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Abstract
To automatically detect and monitor Parkinson’s disease
(PD) from speech, crafting features which robustly differ-
entiate between speech of PD patients and healthy speak-
ers is necessary. Since the voice of PD patients is typ-
ically breathy and semi-whispery and since their speech
is characterized by significantly less pauses than healthy
speech, it can be expected that PD speech spectral coeffi-
cients are less super-Gaussian than healthy speech spectral
coefficients. In this paper we propose to use the distribu-
tion of speech spectral coefficients as a novel discrimina-
tory feature between PD and healthy speech. Speech spec-
tral magnitudes are modeled using the Weibull distribution,
with the shape parameter controlling the super-Gaussianity
of the complex spectral coefficients. Supported by empir-
ical analysis on healthy and PD speech, it is shown that
the shape parameter modeling PD spectral magnitudes is
larger than the shape parameter modeling healthy spectral
magnitudes, i.e., PD spectral coefficients are less super-
Gaussian than healthy spectral coefficients. This result
should be taken into account not only when discriminating
between healthy and PD speech, but also when developing
statistical signal processing techniques.

1 Introduction
Knowledge of the distribution of the speech spectral co-
efficients is crucial for many speech enhancement tech-
niques [1–4], model-based voice activity detectors [5, 6],
and several statistical signal processing algorithms [7].
Supported by empirical observations, e.g., in [8–10], it
is widely accepted that the distribution of the complex
spectral coefficients is super-Gaussian. This holds both
locally, i.e., when observing the spectral coefficients in
a single time-frequency bin [8, 9], as well as globally,
i.e., when observing the distribution of the spectral coef-
ficients in a single frequency bin [10]. Super-Gaussianity
of the speech spectral coefficients arises due to pauses be-
tween phonemes and due to formant transitions in voiced
sounds. Exploiting the super-Gaussianity of speech sig-
nals has proven to be beneficial for many speech enhance-
ment techniques, such as e.g. single- or multi-channel
dereverberation techniques [4, 11, 12]. To the best of our
knowledge, the distribution of the speech spectral coeffi-
cients and the benefits of enhancement techniques exploit-
ing super-Gaussianity have been demonstrated using utter-
ances from speakers who do not manifest any speech dis-
order.

Speech disorders are common symptoms of several
neurodegenerative diseases such as Parkinson’s disease
(PD). PD is among the most prevalent progressive neu-
rodegenerative disorders, affecting nearly 1.5 % of the
European population older than 60 [13]. Among other
symptoms, the majority of PD patients develop hypoki-
netic dysarthria, which is a speech disorder characterized

by imprecise articulation, abnormal speech rhythm, in-
creased vocal tremor, and breathiness [14–16]. With the
aim to assist the clinical diagnosis and treatment of PD
patients, there has been a growing interest in the research
community to develop discriminatory features which can
be used for the automatic detection and monitoring of PD,
e.g., in [17–26].

In [17–19] features such as vowel space area, vowel
articulation index, consonant spectral trend, and consonant
spectral moment were investigated to characterize the im-
precise articulation in PD patients. In [20] the articula-
tory rate and pause time were investigated, where it was
shown that PD patients make significantly less pauses be-
tween words and within polysyllabic words. Increased vo-
cal tremor and breathiness were characterized using fea-
tures such as jitter, shimmer, harmonics-to-noise ratio, or
glottal-to-noise excitation ratio in [21, 22], whereas dif-
ferential phonological posterior features were used in [26].
Although numerous contributions have been made in craft-
ing robust features to discriminate between healthy and
PD speech, the distribution of the spectral coefficients of
healthy and PD speech has not been compared. Since PD
patients make significantly less pauses than healthy speak-
ers and since their speech is characterized by vocal tremor
and breathiness [20, 21], it can expected that the distri-
bution of PD speech spectral coefficients is less super-
Gaussian than healthy speech.

The objective of this paper is to model and compare
the global distribution of healthy and PD speech spectral
coefficients as a function of the frequency and the frame
size. To this end, the spectral magnitudes are modeled us-
ing the Weibull distribution [27], where the shape parame-
ter controls the super-Gaussianity of the complex spectral
coefficients [10]. Maximum likelihood (ML) estimates of
the shape parameter are derived using a database of healthy
and PD speech. It is shown that independently of the fre-
quency and frame size, the shape parameter modeling the
distribution of spectral magnitudes is larger for PD speech
than for healthy speech, i.e., the spectral coefficients of PD
speech are less super-Gaussian than healthy speech. The
importance of this result is two-fold. First, the distribu-
tion of spectral coefficients can be used as an additional
discriminatory feature in existing automatic PD classifica-
tion techniques such as in [21, 26]. Second, this difference
in the distribution of spectral coefficients should be taken
into account when developing statistical signal process-
ing techniques. As demonstrated by experimental results
in Section 3.4, enhancement techniques promoting super-
Gaussianity yield a lower performance for PD speech than
for healthy speech.

