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Abstract

A long standing goal in artificial intelligence is to make robots seamlessly interact with

humans in performing everyday manipulation skills. Learning from demonstrations or

imitation learning provides a promising route to bridge this gap. In contrast to direct

trajectory learning from demonstrations, many problems arise in interactive robotic ap-

plications that require higher contextual level understanding of the environment. This

requires learning invariant mappings in the demonstrations that can generalize across dif-

ferent environmental situations such as size, position, orientation of objects, viewpoint of

the observer, etc.

In this thesis, we address this challenge by encapsulating invariant patterns in the demon-

strations using probabilistic learning models for acquiring dexterous manipulation skills.

We learn the joint probability density function of the demonstrations with a hidden semi-

Markov model, and smoothly follow the generated sequence of states with a linear quadratic

tracking controller. The model exploits the invariant segments (also termed as sub-goals,

options or actions) in the demonstrations and adapts the movement in accordance with the

external environmental situations such as size, position and orientation of the objects in

the environment using a task-parameterized formulation. We incorporate high-dimensional

sensory data for skill acquisition by parsimoniously representing the demonstrations using

statistical subspace clustering methods and exploit the coordination patterns in latent

space. To adapt the models on the fly and/or teach new manipulation skills online with

the streaming data, we formulate a non-parametric scalable online sequence clustering algo-

rithm with Bayesian non-parametric mixture models to avoid the model selection problem

while ensuring tractability under small variance asymptotics.

We exploit the developed generative models to perform manipulation skills with remotely

operated vehicles over satellite communication in the presence of communication delays and

limited bandwidth. A set of task-parameterized generative models are learned from the

demonstrations of different manipulation skills provided by the teleoperator. The model

captures the intention of teleoperator on one hand and provides assistance in performing

remote manipulation tasks on the other hand under varying environmental situations. The

assistance is formulated under time-independent shared control, where the model contin-
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uously corrects the remote arm movement based on the current state of the teleoperator;

and/or time-dependent autonomous control, where the model synthesizes the movement

of the remote arm for autonomous skill execution. Using the proposed methodology with

the two-armed Baxter robot as a mock-up for semi-autonomous teleoperation, we are able

to learn manipulation skills such as opening a valve, pick-and-place an object by obsta-

cle avoidance, hot-stabbing (a specialized underwater task akin to peg-in-a-hole task),

screw-driver target snapping, and tracking a carabiner in as few as 4 − 8 demonstrations.

Our study shows that the proposed manipulation assistance formulations improve the per-

formance of the teleoperator by reducing the task errors and the execution time, while

catering for the environmental differences in performing remote manipulation tasks with

limited bandwidth and communication delays.

keywords: generative models, learning from humans, hidden semi-Markov models, task-

parameterized models, subspace clustering, Bayesian non-parametric mixture models, on-

line learning, telerobotics, teleoperation



Résumé

Un objectif de longue date en intelligence artificielle est de permettre aux robots d’interagir

sans difficulté avec les humains en accomplissant des gestes de manipulation de la vie de

tous les jours. La programmation par démonstration ou l’apprentissage par imitation est

une approche prometteuse pour franchir ce cap. De manière opposée à l’apprentissage

direct des trajectoires des démonstrations, beaucoup de problèmes pour des applications

robotiques interactives requièrent un plus haut niveau de compréhension contextuel de

l’environnement. Cela nécessite d’apprendre les éléments invariants des démonstrations

qui peuvent être généralisés à différentes situations relatives à l’environnement, comme la

taille et l’orientation des objects, le point de vue de l’observateur, etc.

Dans cette thèse, nous extrayons les motifs invariants des démonstrations en utilisant des

modèles d’apprentissage probabilistes pour acquérir des compétences de manipulation pré-

cise. Nous apprenons la densité de probabilité jointe des démonstrations avec un hidden

semi-Markov model et suivons la séquence d’états générée avec un contrôleur de suivi

linéaire quadratique. Le modèle exploite les motifs invariants des démonstrations et adapte

le mouvement en fonction des situations de l’environnement externe, comme la taille, la

position et l’orientation des objets dans l’environnement. Nous incorporons des données

sensorielles de grande dimension pour l’acquisition de compétences, en représentant les

démonstrations parcimonieusement, en utilisant des méthodes statistiques de partition-

nement en sous-espaces, et en exploitant les motifs de coordinations dans ces sous espaces.

Pour adapter les modèles à la volée et/ou pour apprendre des nouvelles compétences de

manipulation en continu à l’aide des données, nous formulons un algorithme en ligne de

partitionnement des séquences, non-paramétrique et adaptable. Ceci est réalisé à l’aide de

modèles de mixtures bayésiennes non-paramétriques afin d’éviter les problèmes de sélection

du modèle tout en assurant la traçabilité en présence de petites variations.

Nous exploitons les modèles génératifs développés pour des compétences de manipulation

avec des véhicules opérés à distance via des communications satellites, caractérisées par la

présence de délais dans la communication et possédant une bande-passante limitée. Un set

de modèles génératifs paramétrés par la tâche est appris à partir des démonstrations des

différentes compétences de manipulation fournies par le téléopérateur. Le modèle capture
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d’une part l’intention du téléopérateur et, d’autre part, l’assiste pour effectuer des tâches

de manipulations opérées à distance dans des situations où l’environnement est variable.

L’assistance est formulée autour d’un contrôle partagé indépendant du temps, où le modèle

corrige continuellement le mouvement du bras opéré à distance sur la base de l’état courant

du téléopérateur; et/ou d’un contrôle autonome dépendant du temps, où le modèle syn-

thétise le mouvement du bras opéré à distance pour l’exécution autonome de la tâche. Le

robot Baxter, muni de 2 bras, est utilisé commen plateforme de test pour la téléopération

semi-autonome. Avec ce robot, nous pouvons apprendre des compétences de manipulation

comme ouvrir une valve, prendre et placer un object en évitant les obstacles, connecter des

câbles avec des tuyaux, placer un tournevis dans un emplacement spécifique, ou accrocher

un mousqueton en 4 à 8 démonstrations. Les techniques développées d’assistance à la

manipulation améliorent les performances du téléopérateur et s’adaptent aux différences

dans l’environnement pour exécuter des tâches de manipulation à distance avec une bande

passante limitée et des délais dans la communication.

Mots clefs: modèles génératifs, apprentissage par interaction homme-machine, chaînes

semi-Markoviennes, partitionnement en sous-espaces, modèles de mixtures non-paramétriques

bayésiens, apprentissage en continu, télérobotique, téléopération.
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Chapter 1

Robot Learning

Contents

1.1 Robot Learning Problems: An Overview . . . . . . . . . . . . . . . 3

1.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 (Inverse) Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Robot Learning for Teleoperation . . . . . . . . . . . . . . . . . . . 10

1.2.1 DexROV: Dexterous Remotely Operated Vehicle Operations . . . . . 12

1.2.2 Proposed Semi-Autonomous Teleoperation Approach . . . . . . . . . . 14

1.3 Thesis Contributions and Organization . . . . . . . . . . . . . . . . 15

The world around us is going to change markedly with the use of robots assisting humans in

everyday tasks. Robots are envisioned to be part of our daily lives in the form of wearable

devices, search and inspection robots, medical robots, unmanned aerial vehicles/drones,

autonomous driving cars, warehouse management systems and many other household and

industrial applications. Despite popular imagination, majority of the robots today are

limited to factories and assembly plants where they perform predefined tasks in a controlled

environment. Such robots can be dangerous to the co-workers because of their large size

and are typically separated by safety cages.

The next generation of robots relies on human-robot collaboration to overcome the adap-

tation barriers in the real world. Sensing, actuation and interaction technologies are at the

core to facilitate natural collaboration between humans and machines. Better and cheaper

sensors allow the robot to perceive the environment and respond accordingly. The actu-

ation mechanisms and robot bodies are becoming more lightweight and flexible, allowing
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‘soft’ interaction with the environment in a reliable and safe manner. More and more on-

board computation is being performed on the cloud to make robots compact and modular

for deployment in real-world environments.

