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Abstract
The Generalised Command Response (GCR) model is a time-
local model of intonation that has been shown to lend itself to
(cross-language) transfer of emphasis. In order to generalise
the model to longer prosodic sequences, we show that it can be
driven by a recurrent neural network emulating a spiking neural
network. We show that a loss function for error backpropaga-
tion can be formulated analogously to that of the Spike Pattern
Association Neuron (SPAN) method for spiking networks. The
resulting system is able to generate prosody comparable to a
state-of-the-art deep neural network implementation, but poten-
tially retaining the transfer capabilities of the GCR model.
Index Terms: Speech synthesis, prosody modelling, recurrent
neural network, Fujisaki model

1. Introduction
We are interested in general in speech to speech translation, and
specifically in transfer of paralinguistics from one language to
another. For instance, if a speaker expresses emotion or em-
phasis in an input language, we would like those features to be
present in the synthetic speech resulting from machine transla-
tion of speech recognition output. In previous work with col-
leagues [1], we studied a model of prosody (actually intonation,
F0) based on the Command-Response (CR) model of Fujisaki
[2]. By contrast to the CR model, this Generalised CR (GCR)
model can be extracted easily from an intonation contour us-
ing a matching pursuit algorithm [3]. The time-local nature of
its constituent atoms was shown (by design) to lend itself to
transfer of emphasis. In particular, sections of intonation con-
tours can be replaced with others that carry different meaning,
all whilst retaining naturalness.

In this paper, we report on an investigation into how to use
GCR to generate longer intonation contours for more general
contour models. Of course, such contours can be generated by
any modern Text-to-Speech (TTS) system (we use Merlin [4]
to train a baseline system). However, we hope to retain the
transfer capability of the GCR. GCR also enables analysis of
the underlying physiological process.

Given that GCR atoms approximate (groups of) muscle re-
sponses to neural spikes, it would make sense to use a Spiking
Neural Network (SNN) to generate these atoms. The gener-
ated spikes would be filtered by muscle responses to generate
the pitch contour. However, the choice of a spiking network
paradigm is not obvious. Rather, given the authors’ familiarity
with conventional back-propagation based deep learning algo-
rithms and toolkits, we emulate a SNN. In this work we use a
bidirectional Recurrent Neural Network (RNN) which is capa-
ble of generating spikes, hence atoms, for a given text. This in
turn allows us to introduce a loss function for the training of

spiking outputs which is inspired by losses in SNNs. Further-
more, we explain how to weight the loss of different frames with
respect to spike positions and Voiced/Unvoiced (V/UV) deci-
sion to achieve good generalisation.We test the hypothesis that
prosody generated by our neural model sounds natural, even
though it might vary from the ground truth and that generated
by a baseline model.

Figure 1: Atom decomposition of Log-F0 (LF0) contour. Up-
per plot: Original LF0 contour (blue, solid), reconstruction
from atoms (orange, solid), phrase component (yellow, dashed).
Lower plot: Atom impulse responses with one colour per atom.

In the following sections, we give a brief overview of the
GCR model in the context of other work. We go on to show that
a bidirectional GRU based RNN can simulate the spikes that
might be expected to come from a biological spiking network.
We generalise the Spike Pattern Association Neuron (SPAN) al-
gorithm [5] from the literature to construct a loss function from
GCR atoms, and show that it can be backpropagated to allow
the system to generate natural prosody. We compare our model
in terms of objective and subjective measures with a strong
baseline system (bidirectional RNN + post-processing) which
is trained to predict LF0 per frame.

