECTORS
[ST E 26] /axr/,/uw/,/uh/,/r/,/ih/ DRIVER [ST S 22] /z/,/s/,/sh/,/zh/,/f/ PARTNERSHIPS
[ST E 27] /eh/,/ae/,/ih/,/ax/,/ay/ GENERATION [ST S 24] /s/,/f/,/th/,/z/,/dh/ SKOLNIKS

[ST F 22]* /f/,/th/,/p/,/s/,/t/ FALLING [ST S 25] /s/,/z/,/f/,/th/,/sh/ INCREASED

[ST G 21]* /g/,/dx/,/d/,/t/,/jh/ GOVERMENTS [ST T 25]* /t/,/k/,/p/,/th/,/dh/ OMITTED

[ST H 22]* /sh/,/ch/,/zh/,/f/,/jh/ CHURN [ST T 24] /p/,/th/,/f/,/dh/,/t/ BET

[ST H 23] /hh/,/th/,/f/,/p/,/en/ OUTRIGHT [ST U 24]* /ax/,/uh/,/ah/,/ih/,/oy/ EQUALLY

[ST I 27]* /ih/,/eh/,/ax/,/uh/,/ah/ LOGIC [ST U 23] /uw/,/ao/,/oy/,/axr/,/r/ NURSING

[ST I 25] /ih/,/uw/,/ax/,/iy/,/ey/ DISTILLERS [ST V 21]* /v/,/b/,/d/,/dh/,/g/ COVERAGE

[ST J 21]* /jh/,/ch/,/t/,/dx/,/d/ JESSE [ST W 21]* /w/,/l/,/oy/,/el/,/g/ DOWNGRADED

[ST K 21]* /k/,/t/,/p/,/d/,/dh/ BOOKS [ST X 21]* /t/,/th/,/z/,/k/,/p/ EX

[ST L 24]* /l/,/el/,/ow/,/ao/,/aa/ EMPLOYS [ST Y 21]* /iy/,/ng/,/y/,/ey/,/en/ COUNTRY

[ST M 24]* /m/,/n/,/em/,/ng/,/en/ GRUBMAN [ST Z 21]* /z/,/s/,/th/,/f/,/jh/ FREEZES

is based on probabilistic G2ASWU conversion. With the information provided920

in Table 12, it can be observed that G2ASWU conversion approach is able to921

recognize different sounds of the same grapheme to provide a pronunciation sim-922

ilar to what is seen in a phone-based lexicon for both seen and unseen words923

during training. For example, in case of deterministic G2ASWU conversion,924

for the word CENT , the grapheme [C] is mapped to [ST C 21], which in the925

earlier analysis was found to map to phone /s/, whilst for the word CURB the926

grapheme [C] is mapped to [ST C 23], which was found to be more related to927

/k/. The distinction between deterministic and probabilistic G2ASWU conver-928

sion can be very well observed through words PHONE and UPHELD. In the929

case of the word PHONE, the deterministic G2ASWU conversion maps each930

grapheme to an ASWU unit while probabilistic G2ASWU conversion is able to931

map a group of graphemes to an ASWU, i.e., PH to /f/ and NE to /n/. In932

the case of the word UPHELD, it can be observed that probabilistic G2ASWU933

conversion leads to deletion of an unit while deterministic G2ASWU preserves934

the unit. We speculate that the inferior performance of probabilistic G2ASWU935
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conversion in the ASR studies on English is mainly due to such deletions.936

Table 13: Few example words together with their generated pronunciations based on a deter-
ministic or a probabilistic lexical modeling based G2ASWU conversion on the WSJ0 corpus.