Among all these advancements, the problem of motor control in robotics presents a basic

ubiquitous challenge because of the complex robot dynamics, high dimensional sensory data

and unstructured environmental conditions. Despite efforts to build good dynamic models

and find computationally feasible closed loop controllers, it is difficult to predetermine the

desired behaviour for every situation in terms of what the robot should do and what it

should not. Robot learning is a fundamental characteristic to achieve true autonomy in

robots. It enables a robot to acquire new skills from training examples representing the

skill rather than directly programming them. Example of such skills include locomotion,

grasping, object tracking and so on. Most of the work in robot learning is based on self-

exploratory autonomous learning a.k.a reinforcement learning [Sutton 1992, Peters 2008,

Kober 2013, Kormushev 2013], model learning [Nguyen-Tuong 2011] or imitation learning

for skill acquisition [Schaal 2003, Argall 2009, Billard 2016].

Learning from humans, also known as imitation learning or programming by demonstration,

provides a promising approach to facilitate robot learning in the most ‘natural’ way. Instead

of hard coding/programming the robot to perform a task, the robot learns a new skill by

observing a human performing the task. The goal of the robot is not to merely record

and replay the demonstrated behaviour, but to be able to generalize across new situations

of the task. The main challenges involved in robot learning from demonstrations include

[Nehaniv 2004], 1) what-to-learn – acquiring meaningful data to represent the important

features of the task from demonstrations, and 2) how-to-learn – learning a control policy

from the features to reproduce the demonstrated behaviour.

We broadly address what-to-learn and how-to-learn problem in the context of robot learn-

ing from human demonstrations in this thesis. We are interested in quickly learning

manipulation tasks from human demonstrations by breaking them down into meaning-

ful segments and sequencing them together to generalize across different environmental

situations. The problem of segmenting the demonstrations has been studied in different

contexts in various scientific communities, such as action detection or activity recogni-

tion in computer vision (see [Spriggs 2009, Yeung 2016] for example); options framework

in the reinforcement learning community (see [Stolle 2002, Krishnan 2017] for example);

sequencing primitives in robotics (see [Pastor 2012, Manschitz 2016, Medina R. 2017] for

example). We are interested in the generative modeling aspect of the demonstrations for

segmentation, recognition, and synthesis of robot manipulation tasks. We study these

models in the context of task-parameterized models, under which the demonstrations are
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Figure 1.1: Robots can acquire manipulation skills from human demonstrations using
supervised learning, inverse reinforcement learning and/or unsupervised learning. (images
adapted from https:// shutterstock.com)

observed in different coordinate systems describing virtual landmarks or objects of interest

and the model is adapted according to the environmental changes in a systematic manner

[Wilson 1999, Calinon 2016, Tanwani 2016a]. In this thesis, we develop a family of these

models for acquiring dexterous manipulation skills. We are interested in recognizing the

intention of the user in the demonstrations and subsequently, exploit these generative mod-

els to perform dexterous manipulation with robots that are far away from us by providing

assistance to the user. Our application specific goal is to perform these dexterous manip-

ulation activities remotely in challenging underwater environments, inspired by how space

telerobotics have enabled us to operate the Curiosity rover on Mars from the control center

on Earth via satellite communication.

The chapter is organized as follows: we first provide an overview of robot learning from

demonstrations in the context of this thesis. We then explain the application scenario of our

work for performing remote manipulation tasks by semi-autonomous teleoperation. Finally,

we provide an outlook to the remaining chapters and summarize the main contributions of

the thesis.

1.1 Robot Learning Problems: An Overview

Learning from demonstrations can be formulated in different ways depending upon the

underlying assumptions of the environment and the model. Let us denote ξt ∈ R
D as

the state of the environment at time t. The state may represent the visual observation,

kinesthetic data such as the pose and the velocities of the end-effector of the human arm,

haptic information, or any arbitrary features defining the task variables of the environ-

ment. Given a set of datapoints {ξt}Tt=1 over T time steps representing N demonstrations

https://shutterstock.com
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of performing the task under different initial conditions of the environment, the goal of

learning from demonstrations is to find the policy or function that outputs the control

input ut ∈ R
m at each time step such that the robot is able to execute the underlying

task in a smooth manner. The control policy can be a function of the current state of the

environment ξt, and/or time t in an implicit or explicit manner. The problem of learning

this control policy from demonstrations can be formalized in three main ways depending

upon the underlying assumptions of the demonstrations (see Fig. 1.1).

1.1.1 Supervised Learning

In supervised learning problems, the learner is given training examples of the form of input-

output pairs {(ξt,yt)}Tt=1 where the output yt may be discrete for classification problems

or continuous for regression problems. The input samples ξt are assumed to be drawn from

a fixed probability distribution P(ξt) and are mapped to predict the output samples yt by

the function f : ξt → yt. The mapping can be deterministic, yt = f(ξt), or the output

samples can be stochastically obtained by computing f(ξt) + ε where ε is a white noise

added to the output.

Without loss of generality, we represent the function learned from training examples by

regression yt = f(ξt;θ) with parameter vector θ ∈ R
K . The parameters compactly rep-

resent the relationship between the input and the output samples that allow prediction

for new unseen input data. Most common methods to estimate the function parameters

from training examples including Locally Weighted Regression (LWR) [Atkeson 1997b],

Locally Weighted Projected Regression (LWPR) [Vijayakumar 2000], Gaussian Mixture

Regression (GMR) [Ghahramani 1994], Support Vector Regression [Smola 2004], Gaussian

Process Regression [Rasmussen 2006]. An interested reader can see a unifying review of

these regression approaches in [Stulp 2015]. Two common encoding representations most

commonly used with supervised learning include

1) Time-Indexed Reference Trajectory: The input sequence can be described in

terms of a time-indexed reference trajectory [Peters 2008]. The reference trajectory can be

translated into the control input ut using a proportional-derivative (PD) controller at each

time step [Miyamoto 1996], ut = K(ξ̂t − ξt), where, K ∈ R
m×D represents the stiffness

and damping gains and ξ̂t = f(t; θ) is the learned desired reference trajectory.

2) Dynamic Movement Primitives: The demonstrations are formulated as a set of non-

linear differential equations with well-defined attractor dynamics [Ijspeert 2002]. A DMP

consists of a transformation system and a canonical system, where the transformation
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system exploits the attractor properties of a dynamical system for discrete or rhythmic

behaviour and the canonical system determines the ‘phase’ of the system functioning as

a substitute of time. The two systems are coupled with a non-linear forcing term that

modifies the attractor landscape of the dynamic system according to the desired trajectories.

The advantage of this transformation is that time is implicitly embedded in the phase which

can be manipulated easily to control the evolution of the system (for example, adding

coupling terms, phase resetting etc.) [Ijspeert 2013].

1.1.2 (Inverse) Reinforcement Learning

Humans are able to analyze their decisions in an abstract way based on rewards and

penalties. It is often easier to describe the demonstrations in terms of a score reflecting the

performance criterion of a skill, than to directly encode the demonstrations [Mnih 2015].

For example, in order to learn the skill of swinging up a pendulum and balancing on a

hand, it may be easier to assign a positive score only when the pendulum is balanced.

Such problems are formalized in the context of RL where the goal is to find a policy

such that the sum of scores assigned to the states visited by the learner are maximized

over some time horizon [Sutton 1992]. The key difference in this context compared to

supervised learning is that there is no fixed distribution P(ξt) from which the datapoints

are drawn and the learner is required to choose which datapoints to visit. Moreover, the

goal in reinforcement learning is to find the sequence of datapoints that maximize the sum

of scores or rewards received while visiting the datapoints, compared to minimizing the

loss function over the entire space in supervised learning. Note that solving the problem

now requires knowledge about the transition dynamics of the environment as well in order

to choose better control actions and visit datapoints with higher rewards.

When the human behaviour encapsulates such sequential decision making based on rewards,

it makes more sense to transfer the underlying reward function to the robot, instead of

directly imitating the demonstrated behaviour. The whole paradigm of RL is based on the

assumption that reward function – not the policy – is the most succinct and transferable

representation of a skill. Inverse reinforcement learning is motivated by the difficulty to

specify the reward function in reinforcement learning [Ng 2000, Abbeel 2004, Ziebart 2008,

Neu 2012]. Even when a reward function is difficult to describe exactly, it is usually in-

tuitive to decide what the reward function must depend on as there are often multiple

criteria the learner should optimize for in the policy, e.g, in a car driving example, avoid

collision with other cars and pedestrians while driving as fast as possible and so on. Com-

bining these multiple desired criteria into one scalar reward function is often non-trivial
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and results in a waste of time and data samples required to hand-tune the parameters.

