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Abstract—Accurate and robust 3D head pose estimation is
important for face related analysis. Though high accuracy has
been achieved by previous works based on 3D morphable model
(3DMM), their performance drops with extreme head poses
because such models usually only represent the frontal face
region. In this paper, we present a robust head pose estimation
framework by complementing a 3DMM model with an online
3D reconstruction of the full head providing more support when
handling extreme head poses. The approach includes a robust on-
line 3DMM fitting step based on multi-view observation samples
as well as smooth and face-neutral synthetic samples generated
from the reconstructed 3D head model. Experiments show that
our framework achieves state-of-the-art pose estimation accuracy
on the BIWI dataset, and has robust performance for extreme
head poses when tested on natural interaction sequences.

I. INTRODUCTION

Estimating head pose is an important and useful task
often required before performing face alignment [1], facial
expression analysis [2], head gesture recognition [3], or social
interaction analysis [4], [5], [6]. Although there have been
important advances in recent years, traditional visual based
head pose estimation suffers from difficulties such as human
shape and appearance variability, extreme head poses, facial
expressions, the non-rigid nature of the the face, and illumi-
nation variations. The development of consumer 3D RGB-D
sensors such as Kinect offers an alternative solution, since
the depth measures they provide represents the fundamental
information that is inherently required for pose estimation.

A number of depth-based approaches have been proposed
for head pose estimation [7][8][9]. To the best of our knowl-
edge, those relying on registering a 3D face mesh potentially
learned online to depth observation sequences have achieved
the best performance so far [10]. They often use 3D Morphable
Models (3DMM) [11] as mesh representation, since they
provide a linear and low dimensional representation of the
3D facial shape allowing online and well constrained model
adaptation by finding the coefficients for the subject of interest.

However, as illustrated Fig. 1a), a limitation of most 3DMM
face models is that they do not contain the top, side and back
parts of the head because it is actually quite difficult to extract
linear statistical basis from the variations of the hairs (and even
the ears) in these parts. Although observing the frontal face
is often the main interest in applications, being able to track
the head even under more profile or extreme poses is required
to avoid tracking interruptions or failures and manage such

a) b) c)
Fig. 1: Head model and pose estimation. (a) the 3DMM head
representation only covers part of the head. (b) head pose
estimation using only a 3DMM (top) and incorporating a
reconstruction component (bottom). (c) online head recon-
struction progressively incorporating observations.

poses as encountered in non-constraint natural setting such as
our UBImpressed sequences, Fig. 6b. A model only relying
on the frontal face lacks the support to handle these cases, as
shown in Fig. 1b where the face becomes almost invisible and
the estimation is not robust.

In this paper, we propose a method for robust and accurate
head pose estimation. The method relies on two main steps
performed jointly: the online reconstruction of a full 3D head
model, which is based on a variant of KinectFusion [12] and
online fitting of a 3D morphable model by selecting multi-
view observation samples and rendering smoothed synthetic
samples. By combining the strengths of these two models in
a single representation, we show that both accurate and robust
performance can be obtained even under very extreme head
poses as shown in Fig. 1. Our method achieves state-of-the-
art results in the benchmark BIWI dataset [8]. In addition, the
performance of our approach also exceeds the 3DMM face
model in a more natural and challenging dataset where large
head poses are relatively frequently.

II. RELATED WORKS

Many head pose tracking methods can be found in the
literature, differing on how the face are modelled, and on the
tracking approach using such representations.

Due to the difficulty to model the face appearance, some
authors relied on keyframes, i.e. face image samples with
associated head poses. The GAVAM model of Morency et
al. [13] is a typical example. It uses differential tracking
to compare to previous observations as well to the set of978-1-5090-4023-0/17/$31.00 c©2017 IEEE



keyframes, and constantly updates the current keyframe pose
estimates, or adds new ones when needed.

To avoid defining an explicit face model representation,
other methods have investigated pose-dependent statistical face
representations [14] estimated through bayesian tracking, or
regression methods. For instance, Fanelli et al. [8] achieved
this by extracting weak features from depth data patches
to train a random-forest regression model. However, their
model did not generalize well and suffered from low accuracy.
Also, regression methods in general lack semantics on facial
features, which can be of importance for tasks such as eye-
gaze estimation or facial expression recognition.