Word
Lex-WSJ -Det-ASWU-90
Lex-WSJ -Prob-ASWU-88

PHONE
[ST P 21] [ST H 23] [ST O 29] [ST N 24] [ST E 21]
[ST F 22] [ST O 29] [ST N 21]

UPHELD
[ST U 24] [ST P 21] [ST H 23] [ST E 29] [ST L 24] [ST D 21]
[ST O 27] [ST P 21] [ST H 23] [ST L 24] [ST D 21]

CENT
[ST C 21] [ST E 27] [ST N 24] [ST T 24]
[ST S 25] [ST E 27] [ST N 24] [ST T 24]

CURB
[ST C 23] [ST U 23] [ST R 24] [ST B 21]
[ST C 22] [ST U 23] [ST R 24] [ST B 21]

VERSIONS
[ST V 21] [ST E 26] [ST R 25] [ST S 22] [ST I 25] [ST O 26] [ST N 23] [ST S 21]
[ST V 21] [ST E 26] [ST R 25] [ST S 22] [ST T 22] [ST O 26] [ST N 23] [ST S 21]

SLID
[ST S 24] [ST L 24] [ST I 27] [ST D 21]
[ST S 24] [ST L 24] [ST I 27] [ST D 21]

It is worth mentioning that we have done the same kind of analysis for937

the RM corpus and we have observed similar trends. In the case of Scottish938

Gaelic, there is no well-developed phonetic lexicon available. Nevertheless, we939

have analyzed the ASWUs by building on the idea that speech sound units are940

shared across languages as the human speech production mechanism is common941

across languages. More precisely, by using the multilingual KL-HMM frame-942

work explained in Section 5.4 to capture the relationship between ASWUs and943

multilingual phones, we have tried to interpret the ASWUs in terms of mean-944

ingful linguistic units. The findings of this analysis and the analysis on the RM945

corpus can be found in (Razavi, 2017, Ch. 6).946

7. Conclusions947

This article presented a novel approach for subword unit derivation and pro-948

nunciation generation using only word level transcribed speech data. In this949

approach, the subword units are first derived by clustering context-dependent950

graphemes in an HMM-based ASR framework using maximum likelihood cri-951

teria; followed by modeling of the relationship between the graphemes and the952

derived units in a deterministic or probabilistic manner using acoustic data; and953

finally inferring pronunciations given the learned relationships and the word or-954

thographies using an ergodic HMM. In comparison to existing approaches in955

the literature, a distinguishing aspect of the proposed approach is that it fits956
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within the well-known HMM framework for ASR and speech synthesis, and is957

therefore fairly straight-forward to implement given the available toolkits such958

as HTK (Young et al., 2000) and KALDI (Povey et al., 2011). The proposed959

approach assumes that a correspondence between the grapheme sequence in the960

written form of word and the phoneme sequence in the spoken form of the word961

exists. For logographic languages, where the graphemes represent morphemes962

or words, the approach could potentially be combined with transliteration.963

Our experimental studies on two languages showed that the ASWU-based964

lexicon can be developed in a fully data-driven manner, i.e., the set of ASWUs965

and the corresponding lexicon can be selected through cross validation. The966

ASR studies on both the languages showed that the ASWU-based lexicons con-967

sistently yield significantly better ASR systems compared to the grapheme-968

based lexicons. For G2ASWU conversion, we investigated two approaches,969

namely, decision-tree based approach and KL-HMM based acoustic G2P ap-970

proach. Our experimental studies also showed that both G2ASWU approaches971

are equally applicable, with the acoustic G2P approach holding advantage for972

languages with many-to-one G2P relationship. Also, in one of the first efforts,973

we showed that the discovered ASWUs and the learned G2ASWU relationship974

can be transferred across domains in a language and the G2ASWU conver-975

sion mechanism inherently enables such transfer. Furthermore, the analysis of976

the learned models and the generated pronunciations showed that the derived977

ASWUs to a good extent are systematically related to phonetic identities. In978

particular, studies on Scottish Gaelic showed that the multilingual resources not979

only help in building better ASWU-based ASR systems, but also enable discov-980

ery of the phonetic identities of the derived ASWUs (Razavi et al., 2015; Razavi,981