Compared to supervised learning approach of penalizing deviations from demonstrations

using some regression technique, IRL extracts the reward function to acquire a compact

representation of the skill in the demonstrations and then produces the optimal policy to

generalize in new situations.

Although attractive for better generalization in new situations for sequential decision mak-

ing problems, extracting the true reward function from demonstrations is challenging due

to the ill-posed nature of the problem. Many reward functions lead to the same opti-

mal demonstrations, for example, all demonstrations are optimal for zero reward function.

Moreover, it is well-known that humans vary widely in performing sequential decision-

making tasks, possibly differing in their intentions or ways of gauging task-dependent

features. In chapter 2, we address the problem of rewards-driven learning from multi-

ple demonstrators with different underlying intention(s) or strategies of performing a task

[Tanwani 2013b].

1.1.3 Unsupervised Learning

In the unsupervised learning case, there are no labels or targets for the training samples in

the demonstration. The goal of unsupervised learning is to model the underlying probabil-

ity distribution or density function of the demonstrations P(ξt) from which the datapoints

are sampled in order to reveal the structure in the demonstrations.

With the increasing amount of high-dimensional sensory data and multimodal interfaces

for skill acquisition in robotics, unsupervised algorithms aim to discover the patterns in the

data on their own that can be used for reasoning, decision making, prediction and so on.

Note that unsupervised learning is a considerably harder problem than supervised learning

since there are no target output to learn from. Unsupervised learning is most commonly

used to group the demonstrations into different segments/clusters, dimensionality reduction

and/or to learn the association rules from the demonstrations [Weber 2000].

Generative models are most commonly used for unsupervised learning where the goal is to

train a model that can generate the data like the observed demonstrations. These models

learn the joint probability distribution of the data, in contrast to discriminative models

that directly learn the conditional probability distribution of the demonstrations as in

supervised learning problems. The most commonly used generative models include Gaus-

sian mixture models, Hidden Markov models [Rabiner 1989], Naive Bayes [Friedman 1997],

latent space models (Principal Component Analysis, Factor Analysis) [Fodor 2002], Re-
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stricted Boltzmann machine [Salakhutdinov 2007], and Generative Adversarial Networks

[Goodfellow 2014]. All these models can be seen as an instance of a basic generative model

[Roweis 1999]. In contrast, common discriminative models include Logistic regression, Sup-

port Vector Machines, Maximum Entropy Models, Conditional Random Fields, and Neural

Networks. Other approaches such as semi-supervised learning are also gaining popularity

now in problems where only a few datapoints are associated with target outputs [Zhu 2009].

The major focus of this thesis is on learning and reproduction of manipulation skills with

generative mixture models. Gaussian mixture models (GMMs) are widely used to

encode local trends in the demonstrations. For example, the demonstrations can be en-

coded as a state-dependent autonomous dynamical system (independent of passing time)

of the form ξ̇ = f(ξ;θ) [Khansari-Zadeh 2011]. Hidden Markov models (HMMs)

encapsulate spatial and temporal information by augmenting a GMM with latent vari-

ables that sequentially evolve over time in the demonstrations. HMMs are widely used

for time series/sequence analysis in speech recognition, machine translation, DNA sequenc-

ing, robotics and many other fields [Rabiner 1989]. HMMs have been typically used for

recognition and generation of the movement skills in robotics [Asfour 2008, Calinon 2010,

Lee 2010b, Vakanski 2012]. Several shortcomings of encoding with HMMs have been

pointed out in the literature, including: 1) how to bias learning towards models with longer

self-dwelling states, 2) how to robustly estimate the parameters with high-dimensional noisy

data, 3) how to adapt the model with newly observed data, 4) how many states should the

model possess.

In this thesis, we present several alternatives to make robot learning with generative mix-

ture models suitable for encoding and decoding of real-world robot manipulation tasks

under varying environmental situations.

We build upon Hidden semi-Markov models (HSMMs) that replace the self-transition

probabilities of staying in a state with an explicit model of state duration [Yu 2010]. This

helps to adequately bias the generated motion with longer state dwell times for skill acqui-

sition. We show representations with different sensory encodings and exploit the variability

in the demonstrations with a linear quadratic tracking (LQT) controller during repro-

duction [Tanwani 2016a].

We perform segmentation and dimensionality reduction simultaneously with subspace

clustering methods to impose a parsimonious structure on the covariance matrix and

reduce the number of parameters that can be robustly estimated. We learn the model

in latent space based on statistical decomposition of the covariance matrix, and exploit

coordination patterns and synergistic directions for scalable and efficient skill encoding of
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Figure 1.2: Generative model formulations developed in the thesis for robot learning prob-
lems on Z-shaped data: (top-left) demonstrations encoded with a hidden semi-Markov
model and decoded with a linear quadratic tracking controller (Chap. 3), (top-right) the
movement data is encoded in latent space for parsimonious representation and better gener-
alization (Chap. 4), (bottom) Bayesian non-parametric scalable online sequence clustering
of the demonstrations (Chap. 5).
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Figure 1.3: Task-parameterized formulation of generative models for robot learning (Chap.
3 – 5). The demonstration on left are observed from the coordinate systems that move with
the object (starting in purple position and ending in green position in each demonstration)
and the generative model is learned in the respective coordinate systems. The model
parameters in respective coordinate systems are adapted to the new unseen object positions
by computing the products of linearly transformed Gaussian mixture components. The
resulting HSMM is combined with LQT for smooth retrieval of manipulation tasks.

the demonstrations [Tanwani 2016c].

Bayesian non-parametric treatment of these clustering problems provides flexibility

in model selection by maintaining an appropriate probability distribution over parame-

ter values with infinite number of states. Although attractive for encapsulating a priori

information about the task, the computational overhead of existing sampling-based and

variational techniques for inference limit the widespread use of these models. Recent anal-

ysis of Bayesian non-parametric mixture models under small variance asymptotic (SVA)

limit has led to simple deterministic models that scale well with large size applications

[Kulis 2012, Broderick 2013]. For example, as the variances of the mixture model tend

to zero in a GMM, the probabilistic model converges to its deterministic counterpart, k-

means, or to its non-parametric Dirichlet process (DP) version, DP-Means [Kulis 2012]. We

formulate online learning algorithms of Bayesian non-parametric mixture models, namely

Dirichlet process Gaussian mixture model (DP-GMM), Dirichlet process mixture of prob-

abilistic principal component analysis (DP-MPPCA), and hierarchical Dirichlet process

hidden semi-Markov model (HDP-HSMM). Applying SVA limit yields a scalable online

sequence clustering (SOSC) algorithm which allows the model to readily adapt online with

streaming high-dimensional data [Tanwani 2016b, Tanwani 2016c].

An overview of these models can be seen in Fig. 1.2. A task-parameterized formulation of

these models is used to make the model invariant with respect to changing environmental

situations such as position/size/orientation of the objects (see Fig. 1.3 for an overview

of the invariant task representation method). This allows us to efficiently encode and

synthesize motion for skill acquisition with a few expert demonstrations in an invariant

manner.
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1.2 Robot Learning for Teleoperation

Teleoperation provides a low cost solution to offload tedious work from humans and reach

distant and/or hazardous environments. Teleoperated robots are going to increasingly as-

sist humans in performing everyday life tasks as diverse as minimally invasive surgeries,

security/surveillance, telepresence, warehouse management, remote patient monitoring, in-

spection/exploration in deep underwater or space missions.

Teleoperated robots are traditionally based on master-slave architecture where the tele-

operator (master) transmits position/force to the robot (slave) in a unilateral mode, or

transmits and receives position/force via bilateral communication (see [Niemeyer 2008] for

a detailed review). Bilateral teleoperation uses a haptic interface to make the operator

feel a particular impedance relative to the slave position or the force recorded between the

slave and the environment. Despite the simple mechanism, teleoperation requires skilled

personnel to remotely operate the robot, while having limited access to the controllable

degrees of freedom and the sensory feedback. Moreover, stability issues arise in handling

environmental uncertainty with communication delays between the teleoperator and the

robot. This has motivated several control theoretic solutions such as scattering approach,

wave variables, passivity based control, multichannel feedback and model prediction based

control to deal with delayed force reflections [Hokayem 2006]. Modern day teleoperation

systems use additional interfaces such as exoskeleton and/or head mounted display to

increase the sense of telepresence in performing the task [Sheridan 1995, Zhang 2017].