An alternative line of work focuses on facial features
tracking, in which head pose estimation becomes a secondary
problem solved through PnP techniques. Constrained local
models (CLM) [15] represent the appearance of local fea-
tures as linear subspaces. Their location is found from filter
responses of patch experts, constrained by a shape model. Bal-
trusaitis et al. [16] extended CLM by including depth patches
observations, performing better than CLMs or the GAVAM
model. Later, Baltrusaitis et al. [17] proposed the Constrained
Local Neural Fields (CLNF), used in the OpenFace software,
a variant of CLM addressing feature detection under more
challenging scenarios. However, feature based methods suffer
from self occlusions, as they depend on features visibility.

Model based methods provide both semantic reasoning and
may give better support against missing features. The 3D
Morphable Model (3DMM), as an extension of the 2D case
ASM (Appearance Shape Model) [18] and AAM (Active
Appearance Model) [19], is a parametric linear representation
of 3D shape and appearance. This 3DMM linear basis can be
learned from real data, modelling variations related to identity
[20][21] or even facial expressions [22].

Similar to AAMs, the 3DMM can be fit to image
data [23][24][1][25] or depth or shape data to adapt the model
to the subject [26][9]. Alternatively, for head pose estimation,
Papazov et al. [7] presented a depth feature matching frame-
work, in which view-invariant descriptors encoding the face
3D shape are used to infer head pose through matching.

Instead of feature matching, registration methods aim to
minimize the discrepancy between the data and the parameter-
ized model. In the work of Weise et al. [27], a user specific 3D
mesh face model is built offline using non-rigid registration,
whereas the iterative closest points (ICP) algorithm is used for
real-time head tracking. Funes and Odobez [9][28] proposed
to first fit a 3DMM to the user by extending the method of
[26], and then using such model for tracking through ICP.
However, ICP suffers from local minima, requiring sufficient
frame rate during tracking.

To solve this problem, Meyer et al. [10] combined ICP
and Particle Swarm Optimization (PSO) together to iteratively
reinitialize the ICP with the result of PSO to achieve online
fitting. Though high accuracy of head pose estimation is
achieved, the computation cost is relatively high.

Finally, further works have been proposed to address the 3D
non-rigid facial expressions, mainly for transfer to animated

avatars. Methods like [2], [29], [30] model facial deformations
through blendshapes which linearly extend a standard 3DMM.
An advantage of these methods, as done by Bouaziz et al. [2]
is that by decomposing the face model, it is possible to retrieve
the components related to face identity even under facial
deformations, as well as adapting the facial deformations basis
online. On the other hand, the authors in [29] also achieved
robust head tracking under occlusion. They identified outliers
by measuring the difference between the current observation
and the head model posed with the previous estimation. These
papers however lack evaluations on head pose estimation.

Up to this point, all previous model based methods are
strongly focused on the face region. Although this is justified,
as the main interest is on this region, it is nevertheless
insufficient to address the large range of head pose variations
observed in many natural human interactions (cf. Fig. 6).

To address this problem, in this paper we propose an
approach that fits a 3DMM online to the face region, whereas
the subject specific head representation is augmented on-the-
fly through a variant of KinectFusion [12]. The resulting
method is capable of achieving high accuracy, to create a
face model representation with associated semantics, and to
maintain track under significantly challenging head poses.

III. METHOD
A. Overview

The proposed framework is illustrated in Fig. 2. It consists
of three main modules: head pose estimation, 3DMM fitting
and head reconstruction. The pose estimation module aligns at
every time step i the current head model hi with the observed
depth map data oi using a variant of the Iterated Closest Point
(ICP) algorithm. The aim of the two other modules is to learn
and update the head model hi of the given person using the
sequence of observations. This is achieved using two main
representations: the first one, ri, is a 3D reconstruction of the
head obtained through the temporal registration and integration
over time of the incoming depth frames. Its main advantage is
that it can represent the full head without any prior knowledge.
The second one is a 3DMM face representation, mi, built
and adapted online using a 3DMM fitting algorithm relying
on automatically selected depth frames, complemented by
synthesis data from the reconstruction model, whenever it
becomes available. The resulting head model used for pose
estimation if thus given by a set of vertices coming from the
two representations, hi = {mi, ri}.