2017, Ch. 6). This opens potential venues for further research and development982

to improve phonetic and lexical resources and technologies for under-resourced983

languages through transfer of linguistic knowledge and data across languages.984

In the proposed approach the problem of ASWU derivation was as posed as985

a problem of finding a latent symbol space that can be related to acoustic data986

and associated transcriptions (or graphemes). In this work, we used standard987

cepstral features that tend to carry information related to phones to find the988

latent symbol space. However, there are alternative features or representations989

that carry phone related information and could be exploited to find phone-like990

latent symbol space. For instance using linguistically motivated articulatory991

features (AFs) (Jakobson et al., 1992; Ladefoged, 1993), which may be more ro-992

bust representation when compared to spectral-based features and could help in993
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reducing the gap between ASWU-based approach and phoneme-based approach.994

This could be achieved without deviating from the HMM framework through the995

recently proposed AF-based ASR framework using KL-HMMs (Rasipuram and996

Magimai.-Doss, 2016), where it has been show that ASR systems can be devel-997

oped by learning grapheme-to-AF relationship through acoustics. Alternately,998

we could cast the ASWU based lexicon development as a three step process,999

where first acoustic-to-AF relationship is learned on available multilingual re-1000

sources; next grapheme-to-AF relationship is learned from the target language1001

transcribed speech and clustered to derive ASWUs using KL-HMMs; and finally1002

G2ASWU conversion is performed, as done in the present article. Our future1003

work will focus toward this direction on both well-resourced and under-resourced1004

languages along with development of methods to select multiple pronunciation1005

variants.1006

Finally, it is worth mentioning that our focus in this article was on ad-1007

dressing the lack of phonetic resources in an under-resourced language through1008

derivation of ASWUs and associated pronunciations in a data-driven fashion.1009

Recently, end-to-end approaches have been proposed for ASR, which use a neu-1010

ral network to directly predict the characters given the utterance (Hannun et al.,1011

2014; Graves and Jaitly, 2014; Hwang and Sung, 2016). These approaches do1012

not require a phonetic lexicon for speech recognition, however, they are data-1013

hungry and therefore may not suit well for under-resourced scenarios. On the1014

other side, our multlingual studies on the Scottish Gaelic corpus have shown1015

that by using the same acoustic model and by only modifying the lexical en-1016

tities (ASWUs versus graphemes), the performance of ASR systems can be1017

significantly improved. This implies that the ASWUs can provide better rep-1018

resentations of words than graphemes, and introduces a new question: How1019

would the approach used for end-to-end speech recognition perform when using1020

ASWUs instead of graphemes? From all these perspectives, the utility of end-1021

to-end ASR systems for under-resourced languages remains an open question1022

and needs a separate investigation.1023

Appendix A. KL-HMM1024

This appendix explains the KL-HMM training and decoding proce-1025

dure (Aradilla et al., 2008).1026
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Appendix A.1. KL-HMM training1027

Given a training set of N utterances {Z(n),W (n)}Nn=1, where for each train-

ing utterance n, Z(n) represents a sequence of acoustic unit probability vectors

Z(n) = [z1(n), · · · , zt(n), · · · , zT (n)(n)] of length T (n) and W (n) represents the

sequence of underlying words, the KL-HMM parameters are estimated by a

Viterbi expectation-maximization procedure that minimizes the cost function,

C =

N∑

n=1

min
Q∈Q

T (n)∑

t=1

[S(R/S)KL(yqt , zt(n))− log aqt−1qt ] (A.1)

where Q = [q1, · · · , qt, · · · , qT (n)] denotes a sequence of HMM states, qt ∈1028

{1, · · · , I}, Q denotes the set of all possible HMM state sequences, and aqt−1qt1029

corresponds to transition probabilities.1030

In practice, the transition probabilities aqt−1qt are assumed to be constant1031

(0.5), similar to the hybrid HMM/ANN approach. Therefore parameter esti-1032

mation amounts to estimating {yi}Ii=1. Given a uniformly initialized set of1033

parameters {yi}Ii=1 (i.e., ydi = 1
D ∀i,D) the segmentation step yields an opti-1034

mal state sequence for each training utterance using Viterbi algorithm. Given1035

the optimal state sequences, i.e., alignment and zt belonging to each of these1036

states, the optimization step then estimates a new set of model parameters by1037

minimizing the cost function based on KL-divergence (Eqn. (A.1)) with the con-1038

straint that
∑D

d=1 y
d
i = 1. This process of segmentation and the optimization is1039

iteratively done until convergence.1040

With SRKL as the local score, the optimal state distribution is the arithmetic1041

mean of the training acoustic state probability vectors assigned to the state, i.e.,1042

ydi =
1

M(i)