2. Relation to prior work
Numerous approaches to modelling prosody by the superpo-
sition of multiple F0 contours exist. The Tilt model [6] de-
scribes the pitch contour as a sequence of events with specific
shapes that can be automatically extracted. The INSINT (INter-
national Transcription System for INTonation) model [7] allows
automatic parameter extraction of the Tone and Break Indices
(ToBI) model [8] that divides prosody into multiple tiers of lin-
guistic focus. The General Superposition Model of Intonation
[9] models the pitch contour through a decomposition of micro-
prosodic segmental perturbations, an accent and a phrase curve.
The Superposition of Functional Contours (SFC) model [10] is
a data driven approach that models the pitch contour by a super-



position of intonation prototypes. A common drawback of all
models above is that none of them is based on observations of
the physiological production aspect. The proposed GCR model
is a physiologically based intonation model which has the same
representative power as the CR model of Fujisaki [2]. It gener-
ates the LF0 contour by a superposition of impulse responses
to critically damped second order systems modelling muscle re-
sponses (Figure 1). The impulse response of a critically damped
second order system is a gamma kernel

Gk,θ(t) =
1

θkΓ(k)
tk−1e−t/θ for t ≥ 0 (1)

with k being the system order, Γ being the gamma function, and
θ determining the length of the kernel. For a critically damped
second-order system as well as the CR model k = 2, how-
ever previous research [11] has found that k = 6 gives better
approximations of the original LF0 contour. A phrase addition-
ally consists of a phrase atom (phrase command in CR model)
which models the general shape of the contour and is correlated
mainly to the physics of the speakers’ lung volume (dotted line
in upper plot of Figure 1). Experiments have shown that the
proposed model is capable of producing good representations
and can transplant emphasis from one language to another [12].

The work closest to our approach is that of Hojo et. al. [13]
where the CR model is represented by a constrained HMM, and
a Neural Network (NN) predicts the posteriori probability of
its states. A Viterbi-like algorithm extracts the most probable
sequence based on the posteriors. The LF0 generation based on
the sequence is then straight forward and has been done before
[14].

3. Atom Prediction
3.1. Spiking Neural Network

Rather than use an explicit spiking paradigm such as leaky in-
tegrate and fire (LIF), we instead emulate such a network using
a conventional backpropagation network. This is achieved us-
ing a bidirectional RNN as described in [15]. Rather than use
LSTMs with peepholes as in that paper, we use the GRU of
[16] where peepholes are moot. The error is defined using the
learning rule described in the following section.

3.2. Atom Loss

For a regression task which targets spiking output of varying
amplitudes the commonly used Mean-Squared-Error (MSE) is
not an appropriate loss function as it does not consider any tem-
poral information of spikes. The problem breaks down to mea-
suring the distance between two spike trains. Various methods
exist to compute such a distance such as the Victor-Purpura met-
ric [17], the Van Rossum Similarity Measure [18], the Schreiber
et al. Similarity Measure [19], the Hunter-Milton Similarity
Measure [20], Event Synchronization [21], Stochastic Event
Synchrony (SES) [22], and the modulus- and max-metrics [23].
In general we are interested in a learning rule that uses such
temporally-aware measurements to compute losses during train-
ing. We have not found a suitable learning rule in the litera-
ture for feed-forward NN or RNNs but instead in the field of
SNNs. The closest precedent to the learning rule we propose is
the SPAN method [5]. In SPAN, each spike is convolved with
an “alpha” kernel which adds temporal information of the spike
to all surrounding/succeeding frames. On the resulting continu-
ous output MSE can be used as the learning rule. The authors of
the SPAN method state that other kernel functions are possible

as Gaussian, linear and exponential kernels [24] . The choice
of kernel in the literature is driven by the supposed shape of the
post-synaptic potential of neurons in the human brain. How-
ever, the spikes we are interested in represent muscle impulses
with responses modelled by a gamma kernel as described in
2. We therefore use the gamma kernel as the kernel function.
The length θ of the kernel is by no means obvious. While the
desired length of correctly placed spikes is known, no ground
truth is available for incorrectly placed spikes. We found that a
single short kernel with θ = 0.01 for all convolutions adds the
required temporal information to each spike.