Although in principle after several frames, we could rely
only on the reconstructed model, we keep the 3DMM face
model m as it has several advantages. First, the semantic
meaning of vertices from m is well known, which can
be useful for face analysis or to combine the model with
appearance information provided by facial landmark detectors.
Secondly, besides personalization of the face model to specific
individuals, the 3DMM face model can be extended to include
further elements, e.g. deformations due to expressions.

Note that both face 3DMM and head reconstructions are
built online without any manual intervention. Details of pose



Fig. 2: Proposed framework. At time i, the head pose estimation module registers the current head model hi to the observations.
The 3DMM fitting module personalizes a 3DMM face model m to sample frames and their synthetic version generated from
the head reconstruction. The reconstruction module aggregates pose rectified depth images into a full head representation ri.
Vertex samples from the 3DMM face model mi and from ri are used to define the head model hi+1.

estimation and head representation learning are provided in
the following sections.

B. 3D Head Pose Estimation
The goal is to estimate the head pose pi = (Ri, ti) at time

i from the depth map oi, where Ri ∈ R3×3 is a rotation
matrix characterized by three rotation angles (yaw, pitch, roll)
and ti ∈ R3 is the translation. Classically, it is formulated as
finding the alignment between head model hi and the depth
observations which minimizes a rigid registration cost. As
this is intractable, the cost is minimized iteratively. At each
iteration, given the current estimate of the pose, the indices
ci(k) of the vertices in oi corresponding to the the vertices k of
our model are found using the method in [31], which is a fast
implementation of normal shooting. Then the pose is refined
by minimization of the point-to-plane ICP cost E1(R

i, ti)
given by [9]:∑

k

w[k]
(
(Rinih[k])

T(Rivih[k] + ti − vio[c
i(k)])

)2
(1)

where the set of vertices and their normal vectors to the 3D
surface {(vih[k],nih[k]), k = 1 . . . Nh

v } represents our head
model hi at time i.

The robust weights w[k] aim to discard bad correspon-
dences. Assuming δ[k] is the euclidean distance between a
transformed vertex and its correspondence, w[k] is computed
at each ICP iteration as follows: i) w[k] is set to zero for
correspondences whose normals differ for over 45◦; ii) w[k]
is zero if δ[k] > 4cm; iii) w[k] is 1 for δ[k] < 1cm; iv)
otherwise, w[k] is inversely proportional to δ[k]. We use the
same weighting strategy for all ICP methods in this paper.
Initialization. For each frame i, the pose is initialized with
the pose estimated from the previous frame. Upon failure, or
at the very beginning, the Haar detector is applied to each
new RGB image until a detection is found. The pose is then
initialized with the identity matrix for the rotation, and, for the
translation, with the 3D location of the detected face mapped
in the 3D space using the depth map.

C. 3D Morphable Model (3DMM) Fitting

The 3D Morphable Model relies on a set of deformation
bases bl to model the face variations across different face
identities. More precisely, a 3D frontal face m can be repre-
sented as a linear combination of the mean shape µ and the
deformation bases bl according to:

vm(α) = vµ +

Nb∑
l=1

αlλlvbl
(2)

where λl is the eigenvalue associated to the deformation base
bl. We use the Basel Face Model (BFM) [20] as 3DMM.
Online Model Fitting. Humans have different face shapes.
Since pose estimation is defined as a registration task aligning
the head model to the observations, the 3DMM should be
deformed to be as close to the observation as possible. To
achieve this, we rely on a non-rigid multiple instance fit-
ting method minimizing the discrepancy between our 3DMM
model m(α) and a set of frames J i collected until time
i. As with pose estimation, this discrepancy is minimized
iteratively by minimizing at each step the non-rigid ICP cost
(with (R, t) = {(Rj , tj), j ∈ J i}):