∑

zt(n)∈Z(i)

zdt (n) ∀n, t (A.2)

where Z(i) denotes the set of acoustic state probability vectors assigned to state1043

i and M(i) is the cardinality of Z(i).1044

With SKL as the local score, the optimal state distribution is the normalized1045

geometric mean of the training acoustic state probability vectors assigned to the1046

state, i.e.,1047

ydi =
ŷdi∑D
d=1 ŷ

d
i

where ŷdi = (
∏

zt(n)∈Z(i)

zdt (n))
1

M(i) ∀n, t (A.3)

where ŷdi represents the geometric mean of state i for dimension d, Z(i) denotes1048

the set of acoustic state probability vectors assigned to state i and M(i) is the1049
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cardinality of Z(i).1050

With SSKL as the local score, there is no closed form solution to find the1051

optimal lexical state distribution. The optimal lexical state distribution can be1052

computed iteratively using the arithmetic and the normalized geometric mean1053

of the acoustic state probability vectors assigned to the state (Veldhuis, 2002).1054

Appendix A.2. KL-HMM decoding1055

Given the sequence of acoustic unit posterior probability vectors Z =

[z1, · · · , zt, · · · , zT ] and the KL-HMM parameters, the best matching word se-

quence is obtained by minimizing the cost function,

W ∗ = arg min
Q

T∑

t=1

{
S(yqt , zt)− log aqt−1qt

}
(A.4)

where Q = [q1, · · · , qT ] denotes a sequence of HMM states. It can be observed1056

that Eqn. (A.4) is similar to Eqn. (5), except that maximizing the log-likelihood1057

p(xt|qt = li) is replaced with minimizing a KL-divergence based score S(yqt , zt).1058
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M. Killer, S. Stüker, T. Schultz, Grapheme based speech recognition, in: Pro-1076

ceedings of Eurospeech, 3141–3144, 2003.1077

J. Dines, M. Magimai.-Doss, A study of phoneme and grapheme based context-1078

dependent ASR systems, in: Machine Learning for Multimodal Interaction,1079

Springer, 215–226, 2007.1080

M. Magimai-Doss, R. Rasipuram, G. Aradilla, H. Bourlard, Grapheme-based1081

Automatic Speech Recognition using KL-HMM, in: Proceedings of Inter-1082

speech, 2011.1083

T. Ko, B. Mak, Eigentrigraphemes for under-resourced languages, Speech Com-1084

munication 56 (2014) 132–141.1085

R. Rasipuram, M. Magimai.-Doss, Acoustic and Lexical Resource Constrained1086

ASR using Language-Independent Acoustic Model and Language-Dependent1087

Probabilistic Lexical Model, Speech Communication 68 (2015) 23–40.1088

M. Gales, K. Knill, A. Ragni, Unicode-based graphemic systems for limited1089

resource languages, in: Proceedings of ICASSP, 5186–5190, 2015.1090

C.-H. Lee, F. K. Soong, B.-H. Juang, A segment model based approach to speech1091

recognition, in: Proceedings of ICASSP, 1988.1092

T. Svendsen, K. Paliwal, E. Harborg, P. Husoy, An improved sub-word based1093

speech recognizer, in: Proceedings of ICASSP, 108–111, 1989.1094

K. Paliwal, Lexicon-building methods for an acoustic sub-word based speech1095

recognizer, in: Proceedings of ICASSP, 729–732, 1990.1096

M. Bacchiani, M. Ostendorf, Using automatically-derived acoustic sub-word1097

units in large vocabulary speech recognition, in: International Conference on1098