2 Distribution Modeling
In this section, the Weibull distribution is presented and
the ML estimation of the shape parameter is discussed. In
the following, speech spectral coefficients are denoted by



Sk(l), where k denotes the frequency bin index, l the frame
index, and λ2

k the average speech power spectral density
(PSD), i.e.,

λ2
k = E {|S(k)|2}, (1)

with E the expected value operator.

2.1 Weibull distribution
Similarly to [10], the distribution of the spectral magni-
tudes |Sk| in each frequency bin k is modeled using the
Weibull distribution with probability density function [27]
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where βk denotes the shape parameter and αk denotes the
scale parameter. The mean µk and the variance σ2

k of the
Weibull distribution are given by
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with Γ(·) being the gamma function [28]. Figure 1 depicts
the probability density function of the Weibull distribution
with σ2

k = 1 and different values of the shape parameter
βk. For βk = 2, the Weibull distribution resembles the
Rayleigh distribution, whereas for βk = 1, the Weibull dis-
tribution resembles the exponential distribution. In addi-
tion, for βk < 2, the Weibull distribution models the mag-
nitude of super-Gaussian distributed complex spectral co-
efficients [10], with lower values of βk corresponding to
more super-Gaussian distributed complex spectral coeffi-
cients.

2.2 Shape parameter estimation
To model the spectral magnitudes using a Weibull distri-
bution, the scale parameter αk and the shape parameter βk
need to be estimated, cf. (2). Since the variance is given
by σ2

k = E {|Sk|2}−E 2{|Sk|}, the scale parameter αk can
be expressed in terms of the average PSD λ2

k and shape
parameter βk as (cf. (1), (3), and (4))

αk =
λk√

Γ
(

1+ 2
β

) . (5)
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Figure 1: Probability density function of the Weibull dis-
tribution for σ2

k = 1 and different values of the shape pa-
rameter βk.

To estimate the shape parameter βk, an ML estimator is
used in this paper. Given the speech spectral coefficients
at frequency bin k, i.e., Sk(1), Sk(2), . . . , Sk(L), with L
the total number of frames, the likelihood function of the
shape parameter is given by

L (βk) =
L

∏
l=1

βk
αk

( |Sk(l)|
αk

)βk−1

e
−
( |Sk(l)|

αk

)βk
. (6)

An ML estimate of the shape parameter βk can be obtained
by minimizing the negative of the log-likelihood function,
i.e., by solving the optimization problem

min
βk

[
L logβk−Lβk logαk

+(βk−1)
L

∑
l=1
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L

∑
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)βk ]
, (7)

with αk given by (5). Since no analytical solution to (7)
exists, an iterative optimization technique should be used
to find the ML estimate of the shape parameter βk. In this
paper, the one-dimensional quasi-Newton method is used.

3 Experimental Results
In this section, empirical analysis of the distribution of
healthy and PD spectral magnitudes for different frame
sizes are presented. In addition, experimental results
are presented to demonstrate that successful enhancement
techniques promoting super-Gaussianity yield a lower per-
formance for PD speech than for healthy speech. For
this purpose, we use the multi-channel linear prediction
(MCLP)-based dereverberation technique from [4], whose
success is based upon promoting super-Gaussianity of the
output speech spectral coefficients.

Section 3.1 describes the used databases of healthy and
PD speech. Section 3.2 discusses the methodology for es-
timating the shape parameter, whereas the obtained shape
parameter values are presented in Section 3.3. Section 3.4
discusses the MCLP technique, algorithmic settings, per-
formance measures, and presents dereverberation perfor-
mance results for healthy and PD speech for several rever-
beration times and system configurations.