E(α,R, t) =
∑
j∈J i

(∑
k

wj [k]
(
(Rjnm(α)[k])T(Rjvm(α)[k] + tj − vjo[c

j(k)])
)2)

+ γ

Nb∑
l=1

α2
l

(3)
representing the sum of the rigid alignment errors with each
frame of the sample set J i, and a regularization over the
coefficients α. The parameter γ is the stiffness and controls
how much m can be deformed [32]. The cost function is
optimized with Gauss-Newton method [26].
Sample set online selection. A simple scheme is used to built
J online. In essence, the goal is to collect observation samples
whose estimated poses are close to 9 predefined poses [9] (see
Fig. 3), to guarantees that the observation samples cover the
whole 3D face. Whenever a new frame arrives, its pose is



Fig. 3: Set of predefined poses (yaw,pitch,roll) used to collect
data samples for online 3DMM fitting.

(a) Visual observation (b) Depth sample (c) Synthesized sample

Fig. 4: Illustration of actual observation and synthetic obser-
vations. Due to temporal integration, bad observations (drop-
ping hair covering the face, missing depth measurement) are
reduced or eliminated in the synthesized samples.

estimated using the current head/face model and the closest
of the predefined poses is identified. If no frame had been
yet added to this latter pose, the current frame is added to
form J i, and the model fitting optimizing Eq. 3 is conducted
with all samples in J i. Note that as the number of samples
increases, the value of γ decreases to allow more flexibility
for the fitting.
3DMM Fitting with Synthetic Observations. The above
fitting approach relies only on a few observation samples so
as to minimize the computational cost. A risk is that the fitting
samples might be noisy and include temporary occlusions,
large depth noise, or facial expressions (see Fig. 4(b)) which
might not be adapted to the fitting which requires face only
observations, and neutral faces due to the use of the BFM
basis functions. When such samples are added to J , they may
adversely affect the 3DMM fitting and result in distorted face.

To mitigate the possible effect of such samples, we in-
vestigated whether the reconstruction would be useful, as it
usually results in a more robust and complete representation
of a neutral face as it relies on much more frames thanks to
temporal integration. More specifically, each time we decide to
add a fitting sample j to J , we not only add the corresponding
depth map oj , but render as well a synthetic depth map sj from
the current reconstructed head model (cf Next Section), and
whose vertices are given by:

vjs =
(
[π(Rjvr + tj)]x, [π(R

jvr + tj)]y, [π(R
jvr + tj)]z

)
that is, the vertices from the reconstruction models are rotated
to the jth pose and projected as a depth image (the notation
[·]x,y,z consist of using these depth map points to build the
vertices).

Then, the fitting is straightforwardly adapted from Eq. 3 to
optimize the alignment to both the real and the synthetic depth
maps for all j (and sharing the rigid transform parameters
between the real and synthetic maps). It is important to
note the following points. First, we prefer to generate depth
images rather than, for instance, fitting the 3DMM directly
to the reconstruction surface, since the correspondence search
along the normal vectors can be quite time consuming when
working with 3D meshes. Secondly we prefer to keep the
actual observations rather than relying just on the synthetic
ones, since the latter ones can be smooth (depends on the
voxel sampling, cf next section) and may not benefit from
more crisper/detailed observations, for instance if the person
would come closer to the sensor.

Another important motivation to use the synthetic samples
is to keep the pose correspondence or alignment between
the reconstructed data and the 3DMM. Indeed, due to the
inaccurate representation of the 3DMM, at the beginning of
the tracking, the reconstruction may happen with a small
but fix bias with the 3DMM and thus with the actual head
pose. By fitting or registering the 3DMM to the synthetic
observations, a semantic correspondence between the 3DMM
and reconstructed model can be maintained, which is important
to our future work, for instance, eye gaze analysis.