Spoken Language Processing, 1998.1099

T. Holter, T. Svendsen, Combined optimisation of baseforms and model param-1100

eters in speech recognition based on acoustic subword units, in: Proceedings1101

of ASRU, 199–206, 1997.1102

R. Singh, B. Raj, R. Stern, Automatic generation of phone sets and lexical1103

transcriptions, in: Proceedings of ICASSP, 1691–1694, 2000.1104

C. Lee, Y. Zhang, J. R. Glass, Joint Learning of Phonetic Units and Word1105

Pronunciations for ASR., in: Proceedings of EMNLP, 182–192, 2013.1106

43



W. Hartmann, A. Roy, L. Lamel, J. Gauvain, Acoustic unit discovery and1107

pronunciation generation from a grapheme-based lexicon, in: Proceedings1108

of ASRU, 380–385, 2013.1109

M. Razavi, M. Magimai-Doss, An HMM-based formalism for automatic subword1110

unit derivation and pronunciation generation, in: Proceedings of ICASSP,1111

2015.1112

M. Razavi, R. Rasipuram, M. Magimai.-Doss, Pronunciation Lexicon Develop-1113

ment for Under-Resourced Languages Using Automatically Derived Subword1114

Units: A Case Study on Scottish Gaelic, in: 4th Biennial Workshop on Less-1115

Resourced Languages, 2015.1116

G. Aradilla, H. Bourlard, M. Magimai-Doss, Using KL-based acoustic models in1117

a large vocabulary recognition task., in: Proceedings of Interspeech, 928–931,1118

2008.1119

X. Luo, F. Jelinek, Probabilistic Classification of HMM States for Large Vocab-1120

ulary Continuous Speech Recognition, in: Proceedings of ICASSP, 353–356,1121

1999.1122

J. Rottland, G. Rigoll, Tied posteriors: an approach for effective introduction of1123

context dependency in hybrid NN/HMM LVCSR, in: Proceedings of ICASSP,1124

1241–1244, 2000.1125

S. Kanthak, H. Ney, Context-dependent acoustic modeling using graphemes for1126

large vocabulary speech recognition., in: Proceedings of ICASSP, 845–848,1127

2002b.1128

M. Magimai.-Doss, R. Rasipuram, G. Aradilla, H. Bourlard, Grapheme-based1129

Automatic Speech Recognition using KL-HMM, in: Proceedings of Inter-1130

speech, 445–448, 2011.1131

R. Rasipuram, M. Razavi, M. Magimai.-Doss, Probabilistic Lexical Model-1132

ing and Unsupervised Training for Zero-Resourced ASR, in: Proceedings of1133

ASRU, 2013a.1134

R. Rasipuram, M. Magimai-Doss, Acoustic Data-driven Grapheme-to-Phoneme1135

Conversion using KL-HMM, in: Proceedings of ICASSP, 2012.1136

44



M. Razavi, R. Rasipuram, M. Magimai.-Doss, Acoustic data-driven grapheme-1137

to-phoneme conversion in the probabilistic lexical modeling framework,1138

Speech Communication 80 (2016) 1–21.1139

K. Livescu, E. Fosler-Lussier, F. Metze, Subword Modeling for Automatic1140

Speech Recognition: Past, Present, and Emerging Approaches., IEEE Sig-1141

nal Processing Magazine 29 (6) (2012) 44–57.1142

C.-T. Chung, C.-A. Chan, L.-S. Lee, Unsupervised discovery of linguistic struc-1143

ture including two-level acoustic patterns using three cascaded stages of iter-1144

ative optimization, in: Proceedings of ICASSP, 8081–8085, 2013.1145

C.-y. Lee, T. J. O’Donnell, J. Glass, Unsupervised lexicon discovery from acous-1146