3.1 Databases
French recordings of 47 healthy speakers [29] and 39
PD patients are considered [30]1, with all speakers being
French native speakers. The age of the healthy speakers
ranges from 22 to 88 years old, with the average age be-
ing 52.8 years old. The age of the PD patients ranges
from 45 to 78 years old, with the average age being 61.6
years old. The sampling frequency of the recordings is
44.1 kHz. The speakers are asked to read samples from
a list of 54 pseudo-words, i.e., strings of characters re-
sembling real words but having no meaning. The number
of available recordings for each pseudo-word is different,
however, the number of healthy and PD recordings for in-
dividual pseudo-words is the same. The minimum num-
ber of available recordings for a pseudo-word is 9 healthy
and 9 PD recordings, whereas the maximum number of
available recordings is 39 healthy and 39 PD recordings.

1Approval from Swissethics, number 2015-00028 – (15-258).
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Figure 2: Frequency-dependent shape parameter estimated using all available recordings of healthy and PD speech for
several frame sizes: (a) 256, (b) 512, (c) 1024, and (d) 2048.

The average number of available recordings for a pseudo-
word is 27 healthy and 27 PD recordings. The total number
of available recordings for the healthy and PD patients is
1465. The average length of the available recordings is
791 ms for the healthy speakers and 829 ms for the PD pa-
tients. Concatenating all recordings yields a 19.3 minutes
long signal for the healthy speakers and a 20.2 minutes
long signal for the PD patients. Manual voice activity de-
tection has been performed for each recording to discard
the silent (or noise-only) segments.

3.2 Processing
The signals are downsampled to 16 kHz and are processed
using a weighted overlap-add short-time Fourier transform
(STFT) framework. The considered frame sizes are 256,
512, 1024, and 2048, i.e., the considered frame durations
range from 16 ms to 128 ms. The overlap between succes-
sive frames is 50 %. For each frequency bin k, the follow-
ing processing is performed:
• Extract the spectral magnitudes |Sk(1)|, . . . , |Sk(L)|.
• Compute the average speech PSD λ2

k and express the
scale parameter αk in terms of the shape parameter βk
as in (5).

• Determine the shape parameter βk by solving the op-
timization problem in (7). In order to initialize the
iterative optimization method, βk = 2 has been used.
However, it should be noted that the optimization pro-
cedure is not sensitive to the shape parameter initial-
ization value.

3.3 Distribution of healthy and PD speech
Using all recordings for each group (i.e., the signals cre-
ated by concatenating all pseudo-word recordings), the
frequency-dependent shape parameter is estimated. Fig-
ure 2 depicts the obtained shape parameter values for
healthy and PD speech for all considered frame sizes. It
can be observed that as expected, the distribution of speech
spectral magnitudes is closer to an exponential distribution
than to a Rayleigh distribution, independently of the frame
size and independently of whether healthy or PD speech
is considered. In addition, it can be observed that inde-
pendently of the considered frame size, the shape param-
eter modeling PD spectral magnitudes is typically larger
than the shape parameter modeling healthy spectral mag-
nitudes, i.e., PD speech is less super-Gaussian than healthy
speech. For frequencies larger than approximately 7 kHz,
the shape parameter modeling PD spectral magnitudes is
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Figure 3: Frequency-dependent shape parameter esti-
mated using a single recording for an exemplary pseudo-
word from a healthy speaker and a PD patient (frame size:
512).

similar or slightly lower than for healthy spectral magni-
tudes. This occurs due to the lack of speech in the higher
frequencies, with the spectral coefficients mainly reflecting
recording noise.

This difference in the shape parameter value for
healthy and PD spectral magnitudes can be observed not
only when considering all recordings from all speak-
ers (as in Fig. 2), but also when considering a single
pseudo-word from a single speaker. Figure 3 depicts the
frequency-dependent shape parameter values for an exem-
plary pseudo-word from a healthy speaker and a PD pa-
tient. Both speakers are females, with the healthy speaker
being 79 years old and the PD patient being 49 years old.
The length of the healthy speaker recording is 697 ms,
whereas the length of the PD patient recording is 778 ms.
Similarly to before, it can be observed that the obtained
shape parameter values for PD speech are typically larger
than for healthy speech. Hence, it can be said that the dif-
ference in the super-Gaussianity of the spectral coefficients
of healthy and PD speech is clearly observable also when
considering short utterances in the order of hundreds of ms,
making the super-Gaussianity of the speech signal a robust
discriminatory feature between healthy and PD speech.

In summary, the presented results show that indepen-
dently of the frequency, frame size, or length of the ut-
terance, PD speech is less super-Gaussian than healthy
speech. Furthermore, additional experiments (not pre-
sented here for privacy reasons) have shown that the pre-
sented results and conclusions generalize well to other
databases, i.e., to languages other than French and to dif-
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Figure 4: Dereverberation performance in terms of
∆fwSSNR when using the MCLP technique on healthy and
PD reverberant speech.

ferent recording conditions.