D. Head Reconstruction for Robust Head Pose Estimation

To handle head tracking from any pose, our goal is to
augment the 3DMM with a head reconstruction built from
the observed data. To achieve this, we rely on an adaptation
of KinectFusion [12]. It is a classical method for 3D object
reconstruction, targeting scenarios where a cameras moves in
the 3D space or around a rigid 3D object. Our case is slightly
different, as the sensor is static, and the head is moving; in
addition, the face is not rigid, so one could wonder how well
it can work in that case. Although DynamicFusion [33] has
been proposed recently for non-rigid objects, it is more time
consuming and has some limitations like lacking face and head
semantic information, or being more sensitive to fast motions.

The principle is to use a 3D volume of the head represented
by a set of vertices vg regularly sampled in a (depth =
28) × (height = 28) × (width = 19) volume (size in cm;
we used 128 samples per dimension), and to accumulate from
observations a function TSDF[g] indicating whether the point
is inside (negative value) or outside (positive value) the head.

The methods comprises 4 main steps. The first one consists
in estimating the head pose We rely on the robust method
described in Section III-B. Interestingly, this benefits from
the availability of the 3DMM to obtain an accurate head
pose, esp. at the beginning when only few frames have
been observed. The second and third steps are volumetric
mapping, which consists of rotating the vertex samples in the
camera pose according to vig = Rivg + ti, and per-frame
TSDF (truncated signed distance function) [34] computing for
surface representation, defined by:

tsdfi[g] = max(−1,min(1,
[vig]z − [π(vig)]z

τ
)) (4)



(a) online process (b) head reconstruction results

Fig. 5: 3D head reconstruction from the BIWI dataset.

in which π(vig) denotes the 3D point associated to the pixel
in the observed depth map oi to which the mapped vertex g
projects to (so, the point on the observed 3D surface), and [·]z
denotes the depth of a 3D point. In other words, tsdf records
for vertex k the signed distance between its actual location vig
and the observed surface point. The parameter τ represents the
thickness around the observed surface for which such distance
is computed, and actually used (see equation 5 below).

Finally, in the fourth step, the tsdf values across frames are
aggregated using a simple averaging strategy:

wits[g] =

{
1 if − 1 < tsdfi[g] < 1
0 otherwise

(5)

TSDFi[g] =
wi−1TS [g]TSDFi−1[g] + wits[g]tsdfi[g]

wi−1TS [g] + wits[g]
(6)

wiTS[g] = wi−1TS [g] + wits[g] (7)

Importantly, note that the fusion is only conducted on the
voxels whose tsdf values are within the range [−1, 1], i.e. the
pixels near the observed surface. This is to avoid self-occlusion
effects for concave parts, e.g. when seen from 45◦, the visible
nose surface hides other face surfaces which therefore are not
’inside’ the head.
Reconstruction model. At each time step, a reconstruction
model ri is built from wiTS. In the original version of Kinect-
Fusion, a ray-casting model was registered to the actual obser-
vation to ensure fast processing. Given the low resolution of
our 3D volume (cf. Section IV), we used marching cubes [35]
instead to derive a full 3D model, which is efficient enough.
More concretely, the marching cubes method is applied to
the set of voxels for which wiTS is larger than 25 (i.e. they
were at least 25 times within the observed surface region) to
find the zero crossing surfaces and extract the vertices and
their normals. Some reconstruction results at the end of BIWI
sequences are shown in Fig. 5, and demonstrate that quite
accurate models can be recovered.

E. Head model

As described in Section III-B, what we need for
pose estimation is a set of vertices and normals, i.e.
{(vih[k],nih[k]), k = 1 . . . Nh

v }. To combine the 3DMM m
and the reconstruction model, we simply randomly sample
a fixed ratio of vertices from each of the model. That is,

a)

b)

Fig. 6: Dataset samples. a) BIWI. b) UBImpressed.

if Nm
v represents the number of vertices in m, we sample

Nr
v = η ×Nm

v from r, and hence we have Nh
v = Nr

v +Nm
v .

IV. EXPERIMENTAL PROTOCOL

In this section, we present the design of our experiments,
including the datasets, the performance measures, the consid-
ered models and parameter settings.