The teleoperator controls the remote robot using either: 1) direct control, 2) shared con-

trol, or 3) supervisory control. Direct teleoperation lacks the autonomy/intelligence to

assist the operator and the remote robot simply mimics the movement of the teleopera-

tor. Shared control fine-tunes/complements the continuously streamed teleoperator data

by local sensory feedback on the remote side. For constrained manipulation tasks, virtual

fixtures have been used to reduce the operator workload by influencing the robot motion

along desired paths [Rosenberg 1993, Abbott 2007]. Supervisory or autonomous control

gives local autonomy to the remote robot to execute manipulation tasks in the presence

of large communication delays. It makes use of predictive displays and high-level symbolic

commands of atomic structure (such as reach, grasp, etc.) to breakdown a task in smaller

subtasks [Sheridan 1992, Yoerger 1987].

Robot learning from demonstrations is a promising approach to assist humans in perform-

ing daily life tasks. In this context, advancing autonomy in teleoperation addresses two

main problems: 1) predicting the operator’s intent while performing the task, and 2) decid-

ing how to assist the teleoperator. Both aspects are closely related in cooperative robots
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for human-robot collaboration [Rozo 2016], and in general describe what-to-imitate and

how-to-imitate problems in programming by demonstration. Depending upon how the

word intention is phrased, a vast amount of literature exists to encapsulate the behaviour

of the operator and subsequently, decode it for assistance. For example, predicting the

user intent can be posed as a classification problem of reaching a particular goal position

in a predefined set of goals [Yu 2005]. Alternatively, the user may be assumed to maximize

an unknown reward function, to be ascertained by inverse reinforcement learning (IRL).

Dragan and Srinivasa formulated a policy blending mechanism to combine the teleoperator

intention with the robot movement using IRL [Dragan 2013]. In cognitive science, Bayesian

models are more commonly used to incorporate uncertainty in decoding the user behaviour.

Hauser in [Hauser 2013] inferred the type of task performed by the user with a Bayesian

Gaussian mixture auto-regression framework, and followed the predicted trajectory with a

cooperative motion planner.

Generative models such as Hidden Markov Models (HMMs) have been widely used to in-

terpret human intention as performing a discrete set of tasks/subtasks with common low

level sensory observations. The use of hierarchical representations [Aarno 2008], or sets of

dynamic models for the subtasks sequenced together with a Markov chain [Pentland 1999],

have been investigated to describe several human behaviours. Li et al. used virtual fixtures

with a HMM to segment if the user intends to follow a periodic motion curve, not follow

the curve or stay idle [Li 2003]. Nolin et al. in [Nolin 2003] investigated settings of discrete

compliance levels with a HMM, namely {toggle, fade, hold}, to assist the user in following

the virtual fixture based on his/her demonstration. Roila et al. presented probabilistic vir-

tually guided fixtures for assistance [Raiola 2015]. Medina et al. perform task segmentation

with an HMM and incrementally update its parameters during reproduction to progres-

sively increase the collaborative role of the robot in performing the task [Medina 2011].

Wang et al. infer the probability distribution over intentions from the human observations

in the latent state of a Gaussian process dynamical model [Wang 2013]. Maeda et al. rec-

ognize the phase/stage of human movement from intermittent observations under different

possible speeds and plan a collaborative trajectory for the robot [Maeda 2015].

Improving autonomy in teleoperation, however, poses all kind of challenges to the existing

techniques due to limited bandwidth, communication latency, and environmental differ-

ences between the teleoperator and the remote sites. Advancing the state-of-the-art in

teleoperation is the central focus of many research programs, including DARPA Robotics

challenge and NASA Space Robotics Challenge, and is the main application scenario of

this thesis.



12 Chapter 1. Robot Learning

Semi-autonomous teleoperation

with ROV manipulator

Teleoperator SiteRemote Site

Offshore vessel

Figure 1.4: DexROV high-level architecture (left) the teleoperator and the remote sites
are located in different parts of the world and linked over satellite communication; (right)
the teleoperator performs the skill in the control center with a wearable exoskeleton in
the virtual environment and the remote ROV manipulator arm performs the skill in a
semi-autonomous manner to mitigate the effect of communication delays.

1.2.1 DexROV: Dexterous Remotely Operated Vehicle Operations

Many useful robotics applications require performing tasks in environments that are not

friendly for humans. One typical example is underwater activities, ranging from inspection

and maintenance of underwater cables and pipelines, to underwater archaeology and marine

biology. There has been a boom in underwater remotely operated vehicles (ROVs) over

the past few years. Nonetheless the cost of using ROVs is still prohibitively high for wider

adoption, as currently ROV usage still requires substantial off-shore support to handle and

operate the robotic platform. One of the main limiting factors is that a large off-shore crew

is required to supervise and teleoperate the ROV directly from the support vessel. This is

mainly due to the need of direct teleoperation, i.e. the operator receives visual feedback

from an array of cameras on the ROV and accordingly uses a set of buttons, knobs and

joysticks to guide the motion of all, body and arm(s), degrees-of-freedom (DoF) of the ROV.

This cost can be reduced by moving the support and teleoperation team to an on-shore

facility and communicating with the ROV remotely. Current satellite communications

technology suffers from large latencies and deems traditional direct ROV teleoperation

infeasible.

The European Commission H2020 project DexROV – Dexterous ROV operations in the

presence of Communication Latencies – aims to work out more cost-efficient and time-

efficient ROV operations by: 1) far distance teleoperation with fewer off-shore personnel in-
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volving variable communication latencies to mitigate, and 2) dexterous manipulation assis-

tance capabilities benefiting from context specific human skills [Gancet 2015, Gancet 2016].

Existing ROV based operations are preferred to diver based operations as the depth at

which divers can work rarely exceeds 100 meters, however, the operations performed by

ROVs are rather limited. We seek to teleoperate ROVs at a depth of around 1300 meters

while using human expertise to perform dexterous operations. The overall conceptual ar-

chitecture is shown in Fig. 1.4. The setup is distributed on two sides, described in the

next two subsections.

1.2.1.1 Remote Site

On the offshore side, a vessel (with reduced crew) is tied to a ROV by a tether and equipped

with a satellite communication link. The ROV is provided with an underwater perception

system that facilitates: 1) online accurate and reliable navigation of ROV and mapping

of the environment to facilitate safe operations relative to subsea installations and other

structures [Pfingsthorn 2016], and 2) online object detection, recognition, modelling, and

tracking for semi-autonomous teleoperation [Pathak 2010]. The ROV is mounted with two

6 degrees of freedom electric manipulator arms each possessing a hand with three finders

and 2 active degrees of freedom for grasping a wide range of objects. Moreover, the arms are

equipped with a set-based control to incorporate multiple task priorities while performing

the task [Antonelli 2015, Simetti 2017]. Before performing a manipulation task, the ROV

stations in front of the manipulation test-bed to enable the teloperator to remotely perform

the task in a stationary manner.

1.2.1.2 Teleoperator Site

On the onshore teleoperator side, the monitoring and control center allows remote supervi-

sion and teleoperation of ROV to perform dexterous manipulation tasks. The teleoperator

is mounted with intuitive sensory interfaces including a force-feedback exoskeleton and

virtual reality headset to immerse the teleoperator in the actual environment. The commu-

nication between onshore and offshore side is handled using satellite communication with

Cobham Sailor 800 3-axis stabilized and tracking Ku band antenna. The upper limit of

forward (onshore to offshore) bandwidth is 256 Kbps and return (offshore to onshore) band-

width is 768 Kbps hosted by VSAT communication provider Omniaccess [Gancet 2016].

Large communication delays with satellite communication render direct teleoperation in-

feasible and need semi-autonomous capabilities of the remotely operated vehicle to carry

out manipulation tasks.
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intention recognition manipulation assistance

Figure 1.5: (top) generative model locally recognizes the intent of the teleoperator and pro-
vides manipulation assistance, (bottom) teleoperation mock-up with the two-armed Baxter
robot where one arm is used as input device for the teleoperator and other arm is used to
perform remote manipulation tasks.