3.4 Dereverberation of healthy and PD speech
To motivate the necessity of taking this different distri-
bution of PD speech into account when developing sta-
tistical signal processing algorithms, in this section we
use the multi-channel linear prediction (MCLP)-based
speech dereverberation technique from [4] to derever-
berate healthy and PD speech. The MCLP technique
achieves speech dereverberation by exploiting the super-
Gaussianity of speech spectral coefficients and it has been
shown to result in a high performance improvement. Given
a reverberant acoustic system, MCLP dereverberation fil-
ters are obtained in an iterative fashion by solving an lp-
norm minimization problem, with 0 ≤ p ≤ 1 promoting
super-Gaussianity of the enhanced speech spectral coeffi-
cients2. The results presented in the following are gener-
ated using p= 0, i.e., an l0-norm is used. However, similar
results are obtained also for other values of the parameter
p.

We consider three reverberant acoustic systems with a
single source and M = 4 microphones. The first acous-
tic system AS1 consists of a linear microphone array with
an inter-sensor distance of 8 cm [31], the second acoustic
system AS2 consists of a circular microphone array with
a radius of 10 cm [32], and the third acoustic system AS3
consists of a linear microphone array with an inter-sensor
distance of 4 cm [33]. The reverberation times are T60 ≈
0.61 s for AS1, T60 ≈ 0.73 s for AS2, and T60 ≈ 1.25 s for
AS3. The speech components are generated by convolv-
ing the healthy and PD recordings described in Section 3.1
with measured room impulse responses for each acoustic
system. For the results presented in the following, the sig-
nals are processed in the STFT domain with a frame size
of 512.

To evaluate the performance, we use the improve-
ment in frequency-weighted segmental signal-to-noise ra-
tio (∆fwSSNR) [34] and in cepstral distance (∆CD) [35]
between the enhanced output signal and the reverberant
input signal. The first microphone is arbitrarily selected
as the reference microphone. The reference signal used
to compute the instrumental measures is the clean speech
signal. It should be noted that a positive ∆fwSSNR and a
negative ∆CD indicate a performance improvement.

Figures 4 and 5 depict the ∆fwSSNR and ∆CD val-
ues obtained using the MCLP technique for healthy and
PD reverberant speech for all considered acoustic systems.
As expected, it can be observed that MCLP yields a high

2For details on the MCLP technique, the reader is referred to [4].
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Figure 5: Dereverberation performance in terms of ∆CD
when using the MCLP technique on healthy and PD rever-
berant speech.

performance improvement for all considered acoustic sys-
tems when dereverberating healthy speech. Furthermore,
it can be observed that the performance improvement in
terms of both performance measures and for all considered
acoustic systems is higher for healthy speech than for PD
speech. Specifically, using MCLP for PD speech yields a
∆fwSSNR up to 1.6 dB lower than for healthy speech. In
addition, using MCLP for PD speech yields a ∆CD up to
0.6 dB higher than for healthy speech. The presented re-
sults confirm that state-of-the-art enhancement techniques
which have proven successful in enhancing healthy speech
by promoting super-Gaussianity of the spectral coefficients
yield a lower performance when enhancing PD speech.

4 Conclusion
In this paper, we have presented a model for the global dis-
tribution of PD speech spectral magnitudes and compared
it to the distribution of healthy speech spectral magnitudes.
Supported by empirical analysis, it has been shown that
due to increased vocal tremor and breathiness and due to a
decrease in the number of pauses, PD spectral coefficients
are less super-Gaussian than healthy spectral coefficients.
In addition, experimental results have shown that due to
this difference in the distribution of healthy and PD speech,
successful state-of-the-art speech enhancement techniques
exploiting super-Gaussianity yield a lower performance
when used on PD speech. Potential future steps are in
two directions. The first direction consists in developing
novel PD automatic detection and monitoring techniques
exploiting only the super-Gaussianity of the spectral coef-
ficients as a discriminatory feature between healthy and PD
speech. In addition, current automatic PD detection and
monitoring systems can be extended to include the super-
Gaussianity of the spectral coefficients as an additional dis-
criminatory feature. The second direction consists in using
this knowledge of the distribution of PD speech spectral
coefficients in statistical signal processing techniques tar-
geting PD speech.
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