A. Dataset

In our experiments, two datasets are used.
The BIWI Dataset is a public dataset collected by Fanelli [8].
It consists of 24 videos (15K frames in total) recorded with
a Kinect 1 sensor, and where seated people keep moving
their heads. Some samples are shown in Fig. 6a. The dataset
provides the ground truth of head pose (R, t) for every frame.
The UBImpressed Dataset. This dataset has been captured to
study the performance of students from the hospitality industry
at their workplace [6]. The role play happens at a reception
desk, where a student has to handle a difficult client. Students
and clients are recorded using a Kinect 2 sensor (one per
person). In this free and natural setting, large head poses and
sudden head motions are frequently presented as people are
observed from a relatively large distance, and people are seen
from the side (see Fig. 6 for samples).

We used 10 video clips (9K frame in total) from the round
80 interactions. As head pose is not available, to identify track-
ing failure and evaluate accuracy, we annotated 6 landmarks
on every frame, whenever they are visible: left and right corner
of the left eye (l-l and r-l), left and right corner of the right
eye (l-r and r-r), nose tip (n-t) and nasal root(n-r). These
landmarks are rigid and seldom affected by facial expressions.

B. Performance Measures

Head pose estimation performance can be evaluated by two
aspects, accuracy and robustness. Below we describe how we
measure these two aspects on the two datasets.
BIWI Dataset. We report accuracy by the average error of
the estimated rotation angles. Robustness reflects in general
whether the error can be kept in an accepted range even
when extreme head pose occurs. Therefore, we can evaluate it
by the cumulative distribution function of errors (error CDF)
reflecting the proportion of frames whose errors are below a
given value. We further use this curve to report as in [10]
the accuracy ACC10 as the percentage of frames with errors
below 10 degrees. Finally, we also measure the robustness
through the average pose error for different range of poses.



We take the maximum of the three ground-truth rotation angles
(yaw/pitch/roll) as pose indicator for each frame and quantize
the indicators in bins of size 10◦.
UBImpressed Dataset. As pose is not available, we rely
on the annotated landmarks. More specifically, we transform
the 3DMM face model with the estimated pose and project
the facial landmarks of the model to the image plane and
compute as error the distances between these projections
and the ground-truth. We then characterize the pose tracking
performance with several measures. As our goal is to evaluate
the tracking robustness, we first report the lost frame ratio
LFRatio defined as the percentage of frames for which a given
tracker does not report results (i.e. it has identified by itself a
failure case)1. Then we report the average localization errors
on the frame with reported results, and compute as well the
CDF function of those errors.

C. Systems

We compared several models: the mean shape of the 3DMM
and the online fitted 3DMM, which only uses the 3DMM
model as face/head representation; the pure reconstruction
model FHM and our proposed model 3DMM+FHM. Note
that the pure FHM relies on the 3DMM in the first 25
frames to construct an initial model, and that we sample
the same number of points that we use in the 3DMM. The
3DMM+FHM model selects different proportions of points
from the reconstructed r and 3DMM model m. We tested
the ratios η = 0.5, 1.0, 1.5, where η =

Nr
v

Nm
v

(see Sec. III-E).
In addition, we compare our results to those of [10], which
obtained the best performance on BIWI, and to the OpenFace
system [36] which relies on both image and depth data and
has been primarily optimized for landmark localization.

D. Parameter setting

For 3DMM fitting, we use Nb = 50 deformation bases from
the BFM model. For head reconstruction, the size of the 3D
volume is 128×128×128.

V. RESULTS

A. BIWI dataset

The overall estimation accuracy of BIWI is listed in Tab. I.
The error CDF is provided in Fig. 8a), while Fig. 8b) provides
the average error for different pose ranges. From these results,
the following conclusions can be drawn.

First, from Tab. I, our head model 3DMM+FHM achieves
the best results and all our results exceed the performance
of [10] which reported so far the best accuracy on BIWI. Since
[10] relies on the combination of ICP and Particle Swarm
Optimization (PSO), this shows that when using an augmented
3DMM model with head reconstruction, ICP alone can achieve
equal or even better accuracy. In particular, the estimation of
the pitch angle is much improved when comparing with [10].

1Note that in the BIWI case, when a failure is identified by the tracker,
we set the estimation as being frontal so that all frames are into account for
evaluation and a fair comparison with other works [10] can be made.