1.2.2 Proposed Semi-Autonomous Teleoperation Approach

With limited communication bandwidth and communication latency in transmitting and

receiving data between the teleoperator and remote sites, our goal is to develop semi-

autonomous capabilities to the remote arm so that it can continue to perform the assigned

task on its own till further communication is established with the teleoperator. We develop

a novel teleoperation solution from the demonstrations provided by the teloperator within

which no direct teleoperation is required but control is locally handled (onboard) using a

probabilistic representation of task/skill primitives. Such a representation can adapt to

changing task parameters and is robust against intermittent communication. We apply

our algorithms to create a library of skills models constituting the cognitive engine that is

used to detect the intention of the teleoperator and subsequently, assist the teleoperator in

performing remote manipulation tasks. The learned model parameters are first transmitted

to both the teleoperator side and the robot side. The task parameters on the robot side

can then update the model of the skill at fast pace by local sensing, without requiring the

transmission of this change to the teleoperator.

The cognitive engine receives input from the teleoperator that drives the robot arm in the

local virtual reality environment without having to worry about the transmission delays.

On the remote site, the generative model is used to synthesize the arm movement without

disruption and limited synchronization between the teleoperator and the remote site. The
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Figure 1.6: Examples of manipulation skills learned with the task-parameterized generative
models.

model locally anticipates which actions and/or regulation feedback policies to adopt until

a new command or sensory information is available.

We formulate time-independent shared control and time-dependent autonomous control

formulations of the developed task-parameterized generative models to assist the teleoper-

ator in performing remote manipulation tasks in Chap. 6. In the time-independent shared

control mode, the control is shared between the teleoperator and the remote site and the

model corrects the remote arm movement based on the current state of the teleoperator;

whereas in the time-dependent autonomous control mode, we sample the sequence of states

to be visited for the next time horizon and the model generates the movement of the remote

arm for autonomous task execution. Note that we only provide assistance in regions that

have been explored by the demonstrations during the learning phase.

We use the two-armed Baxter robot as a mock-up of the teleoperation system, i.e., one arm

becomes the input device for the teleoperator, and the other one is used for performing the

manipulation task. The operator controls/teleoperates the remote arm with a simulated

delay using the other arm by getting visual feedback from the remote arm. A set of

kinesthetic demonstrations of the teleoperator is used to teach the robot how to perform

each task. We leverage upon probabilistic generative models to understand the intention

of the teleoperator and assist the movement on the robot side under varying environmental

situations in performing a set of skills. Our key performance indicators are to: 1) reduce the

cognitive load of the teleoperator for routine tasks, 2) cater for environmental difference

and communication delays in performing remote manipulation tasks, and 3) reduce the

time of operation of the teleoperator in performing the task.

1.3 Thesis Contributions and Organization

Below, we summarize the main contributions and describe the work flow of this thesis:
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Learning Multiple Skills with IRL: We first learn multiple skills from demonstrations

in the inverse reinforcement learning setting in Chapter 2 where the demonstrations are

driven by different reward functions. We enclose the demonstrations in a convex set of

optimal deterministic policies and use transfer of knowledge to bootstrap the learning of

new skill. The challenges in scaling the approach to high-dimensional continuous spaces

lead us to encoding the skills with generative models as density estimation problem in the

subsequent chapters. The work on making reinforcement and inverse reinforcement learning

suitable in continuous domains is carried out with external collaborators for various robot

learning applications and can be read independently from the remainder of the thesis.

Task-Parameteriezd Hidden Semi-Markov Model for Skill Acquisition: In Chap-

ter 3, we present hidden semi-Markov models for learning and reproduction of robot ma-

nipulation tasks. Task-parameterized formulation of the model allows us to systemati-

cally adopt the model parameters with changing environmental situations such as posi-

tion/orientation/size of the objects, and generalize better in previously unseen situations.

The planned movement sequence from the model is combined with linear quadratic tracking

for autonomous reproduction in changing environmental situations.

Scalable Generative Models in Latent Space: We investigate parsimonious repre-

sentation of the demonstrations in latent space for robust learning and adaptation of robot

manipulation tasks in Chapter 4. We make use of the spatial and temporal correlation

in the data by tying or decomposing the covariance matrices of the mixture model with

common synergistic directions/basis vectors, instead of estimating full covariance matrices

for each cluster in the mixture. This allows us to exploit the coordination patterns along

important synergistic directions and reuse the discovered synergies in different parts of the

skill having similar coordination patterns. The resulting task-parameterized generative

model is data efficient and offers better generalization with much less parameters than

mixture models with full covariance matrices.

Bayesian Non-Parametric Online Learning with Generative Models: In order

to learn new manipulation skills on the fly from the demonstrations and/or to adapt the

above generative models online with the streaming data, we analyse the above Bayesian

non-parametric formulations of the mixture models under small variance asymptotics in

Chapter 5. The analysis yields a non-parametric task-parameterized scalable online se-

quence clustering algorithm for learning and reproduction of high-dimensional robot ma-

nipulation skills from streaming data.

Manipulation Assistance in Teleoperation: These task-parameterized generative

models constitute the core of cognitive engine in DexROV, responsible for providing as-
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sistance to the teleoperator for performing remote manipulation tasks. We present prob-

abilistic formulations of the model to capture the intention of the teleoperator and subse-

quently, assist the teleoperator by time-independent shared control and/or time-dependent

autonomous control formulations of the model in Chapter 6. In the shared control mode,

the model corrects the remote arm movement based on the current state of the teleopera-

tor; whereas in the autonomous control mode, the model generates the movement of the

remote arm for autonomous skill execution. We evaluate the performance of our approach

under several key performance indicators to quantify the improvement of the teleoperator

in performing remote manipulation tasks.

Our developed approaches allow us to perform challenging manipulation tasks by semi-

autonomous teleoperation in as few as 4 − 8 demonstrations, including opening a valve,

pick-and-place an object by avoiding obstacles, inserting hot-stab plug into a receptacle,

tracking a moving target with a screwdriver, and hooking a carabiner (see Fig. 1.6). These

manipulation tasks constitute the routine tasks performed manually by the teleoperator

with underwater ROVs.
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Reinforcement learning (RL) has found a large variety of applications to describe sequential

decision making problems in which the reward/feedback from the environment is used to

guide the action-selection process of the robot/learner. In contrast, inverse reinforcement

learning (IRL) aims to find the reward function given the optimal behaviour of the learner

in the environment. Given the optimal set of demonstrations and the underlying transition
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dynamics model, the goal is to find the reward function that is being maximized in the

demonstrations. Contrary to supervised learning problems, IRL problems leverage upon

the problem structure in the reward function and transition model to estimate the control

policy that drives the demonstrator.

IRL provides an interesting approach to learning task models from demonstrations by first

inferring the intention of the demonstrator in the form of a reward function and then

optimizing the reward function to derive the control policy for the robot. The paradigm

of IRL is based on the assumption that the reward function – not the control policy

(demonstrations) – is the most succinct and generalizable representation of the task.

In this chapter, we first briefly review the fundamentals and important methods of solving

RL/IRL problems. The challenges in its design will lead us to present our methodology

of learning from multiple demonstrations which can incrementally incorporate multiple

reward functions and transfer knowledge to speed up the learning of multiple strategies

for the robot to perform the task. Following that, we move to RL/IRL in continuous

domains and present solutions to address existing limitations in rewards-driven learning

from demonstrations paradigm.

2.1 Background and Related Work

Reinforcement learning is a trial-and-error method driven mainly by feedback from the en-

vironment or rewards [Sutton 1998]. The basic procedure of reinforcement learning starts

with the environment being initially in some state. The learner, or the agent/robot, inter-

acts with the environment by taking an action (the only way an agent can interact with

the environment). The state of the environment changes due to that action and the agent

gets some reward as feedback. Then the agent observes the new state and repeats the

procedure again. During the successive iterations, the agent also tries to modify its policy

of interaction with the world with an aim to maximize the rewards obtained. Since the

agent learns to interact with the environment - this type of learning is in essence online.

The interaction between the environment and the learner is captured in a Markov Decision

Process (MDP) represented by a tuple < S,A,Psa, γ,R >, where S is a finite set of N

states; A is a set of M actions that the learner can take in a given state; Psa : S×A×S →
[0, 1] describes the transition dynamics of the environment, i.e., Psa , P(s′, a, s) is the

probability of transitioning to state s′ after taking action a in state s; the initial state

s0 is drawn from the initial state distribution α with
∑

s αs = 1; γ ∈ R → [0, 1) is

the discount factor to control the effect of rewards obtained in future; rs is the reward
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perceived in a given state s. Rewards are obtained by a linear combination of a set of

known features, rs = w⊤φs, where φs : S → R
F denote the mapping from state s to a set

of F task-dependent features; w ∈ R
F
[−1,1] and ‖w‖1≤ 1 define the relative weights of the

features. Different weights for the features yield different rewards while interacting with

the environment.