Let us define the matrix G which has the coefficients of the
gamma kernel on its leading and above leading diagonals with
size (T × T ) where T is the number of frames in a training
sample. Further define yo as the output of the NN and yd as
the desired output each of size (T × 1). All spikes can be con-
volved independently from each other with the kernel function
by diag(y) · G = Y (compare Figure 2). We denote ỹd as the
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Figure 2: Frame-wise convolution of NN output yo and desired
output yd.

desired enveloped output given by the sum of all rows of Yd
which corresponds to a superposition of envelopes. The error at
each time step t is computed by

errt =

t+∆t∑
i=t

(Yo,t,i − ỹd,i)2 (2)

with Yo,t,i being the t-th row and i-th column of Yo, and ỹd,i be-
ing the i-th entry in ỹd. ∆t is given by the length of the gamma
kernel used to convolve each spike and represents the number
of frames where a spike takes effect. To limit the interval of the
sum to [t, t + ∆t] is critical so that the error is not affected by
succeeding parts of the sequence where the spike cannot take
effect. To compute the sum efficiently we define the matrix S
of size (T × T ) which is the same matrix as G but with ones
at non-zero entries of G and zero otherwise. By utilizing the
Hadamard product E = S⊗YE , with YE = square[Yo−1ỹd]
and square[ ] being the element-wise square operation, entries
outside the [t, t+∆t] interval are zeroed. The error at time step
t is given by the squared norm of the t-th row of E.

errt = ‖Et‖22 (3)

Note that the error is computed frame-wise without the super-
position of the enveloped NN output, which means that neigh-
bouring spikes cannot interfere. When allowing the interference
of spikes two problems arise:

• The NN learns to represent a single target spike by mul-
tiple smaller spikes.



• The NN predicts many spikes with opposite amplitude
which cancel out.

The former problem is an acceptable variation to our model
when assuming that a muscle response is not triggered by a sin-
gle nerve impulse but multiple ones. However, the latter prob-
lem gives clearly unintended and physiological implausible be-
haviour. Therefore we use the frame-wise atom loss hereafter.
A NN trained with the above learning rule gives an activation
around each spike position and thus requires a post-processing
step to identify the peaks.1

3.3. Amplitude Prediction

For any atom the prediction of position, amplitude and length θ
is required. A single position flag trained with atom loss intro-
duced above in section 3.2 gives good estimates of the position
of spikes (yd,t ∈ {−1, 0, 1}) but cannot predict amplitude and
length at the same time. Unfortunately, we were not able to train
a NN to predict a θ value directly. Instead, besides the position
flag, the NN is trained with MSE to predict one amplitude per
θ for a fixed set of θs. The set of θs needs enough values to
allow an approximation of the target LF0 contour with low er-
ror, but is limited which corresponds to the limited number of
articulators in the human larynx. When training on amplitude
spikes the problem of a highly unbalanced training set arises
(>99.8% of all frames are zero). A network trained with MSE
will therefore uniformly predict zeros and achieve a >99.8%
accuracy. The problem can be solved by small adaptations to
data and loss. First each amplitude spike is convolved by a nor-
mal distribution in time with a window of 51 frames. Secondly
the loss of frames which are non-zero in the desired output are
increased while all others are decreased resulting in a Weighted
Mean-Squared-Error (WMSE).

3.4. Voiced/Unvoiced Prediction

The network also predicts a flag for V/UV LF0 where values
>0.5 are mapped to voiced frames. The target V/UV flag is used
to decrease the weight of both losses (atoms and amplitudes) by
0.5 on unvoiced frames. The value of 0.5 was confirmed by
a heuristic search. By this the network spends less effort on
improving parts which are silent after synthesis.

4. Experiments
In running experiments, we mean to test the hypothesis that the
basic procedure described above is a plausible approach to gen-
erate natural sounding intonation. The system is preliminary.
A-priori we do not expect it to generate state-of-the-art into-
nation contours; rather, we simply aim to validate that the ap-
proach merits further research.

4.1. Experimental Setup

We test our proposed model on the speech database released for
the 2008 Blizzard Challenge [25] on a subset (carroll, arctic,
theherald 1,2,3) of the native English Voice A (Roger) of about
6.5 hours on a 16 kHz sampling rate. We only use those sam-
ples which can be represented by a single phrase atom. 5% of
all samples are set aside for testing which corresponds to ap-
proximately 20 minutes.