tic input, Transactions of the Association for Computational Linguistics 31147

(2015) 389–403.1148

M. Bacchiani, M. Ostendorf, Joint lexicon, acoustic unit inventory and model1149

design, Speech Communication 29 (2) (1999) 99–114.1150

R. Singh, B. Raj, R. M. Stern, Automatic generation of subword units for1151

speech recognition systems, IEEE Transactions on Speech and Audio Pro-1152

cessing 10 (2) (2002) 89–99.1153

A. Y. Ng, M. I. Jordan, Y. Weiss, On spectral clustering: Analysis and an1154

algorithm, in: Advances in Neural Information Processing Systems, 849–856,1155

2001.1156

S. Young, The general use of tying in phoneme-based HMM speech recognisers,1157

in: IEEE International Conference on Acoustics, Speech, and Signal Process-1158

ing (ICASSP), vol. 01, 569–572, 1992.1159

A. Ljolje, High accuracy phone recognition using context clustering and quasi-1160

triphonic models, Computer Speech & Language 8 (2) (1994) 129–151.1161

R. Rasipuram, M. Magimai-Doss, Improving Grapheme-based ASR by Proba-1162

bilistic Lexical Modeling Approach, in: Proceedings of Interspeech, 2013.1163

D. B. Paul, J. M. Baker, The Design for the Wall Street Journal-based CSR1164

Corpus, in: Proceedings of the Workshop on Speech and Natural Language,1165

357–362, 1992.1166

45



P. C. Woodland, J. J. Odell, V. Valtchev, S. J. Young, Large Vocabulary Con-1167

tinuous Speech Recognition Using HTK, in: Proceedings ICASSP, 125–128,1168

1994.1169

J. Garofolo, D. Graff, D. Paul, D. Pallett, CSR-I (WSJ0) Complete LDC93S6A,1170

Web Download. Philadelphia: Linguistic Data Consortium .1171

P. Price, W. M. Fisher, J. Bernstein, D. S. Pallett, The DARPA 1000-word1172

Resource Management Database for Continuous Speech Recognition, in: Pro-1173

ceedings of ICASSP, IEEE, 651–654, 1988.1174

S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, P. Woodland, The1175

HTK Book Version 3.0, Cambridge University Press, 2000.1176

D. Johnson, et al., ICSI Quicknet Software Package,1177

http://www.icsi.berkeley.edu/Speech/qn.html, 2004.1178

R. Rasipuram, M. Magimai.-Doss, Probabilistic Lexical Modeling and1179

Grapheme-based Automatic Speech Recognition, Idiap-RR Idiap-RR-15-1180

2013, 2013.1181

D. Imseng, et al., Comparing different acoustic modeling techniques for multi-1182

lingual boosting, in: Proceedings of Interspeech, 2012.1183

M. Bisani, H. Ney, Bootstrap Estimates for Confidence Intervals in ASR Per-1184

formance Evaluation, vol. 1, 409–412, 2004.1185

M. Wolters, A Diphone-Based Text-to-Speech System for Scottish Gaelic, Mas-1186

ter’s thesis, University of Bonn, 1997.1187

R. Rasipuram, P. Bell, M. Magimai.-Doss, Grapheme and multilingual posterior1188

features for under-resourced speech recognition: a study on Scottish Gaelic,1189

in: Proceedings of ICASSP, 2013b.1190

R. Rasipuram, M. Razavi, M. Magimai.-Doss, Integrated Pronunciation Learn-1191

ing for Automatic Speech Recognition Using Probabilistic Lexical Modeling,1192

in: Proceedings of ICASSP, 5176–5180, 2015.1193

D. Imseng, R. Rasipuram, M. Magimai.-Doss, Fast and flexible Kullback-Leibler1194

divergence based acoustic modeling for non-native speech recognition, in: Pro-1195

ceedings of ASRU, 348–353, 2011.1196

46



M. Razavi, M. Magimai.-Doss, On Recognition of Non-Native Speech Using1197

Probabilistic Lexical Model, in: Proceedings of Interspeech, 2014.1198

J. Duchi, Derivations for Linear Algebra and Optimization,1199

http://www.cs.berkeley.edu/∼jduchi/projects/general notes.pdf, 2007.1200

M. Razavi, On Modeling the Synergy Between Acoustic and Lexical Information1201

for Pronunciation Lexicon Development, Ph.D. thesis, École polytechnique1202
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