A policy π ∈ Π defines the mapping from state to actions. A policy can be deterministic,

πs : S → A, in which case each state is mapped to a unique action, or a policy can be

stochastic in which case each state is mapped to a distribution over actions, πsa : S×A→
[0, 1] and

∑

a πsa = 1. A stochastic policy represented as a convex combination of optimal

deterministic policies is called a mixed policy. A mixed policy is executed by selecting the

optimal deterministic policy πi at t = 0 in the set with probability λi(λi ≥ 0,
∑

i λi = 1),

and following it for the rest of the time.

The value function V π
s : S → R measures the expected value of discounted sum of rewards

that the agent gains starting from state s and following policy π,

V π
s = E

{ T∑

t=0

γtrst |st = s, a = πst

}

, (2.1)

where, st+1 ∼ Pπ(st) and Pπ : S×S → [0, 1], is the transition dynamics after fixing action

in each state according to policy π, T is the horizon or range of the sequence of states

and actions mapped in future given the current state. When starting from the initial state

distribution αs, the value of a policy π reduces to a scalar defined by: V π =
∑

s αsV
π
s (note

that we dropped the s in the subscript). The quality of a policy may also be evaluated

using the action-value function Qπ
s,a : S → R in case the transition dynamics are unknown,

Qπ
s,a = E

{ T∑

t=0

γtrst |st = s, at = a, a = πst

}

. (2.2)

The goal in RL is to adjust the policy vector such that the future discounted rewards

received on average during its course of actions are maximized. A policy π is optimal for

the MDP if it satisfies

π = argmax
π∈Π

V π. (2.3)

Similar to how the value-function gives an expectation over rewards in the long run, feature

expectation vector, µπ
s : S → R

f , corresponds to the discounted sum of the features as the

agent observes the sequence s0, s1, . . . , sT starting from the state s0 = s following policy

π, i.e., µπ
s = E{∑T

t=0 γ
tφst |s0 = s, a = π(st)}. Note that the reward function is linear

in features, the value-function is also linear in feature expectations, parametrized by the

same weight vector w, i.e., V π
s = w⊤µπ

s and similarly for the initial state distribution,
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V π = w⊤µπ, where µπ =
∑

s αsµ
π
s .

The demonstrations performed by the human/expert is represented by its fea-

ture expectation vector µπE . Given the sequence of visited states DπE =

{(s(i)0 , a
(i)
0 ), (s

(i)
1 , a

(i)
1 ), . . . , (s

(i)
T , a

(i)
T )}Mi=1 and the corresponding features over M demon-

strations {φ(i)
s0 ,φ

(i)
s1 , . . . ,φ

(i)
sT }Mi=1, an empirical estimate of the feature expectation of the

demonstrator can be computed as

µ̂πE =
1

m

m∑

i=1

T∑

t=0

γtφ(i)
st . (2.4)

The goal of IRL is to find the reward function parameters w such that the resulting

optimal policy of the learner πL yields the same rewards or value as observed in the

demonstrations (assuming the demonstrations to be optimal), i.e., |V πE−V πL |< ε1, where

ε1 is a small positive number. The demonstrations and the trajectory samples obtained

from the transition dynamics after fixing the learner policy πL are compared to evaluate

the estimated reward function.

The first treatment of IRL used a linear program to recover the unknown reward func-

tion under the constraint that the demonstrations are drawn from some optimal policy

[Ng 2000]. Abbeel and Ng in [Abbeel 2004] gave formal guarantees required to match the

performance of the learner with that of the demonstrator measured in terms of policy val-

ues. They present two algorithms based on the idea of matching feature-expectation

vectors with same performance guarantees. The feature-expectation matching algorithms

return the learner’s policy πL for a given expert strategy such that ‖µπE − µπL‖2 ≤ ε1,

thereby yielding the same performance as that of the demonstrator,

|V πE − V πL | = w⊤(µπE − µπL) (2.5)

≤ ‖w‖2‖µπE − µπL‖2
≤ 1 · ε1,

where the first inequality follows from Cauchy-Schwarz inequality: |x⊤y|≤ ‖x‖2‖y‖2. The

expression shows that IRL can be simplified to finding that optimal policy for some re-

ward function whose feature expectation is same as that of the demonstrator. Syed and

Schapire in [Syed 2008] proposed a game-theoretic approach to find a policy (and the

corresponding reward function) on the pareto optimal curve that performs at least as well

as the demonstrator, thereby, allowing imperfect demonstrations. Howard et al. used this

approach for transferring impedance from human to a robot arm [Howard 2010]. Ratliff

et al. introduced the max-margin formulation under which the demonstrated policy
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samples perform better than all other policies by a margin [Ratliff 2006]. The approach

was extended to LEARCH – LEArning and seaRCH – in order to handle non-linear reward

functions [Ratliff 2009]. Ramachandran and Amir in [Ramachandran 2007] presented the

Bayesian formulation to maximize the posterior probability of the reward function given

the observation sequences parametrized by the reward function (see also [Neu 2012] and

[Mombaur 2010] for IRL as parameter estimation problem). Similar to Bayesian formula-

tion of IRL, policies with higher rewards are exponentially more favoured in the maximum

entropy formulation and equivalently, policies with equivalent rewards have equal proba-

bilities [Ziebart 2008], i.e.,

P(DπE |w) =
M∏

i=1

1

Zπ
eV

π
(i)
E =

M∏

i=1

eV
π
(i)
E

∫
eV πdπ

=
M∏

i=1

ew
⊤µ

π
(i)
E

∫
ew⊤µπdπ

, (2.6)

where the denominator of this distribution is called the partition function and it be-

comes computationally intractable for even moderately high-dimensional spaces. The

optimal value of the reward function parameters w can be obtained by maximizing

the log-likelihood of the observed demonstrations in the maximum entropy formulation,

w∗ = argmaxw logP(DπE |w). The maximum entropy formulation gained a lot of popu-

larity after its formulation, and a number of bottlenecks of IRL have been addressed using

this formulation.

Thus far, we made a number of assumptions in our formulation of addressed IRL algorithms,

including: 1) the intention (underlying reward function) is same in all the observed demon-

strations, 2) there is an oracle that yields the optimal policy samples for each candidate

reward function in an inner loop, and 3) the transition dynamics of the environment is

known.

In our work presented below [Tanwani 2013b], we relax the limitation of having the same

reward function in all the demonstrations. Note that learning the underlying reward func-

tion from demonstrations is an ill-posed problem as many feature combinations yield the

same optimal policy. For example, setting w = 0 would yield the same value irrespec-

tive of the underlying policy. This often leads to careful engineering of the features to

get a meaningful reward function and the resulting optimal policy. On the contrary, we

are interested in learning multiple ways of performing a task by observing several experts’

demonstrations that are driven by different reward functions. A naive way of learning

each reward function separately would significantly increase the computational overhead

of finding optimal policies. To circumvent this computational burden, we exploit the fact

that all the demonstrations share the same transition dynamics and only differ in the un-

derlying reward function. This allows us to transfer the learned experience and bootstrap
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incremental learning of multiple policies.

2.2 Learning Reward Function(s) in Discrete Domains

It is well-known that humans vary widely in performing sequential decision-making tasks,

possibly differing in their intentions or ways of gauging task-dependent features. This

difference is a fundamental trait of natural selection that contributes to fitness and survival

of an individual in changing environments. Consequently, there are often several useful

ways of performing a task and how one assesses multiple criteria in a given situation yields

the goodness of a decision. For example, a demonstrator may have preference to drive fast,

overtake other cars and stay in left lane, while other demonstrator may want to drive slow

and keep safe distance from other cars. In the case of throwing a ball to another person,

the demonstrator may want to throw the ball very high, while other demonstrator may

want to roll the ball along the floor. Despite these scenarios, most of the previous work in

IRL assumes a single demonstrator having the same intention in all the demonstrations –

albeit with a few exceptions. In [Babes 2011], the authors use an expectation-maximization

approach to cluster similar strategies in the demonstrations where the number of clusters

defined a priori represent the number of reward functions. Dimitrakakis and Rothkopf

[Dimitrakakis 2012] present a Bayesian approach to learn multiple reward functions by

considering joint prior on reward functions and policies. Choi and Kim in [Choi 2012]

present a non-parametric Bayesian approach using the Dirichlet process mixture model to

learn multiple reward functions. In contrast to the above work, we take a direct geometric

approach to learn a convex set of optimal policies enclosing all the demonstrations. This

allows us to efficiently match any previously unseen expert strategy drawn from this set.