Festival [26] is used to obtain phone sequences from text
which are force-aligned by context-independent HMMs with

1We use the scipy.signal.find peaks cwt function.

the help of Merlin [4]. Merlin is used again to characterise
phones with 416 text-derived binary and numerical features
such as quin-phone identities, part-of-speech, positional infor-
mation relating to syllables, words, and phrases, which are nor-
malised to [0.01, 0.99]. These questions are used as input for
all systems.

The WORLD vocoder [27] (D4C edition [28]) is used to
extract 60-dimensional Mel Frequency Cepstral Coefficients
(MFCC), one band aperiodicity (BAP), and fundamental fre-
quency (F0) on log scale at 5-ms frame step. Dynamic features
are also computed but are only used in the baseline system. LF0

is interpolated before training and a binary V/UV flag is used to
capture voicing information. The acoustic features are mean-
variance normalised.

From the extracted LF0 atoms are computed by match-
ing pursuit as proposed in [1] including a single phrase
atom. Atom amplitudes are mean-variance normalised. The
length of an atom is limited to nine discrete values θ ∈
{0.01, 0.015, 0.02, . . . , 0.05} which were found to be able to
model theLF0 contour with low error in previous research [11].

4.2. Network Topologies

The baseline system is similar to the one used in [29] follow-
ing the usual approach by predicting acoustic features plus their
dynamic components. It consists of two feed-forward RELU
layers of 1024 nodes, three bi-directional GRUs with 512 nodes
each, and a final linear output layer with 187 nodes. The model
is trained with Adam [30] on 35 epochs (learning rate 0.002).

The model we propose consists of three feed-forward
RELU layers with 128 nodes, two bi-directional GRUs with 64
nodes each, two feed-forward RELU layers with 128 nodes, and
a final linear output layer with 11 nodes. It predicts one V/UV
flag, nine amplitudes (one per θ), and a spike position flag.
The model is trained with Adam on 55 epochs (learning rate
0.0002). In both cases we use β1 = 0.9, β2 = 0.999, ε = 10−8

for Adam.

4.3. Synthesis

For all tests the original durations, MFCCs, and BAPs are used
as we are only interested in the impact of different LF0s on
naturalness. For the baseline system LF0 is improved by maxi-
mum likelihood parameter generation (MLPG) [31] using vari-
ances computed from the training data. The waveform is syn-
thesized by the WORLD vocoder.

In our proposed model, the spike position flag is post-
processed to identify its peaks which results in a value of
{−1, 0, 1} per frame. Atoms are constructed by taking the max-
imum of the nine predicted amplitudes for positive spikes and
the minimum for negative spikes respectively. The θ value is
implicitly given by the index of the selected amplitude within
the nine outputs. LF0 is reconstructed by superposition of all
predicted atoms and the original phrase atom (Figure 3). We
plan to predict the phrase atom as well in the future.

4.4. Objective Results

To objectively compare the models we compute the Root-Mean-
Squared-Error (RMSE) of F0 on all frames which are voiced
either in the target data or in the network prediction, and the
V/UV error rate. Our model preforms slightly worse than the
baseline system (compare Table 1) but certainly close enough
to validate our hypothesis that the approach is plausible.



Figure 3: Synthetic features on a temporal scale of 5 ms per frame. Plot descriptions from top to bottom: 1: Nine amplitude outputs
(one per θ). 2: Spike position flag before post-processing. 3: Atom spikes generated from spike position and amplitude max/min, V/UV
flag (unvoiced frames grey). 4: Target atom spikes and target V/UV flag (unvoiced frames grey). 5: LF0 (without phrase component)
NN reconstruction (blue, solid), target reconstruction (red, dotted), original (green, dashed) and target V/UV flag (unvoiced frames
grey).

Table 1: Objective results.