Fig. 7: OpenFace common failure case. Although the error
distance with respect to the visible landmarks is small, the
head pose is badly estimated. We show our result on the result.
Note that OpenFace is using depth information as well.

Secondly, while the 3DMM alone performs in par with the
PSO model, it performs worse than the FHM model and the
proposed model for all values of η, showing that the use of
head reconstruction improves the pose estimation accuracy. In
particular, we can notice from Fig. 8b) that the errors from
large pose are much reduced, which, when looking at result
video, is due to a reduction in tracking failures. We also notice
that on BIWI not much differences can be observed when
varying η.

Compared to OpenFace, we note that the head pose error
is much larger with OpenFace, which is understandable since
it does not attempt at building a 3D face model. This shows
the limitations of such approach for head pose estimation.

Finally, the performance of the Mean shape model is lower
than the 3DMM model, illustrating that personalized 3DMM
fitting is important for pose estimation.

B. UBImpressed dataset

Results are shown in Table II. They report the amount of
frames for which no output is provided (Lost frames ratio
LFRatio), the mean landmark location error, as well as the
percentage of frames (FailRatio) for which this error is above
20 pixels and which can be considered as being in a tracking
failure situation. The error CDF curve is shown in Fig. 8. The
main comments are as follows.

First, as on BIWI, our proposed 3DMM+FHM models
performs much better than the 3DMM alone. In particular, the
model with η = 1 (same number of vertices from the 3DMM
and the reconstruction) provides a good compromise between
the face and head modeling component. Compared to 3DMM,
it fails around 3 times less (FailRatio), and has a localization
error decreased by 40%.

Secondly, according to the mean error the OpenFace system
seems to perform better than our approach. However, this
mainly shows that our indirect estimation of head pose estima-
tion accuracy using landmark has limitations. Indeed, we can
first notice that LFRatio is almost 13% for OpenFace, which
is 3.6 times that of the (3DMM+FHM, η = 1) model. Thus
OpenFace is reporting results on less frames than the other
methods, frames which usually are problematic. Secondly, as
already seen in BIWI, its pose estimation accuracy is limited,
while its landmark localization accuracy is high as it was
specifically trained for that. This contrast is illustrated in
Fig. 7, and such situations are relatively frequent in the results.



TABLE I: BIWI: average error and accuracy.

System/Head model yaw pitch roll mean ACC10

OpenFace 7.8 8.0 4.6 6.8±6.8 52.3%
PSO [10] 2.1 2.1 2.4 2.2 94.6%
Mean shape 5.0 2.5 3.9 3.8±8.6 89.5%
3DMM 2.9 1.8 2.6 2.4±5.7 95.3%
FHM 2.5 1.7 2.3 2.2±4.6 95.7%
3DMM+FHM η = 0.5 2.5 1.5 2.3 2.1±4.5 96.2%
3DMM+FHM η = 1.0 2.4 1.7 2.2 2.1±4.1 96.4%
3DMM+FHM η = 1.5 2.5 1.5 2.2 2.1±5.2 96.6%

TABLE II: UBImpressed: Landmark position errors

System/Head model l-l r-l l-r r-r n-r n-t mean FailRatioLFRatio

OpenFace 4.6 5.4 5.2 6.2 5.6 5.7 5.4±4.0 0.1% 13.0%
Mean shape 10.5 11.7 12.7 12.1 11.8 12.9 11.8±22.2 6.9% 4.5%
3DMM 13.5 13.4 7.5 9.3 14.7 16.4 14.0±25.5 10.5% 4.2%
FHM 20.0 20.2 16.7 17.5 21.1 23.7 20.9±40.0 17.7% 2.9%
3DMM+FHM η = 0.5 8.9 9.7 7.9 10.0 10.2 11.5 10.0±21.6 5.2% 4.3%
3DMM+FHM η = 1.0 7.0 9.0 7.9 10.1 8.5 9.8 8.6±15.0 3.4% 3.6%
3DMM+FHM η = 1.5 10.7 12.0 7.9 10.1 11.9 13.2 11.7±26.2 5.2% 3.7%