Moreover, our method of learning multiple strategies is incremental and allows transfer

of knowledge; contrary to all the aforementioned batch learning approaches for multiple

reward functions. In this section, we first formalize our problem statement and present our

multiple reward functions learning approach and then explain the transfer of knowledge to

speed up the learning process.

Let ΠD be the set of all deterministic stationary policies available to the robot/learner

in a MDP as possible ways of executing a task. Each policy possibly gives a different

feature expectation µπ, among which the optimal ones maximize the value of a policy

V π for some reward function w. The set of feature expectations µπ1 ,µπ2 , . . . ,µπd ⊆
µ(ΠD) that are maximal for some w defines a convex hull Co{µ(ΠD)} in the feature

expectation space. Ideally, we would like to learn all the optimal policies over this convex

hull so that the learner can readily replicate any demonstrator by appropriately choosing
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among the optimal deterministic policies for the corresponding reward function. Note

that the deterministic stationary policies of ΠD alone do not constitute all the feasible

strategies in the feature expectation space. For example, if the expert is sub-optimal,

the feature expectation vector lies within the convex hull of optimal deterministic policies.

Alternatively, if an expert performs the demonstrations optimally with respect to different

reward functions (first episode with some reward function, and second episode with another

reward function), the feature expectation vector also lies within the convex hull of optimal

deterministic policies. Here, we assume that the demonstrations are always optimal either

in a deterministic or a stochastic manner. We do not limit an expert to be optimal or

nearly-optimal in a deterministic way; otherwise we could select one optimal deterministic

policy with feature expectation µπi lying on the convex hull that is closest to µπE . We only

require the demonstrations of an expert to lie within the convex hull of feature expectations,

and approximate such an expert strategy with a mixture of optimal policies.

However, learning all optimal policies in ΠD is in general intractable with its cardinality

|ΠD|= AS. Moreover, not all the policies in the set lead to practically useful description

of a task. For example, in the case of the ball throwing example, there will be a range

of parameter values of w for which the ball may not even reach the user or the car may

hit other cars. We rely upon the experts’ demonstrations to learn useful policies only in

a tractable manner. Let us denote ΠE as the set of deterministic policies of the demon-

strators where |ΠE |≪ |ΠD| in general. Let ∆(ΠE) be the set of probability distributions

(unknown) over the set ΠE from which the demonstrators draw a finite number of strategies

µπE1 ,µπE2 , . . . ,µπEn as possible useful ways of demonstrating a task to the learner. The

goal of the learner is to approximate the demonstrated strategies as µπA1 ,µπA2 , . . . ,µπAn

belonging to the probability distribution set ∆(ΠA), where ΠA contains the optimal deter-

ministic policies of the learner {π1, π2, . . . , πT } ∈ ΠA corresponding to the reward functions

{w1,w2, . . . ,wT }. After experiencing a finite number of demonstrators, the learner should

be able to approximate any new demonstrated strategy drawn from ∆(ΠE)
1. The learner

does so by finding the set of deterministic policies ΠA that is used to generate a mixed

policy for matching any demonstrated strategy by drawing from the associated distribution

such that the performance of the learner is at least as good as that of the expert with a

tolerance of ε0:

|V πE − V πA |≤ ε0, (2.7)

where ε0 ≥ 0, πA ∼ ∆(ΠA), πE ∼ ∆(ΠE) and the demonstrator’s reward function (weight

vector) is unknown in the demonstrated strategy.

1For testing, we draw the new demonstrator strategy by convex combination of already experienced
strategies µπE1 ,µπE2 , . . . ,µπEn .
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Figure 2.1: Learning multiple reward functions with IRL using the projection algorithm:
(top-left) feature expectations of expert strategies, (top-right) optimal policies learned for
first expert strategy, (bottom-left) incremental learning of next expert strategy, (bottom-
right) convex set of optimal policies enclosing all expert strategies.
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2.2.1 Multiple Reward Functions

Our problem formulation applies to all the feature matching approaches described above

for learning multiple reward functions. Here, we build upon the projection algorithm

[Abbeel 2004] for learning multiple reward functions. The projection algorithm works by

iteratively finding an optimal policy πi for the reward function, ris = w⊤
iφs, in each iteration

i = 1 . . . T , starting from some randomly chosen reward function parameters. The reward

function wi is updated by a projection mapping µ̄i that gradually reduces the norm of

the weight vector until the weight vector changes no more and the learning converges

(see Algorithm 1). At the end, the point µπE is guaranteed to be close to the convex

hull of the feature expectation set of intermediate policies, µπ1 ,µπ2 , . . . ,µπT , with µπA

being the closest point in that convex hull to µπE . Mixed policy µπA is generated by a

convex combination of intermediate policies. It can be shown that the mixed policy µπA

which performs approximately as good as the demonstrator can be generated in O(T log T )

iterations.

After computing the feature expectation set µπ1 ,µπ2 , . . . ,µπT corresponding to T itera-

tions of the projection algorithm for the demonstrated strategy µπE1 , the initial weight

vector for µπE2 is selected along the line connecting µπE2 and the closest possible feature

expectation achievable from the set µπ1 ,µπ2 , . . . ,µπT to µπE2 . For the j-th demonstra-

tor, the initial weight is computed as: w = µ
πEj − u, where u is obtained from the

feature-expectation set as

minµ‖µ− µ
πEj ‖2 s.t. (2.8)

µ =
∑(T×j)

i=1 λiµ
πi ,

∑(T×j)
i=1 λi = 1, λi ≥ 0.

Note that if ‖w‖2< ε1 after the above optimization, the algorithm terminates in the first

iteration as µπEj can already be estimated from the existing feature expectation set of the

learner.

2.2.2 Transfer Learning in Optimal Policy Search

There are two main issues in learning multiple reward functions with the feature-matching

approach: 1) it is computationally expensive to find an optimal policy for a given reward

function with weight w, and 2) the number of deterministic policies in the set ΠA can grow

arbitrarily large for matching all the demonstrated strategies. Consequently, the learner

seeks to: 1) reuse the previously learned policies to achieve faster learning with the new

reward function parameters w, and 2) store only distinct policies (we call them ε-better
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policies) that are possibly optimal for a wide range of weights.

Let Π
(j)
A be the set of stored optimal deterministic policies after learning the j-th demon-

strated strategy. Given a new reward function with weight w, the learner chooses as initial

policy πinit the one with the highest value in the set Π
(j)
A ,

πinit = arg max
π∈Π(j)

A

(w⊤µπ). (2.9)

The initial policy πinit is considered as the optimal policy for the new reward function w

if there exists no other policy whose performance is ε-better than the initial policy. The

set of ε-better policies is characterized in the following Lemma:

Lemma 1 Given a finite state space S, action set A, initial state distribution α, reward

function R, the optimal policy π with transition matrix Pπ is ε-better than an initial policy

πinit with transition matrix Pπinit , if it satisfies,

α⊤
(
(I − γPπ)−1 − (I − γPπinit)−1

)
R ≥ ε. (2.10)

For proof, see [Tanwani 2013b]. Lemma 1 gives the space of policies that are better than

πinit for the given reward function with weight w. We now further narrow down this space

by imposing constraints due to other policies in the set Π
(j)
A .

Definition 1 Given a set of optimal deterministic policies, π1, π2, . . . , πT ∈ ΠA, with

feature expectations, µπ1 ,µπ2 , . . . ,µπT ∈ µ(ΠA), corresponding to reward functions with

weights, w1,w2, . . . ,wT , the optimal policy π for reward function with weight w and feature

expectation µπ is an ε-better policy in ΠA if,

w⊤(µπ − µπi) ≥ ε (2.11)

(wi)
⊤(µπ − µπi) ≤ 0 i = 1, 2, . . . , T. (2.12)

Adding constraints (2.11) and (2.12) and using Cauchy-Schwarz inequality gives a lower

bound on the distance between w and other weight vectors in the set w1,w2, . . . ,wT for
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Figure 2.2: ‘Value-Surface’ with f = 2 (best viewed in color). For a new reward function
with weight w, value-surface gives the initial policy with the best weighted value. The
surface is updated only if there exists a ε-better policy at w whose weighted value is less
than the value of other optimal policies at w1,w2, . . . ,wT .

w to have an ε-better policy2:

(w −wi)
T (µπ − µπi) ≥ ε

‖w −wi‖2 ‖µπ − µπi‖2 ≥ ε

‖w −wi‖2 ≥ ε(1 − γ)√
F

i = 1 . . . T. (2.13)

Every policy adds a set of constraints for a new reward function with weight w to satisfy.