Model F0 RMSE V/UV
baseline 44.46 Hz 5.43 %

atom 49.89 Hz 5.94 %

Figure 4: Subjective score of MUSHRA intonation test. Medi-
ans as orange lines. Sample averages as green triangles. Out-
liers as circles.

4.5. Subjective Results

We measured the naturalness of the synthesised speech by
a MUSHRA test2 (Figure 4) where we compared our model
(atom) and the baseline (baseline) with the speech produced by
the vocoder with the original acoustic features (reference). We
randomly selected a subset of 20 samples from the test set ex-
cluding those where the speaker takes a breath half way through
as those samples require further phrase atoms. 17 non-native but

2Listening test are designed with the BeaqleJS toolkit [32].

fluent English speakers participated in the test. Each of them
was asked to listen to 5 randomly selected samples from that
subset and rate them on a scale from 0 to 100. They were told to
focus on prosody only and ignore minor fuzzy/buzzy artefacts.
As the most natural prosody is found in the reference sample,
we excluded 18 results where the listener rated the baseline or
the atom system more than 10 points higher than that reference.
A two-tailed paired t-test on the individual ratings for the base-
line and atom system gives a p-value of p = 0.12 > 0.05 sup-
porting our assumption that the two system are not significantly
different on a difference level of 0.05. The two-tailed paired
t-tests show that both systems are significantly different to the
reference. The p-value for baseline – reference is p = 1.39e−9,
and for atom – reference: p = 2.54e−12.

5. Conclusions
We have shown that the combination of an emulated spiking
network, a dictionary of atoms representing muscle responses,
and a SPAN-inspired training algorithm can generate reasonable
intonation contours. Although “reasonable” is open to inter-
pretation, the algorithm produces subjective results that are not
significantly different from an accepted baseline. The proposed
training algorithm for spiking targets enables the use of DNNs
in other research fields currently dominated by SNNs. Future
work includes the prediction of phrase atoms, exploiting the ca-
pabilities of the GCR model to produce / transfer affect, and
reduce the number of heuristics identifying hyper-parameters.

6. Acknowledgements
This research was supported by SNSF Project number 165545,
MASS: Multilingual Affective Speech Synthesis, http://p3.snf.
ch/Project-165545.

http://p3.snf.ch/Project-165545
http://p3.snf.ch/Project-165545


7. References
[1] P.-E. Honnet, B. Gerazov, and P. N. Garner, “Atom

decomposition-based intonation modelling,” in Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International
Conference on. IEEE, 2015, pp. 4744–4748.

[2] H. Fujisaki, S. Ohno, and C. Wang, “A command-response model
for F0 contour generation in multilingual speech synthesis,”
in The Third ESCA/COCOSDA Workshop (ETRW) on Speech
Synthesis, 1998. [Online]. Available: http://www.isca-speech.org/
archive open/archive papers/ssw3/ssw3 299.pdf

[3] S. G. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,” IEEE Transactions on signal processing,
vol. 41, no. 12, pp. 3397–3415, 1993.

[4] Z. Wu, O. Watts, and S. King, “Merlin: An open source neural
network speech synthesis system,” Proc. SSW, Sunnyvale, USA,
2016.

[5] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, “Train-
ing spiking neural networks to associate spatio-temporal input–
output spike patterns,” Neurocomputing, vol. 107, pp. 3–10, 2013.

[6] P. Taylor, “Analysis and synthesis of intonation using the tilt
model,” The Journal of the acoustical society of America, vol.
107, no. 3, pp. 1697–1714, 2000.

[7] D. Hirst, A. Di Cristo, and R. Espesser, “Levels of representation
and levels of analysis for the description of intonation systems,”
in Prosody: Theory and experiment. Springer, 2000, pp. 51–87.

[8] K. Silverman, M. Beckman, J. Pitrelli, M. Ostendorf, C. Wight-
man, P. Price, J. Pierrehumbert, and J. Hirschberg, “Tobi: A stan-
dard for labeling english prosody,” in Second international confer-
ence on spoken language processing, 1992. [Online]. Available:
http://www.isca-speech.org/archive/icslp 1992/i92 0867.html
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