(a) CDF of error for BIWI (b) Error distribution across head poses for BIWI (c) CDF of error for UBImpressed

Fig. 8: Robustness measurement and comparison

Note that surprisingly, the Mean shape model performs
better than the 3DMM model. This is because the system
takes some false samples for 3DMM fitting when processing
the challenging UBImpressed videos and the distorted fitting
results can reduce the tracking accuracy. In addition, the pure
FHM model produces the lowest accuracy among all models.
Indeed, different from the BIWI dataset, the UBImpressed
videos do not start with a frontal face. This means that the
reconstructed head model is incomplete after the first 25
frames (e.g. one side of the face is missing) so that when
the missing part becomes suddenly visible, the tracking can
not rely on the 3DMM model to achieve its registration. This
result also explains the necessity to combine 3DMM and FHM.

We illustrate some head pose estimation results in Fig. 9. We
note that our augmented model can also handle the situation
of occlusion, shown in the last column of Fig. 9.

C. Use of synthetic data for 3DMM fitting.

We observed in practice that using the synthetic samples sj

in addition to the actual depth maps oj for fitting the 3DMM
model produced improved head reconstruction. To evaluate the
potential impact of synthetic observations on accuracy, we did
the following. We used as set of frames J for fitting those
automatically selected by the FHM algorithm. We then trained
the 3DMM offline from these frames, using either only the
depth maps, or using in addition the synthetic frames, and then
ran the tracker on the videos with the resulting models. Results
are shown in Table III and IV. No differences can be noticed,
suggesting that the fitting with synthetic samples has no impact
on pose estimation, or that the selected frames did not contain
difficult situations where the synthetic data could have been
more useful. However, we keep this module since it is essential
to our future work in computing pose correspondence.

D. Time cost.
We implement our system in Python/C++ based on CPU.

Generally, the ICP based alignment takes ∼9ms and the
3DMM fitting costs ∼5s and is executed in a separate thread.
The reconstruction module which also includes the 3D mesh-
ing takes ∼0.25s per frame. This module is applied at every
frame within the first 300 frames and every 5 frames after-
wards. The whole system can be much faster by implementing
some modules (especially reconstruction) on GPU.

VI. CONCLUSIONS AND FUTURE WORKS

We presented a method for robust head pose estimation.
The main idea is to augment a 3DMM face model with a set
of 3D points extracted from a reconstruction of the person’s
face. To achieve this, we first do online 3D head reconstruction
using a KinectFusion methodology, and the result is combined
with the 3DMM face model. The experiment results show that
our framework can achieve not only accurate but also robust
performance even when extreme head poses are presented.

An important future work includes the exploitation of vi-
sual information, esp. to handle people moving away from
the sensor. This can be achieved for instance by exploiting
landmark detection, which, as shown by the OpenFace results,
can provide good results if we are able to select frames where
they are reliable. Also, as ICP can be trapped in local optima,
a rough pose initializer is needed for ICP registration at the
beginning or to deal with situations where large pose changes
occur, e.g. fast motions.

Our work can also be expanded to other tasks. In addition to
serving as a preprocessing step for facial expression analysis
or eye gaze tracking, the 3DMM fitting included in our
framework can also be extended to estimate facial expressions
by directly incorporating expression blendshapes.



Fig. 9: Visualized results of head pose estimation with the 3DMM (top) and augmented model (bottom)

TABLE III: Error of rotation angles in BIWI
Head model yaw pitch roll mean

3DMM fitted to {oj , sj} 2.6 1.8 3.6 2.3
3DMM fitted to {oj} 2.8 1.8 2.6 2.4

TABLE IV: Error of landmark positions in UBImpressed
Head model l-l r-l l-r r-r n-r n-t mean

3DMM fitted to {oj , sj} 10.4 11.2 9.2 10.4 11.5 13.0 11.4
3DMM fitted to {oj} 9.9 10.5 9.0 9.6 11.2 12.6 10.9
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[36] T. Baltrušaitis, P. Robinson, and L.-P. Morency, “Openface: an open
source facial behavior analysis toolkit,” in WACV, 2016.