The set µπ1 ,µπ2 , . . . ,µπT defines a convex hull Co{µ(ΠA)} in the feature expectation

space and the resulting piecewise planar value-surface gives the best policy value for each

possible weight (see Fig. 2.2). Given that ‖w‖≤ 1, this elicits an upper bound on ε ≤ 2
√
F

1−γ
.

Note that Lemma 1 combined with the constraints in Definition 1 can be used to find

an ε-better policy with a linear program; albeit the computation may be slow. In our

implementation, we verify the existence of ε-better policy in three steps as follows: 1)

satisfy (2.13) to check if there does not exist any wi in the vicinity of w for which we

already have the optimal policy, 2) there exists a µ such that the constraints in Definition

2Remember that: φ ∈ R
F
[0,1] ⇒ µπ ∈ R

F

[0, 1

1−γ
]
⇒ ‖µπ − µπi‖2≤

√
F

1−γ
.
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1 are satisfied, i.e.,

Solve for µ s.t. w⊤(µ− µπinit) ≥ ε, (2.14)

(wi)
⊤(µ− µπi) ≤ 0, i = 1, 2, . . . , T

0 � µ � 1
1−γ

I.

Note that the use of µπinit at w also satisfies all µπi in (2.11), and 3) find the optimal

policy using the value-iteration algorithm starting from πinit (see Sec. 2.3 for use of other

RL algorithms). If the verification fails at any of the above three steps, πinit is declared

the optimal policy for w. The overall algorithm of learning multiple reward functions from

demonstrations is presented in Algorithm 1.

2.2.3 Grid World and Mini-Golf Examples

2.2.3.1 Grid World Example

Let’s consider a simple grid world environment of 100×100 cells, where each cell represents

a different state of the learner. In a given state, the learner can take 9 different actions

corresponding to a move in all eight neighbouring directions or a stay in the same cell.

Transition dynamics are stochastic with 0.7 probability of moving in the direction of desired

action instead of a random one. Initial state distribution is uniform over all the states.

Five features – radial basis functions with centres chosen randomly among states and

width drawn in the interval [1, 20] – are used to populate the feature space. Ten different

reward functions are generated to simulate multiple demonstrators by randomly assigning

different weights to every feature in the interval [−1, 1]. We log the visited states sequence

of 125 time steps from the optimal policy of every reward function in a demonstration and

vary the number of sample demonstrations to study its effect on learning multiple reward

functions.

Experimental study is performed on a grid world task to assess the performance of optimal

policy transfer in learning multiple reward functions with different values of ε against

the ‘no transfer’ case where each demonstrated strategy is learned separately with the

projection algorithm. The performance is evaluated using three metrics: 1) empirical error

– distance between the estimated feature expectation of the demonstrator and the learner

averaged over n strategies, i.e., 1
n

∑n
j=1‖µ̂

πEj − µ̂
πAj ‖2, 2) CPU learning time, and 3)

number of policies stored. We use the same discount factor of 0.9 in all our experiments.

Moreover, we only iterate our algorithm for a demonstrated strategy up to a maximum of

50 iterations.



2.2. Learning Reward Function(s) in Discrete Domains 31

Algorithm 1 Transfer in IRL for Multiple Reward Functions

Input: < S,A,Psa,α, γ, φ, {µπE1 ,µπE2 , . . . ,µπEn}, ε >
procedure LEARNER_TRAINING

1: Initialize i := 1, wi s.t. ‖wi‖1= 1, ΠA = {}
2: µ̄i = argmaxµ∈µ(ΠD) ((wi)

⊤µ)
3: for j = 1 to |µπEn | do
4: if ΠA 6= {} then
5: Solve (2.8) for µ := minµ∈Co{µ(ΠA)}‖µ− µ

πEj ‖2
6: wi = µ

πEj − µ

7: µ̄i−1 = µ

8: end if
9: repeat

10: if i > 1 then
11: πinit := argmaxπ∈ΠA

((wi)
⊤µπ)

12: Verify three steps for existence of ε-better policy
13: if three steps are verified then
14: Add πi to ΠA

15: else
16: πi = πinit
17: end if

18: µ̄i = µ̄i−1 +
(µπi−µ̄i−1)

⊤(µ
πEj −µ̄i−1)

(µπi−µ̄i−1)
⊤(µπi−µ̄i−1)

(µπi − µ̄i−1)

19: end if
20: wi+1 = µπEj − µ̄i

21: i := i+ 1
22: until ‖wi −wi−1‖2 is unchanged
23: end for
24: return set of learner policies ΠA

procedure LEARNER_TESTING

25: loop
26: Demonstration of a strategy µπE ∼ ∆(ΠE)

27: Learner finds a strategy µπA ∼ ∆(ΠA) : µ
πA =

∑|ΠA|
i=1 λiµ

πi , where λi is obtained
by solving (2.8) with (T × j) = |ΠA|

28: end loop
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Figure 2.3: Grid world results. Results are averaged over 5 iterations.

Fig. 2.3 (left) shows that the average empirical error over all strategies decreases sharply

with the increase in the number of samples in a demonstration, while it increases slightly

with higher values of ε for a given number of sample demonstrations. The other two

plots clearly indicate the advantage of optimal policy transfer with a clear performance

improvement in terms of required time and number of policies to learn all strategies. Note

that the optimal policy transfer is useful even for the case of learning a single expert

strategy.

2.2.3.2 Mini-Golf Example

The goal in mini-golf, short for Miniature golf, is to sink the ball into the hole from the

tee area in as few shots as possible. The simulated mini-golf environment is shown in Fig.

2.4. To simulate various strategies of demonstrations, there are 5 holes in the field for 5

demonstrators each having preference to sink the ball in a different hole. The learner is

required to estimate the set of deterministic policies ΠA from which it can approximate

any randomly chosen distribution over the demonstrated strategies. In other words, sink

the ball in each hole same number of times as the demonstrator does in his/her strategy.

State, Action and Feature Space: The state-space corresponds to the 2−dimensional

position of the ball in the grid, |S|= 81 × 56 = 4536. The action-set corresponds to 4

hitting directions at right angles to one another and 6 different hitting speeds, |A|= 24.

The feature space is 13-dimensional, where first 8-dimensions give distance of the ball to

each wall segment, and other 5-dimensions give distance of the ball to each hole. The

features are scaled such that φ(s) ≤ 1. Intuitively speaking, an ideal strategy chooses the

intermediate ball positions in a way that keeps the ball maximally away from all other

holes and wall segments, and sinks the ball in the desired hole in least number of shots.

The initial state distribution is uniform on the tee area marked with the yellow line in Fig.
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.

.

.

Figure 2.4: Simulated mini-golf playing field with different expert strategies on left and
the Barrett WAM robot arm learning to play mini-golf on right.

2.4. An episode of play corresponds to 50 shots. The ball position is randomly reset on

the tee area every time the episode ends or the ball sinks into a hole.

Results and Discussions: We design our experiments such that the learner is required

to approximate the 5 demonstrated strategies from their estimated feature expectations

using our proposed approach in the training phase. During testing, we draw 50 mixed

strategies each corresponding to a random distribution over pure demonstrated strategies,

and the learner is asked to replicate the demonstrated strategy. Fig. 2.5 gives a measure

of the ability of the learner to replicate previously unseen demonstrated strategies. It is

seen that after learning the 5 demonstrated strategies corresponding to sinking the ball

in each hole separately during training, the learner is able to successfully replicate all the

mixed strategies in the testing phase.

IRL has received a lot of attention in recent times, but its applications have often been

limited to discrete domains. The situation in continuous spaces is rather different. We

first visit the problem of finding optimal policy in continuous spaces and subsequently,

find reward function in continuous unknown environments.

2.3 Reinforcement Learning in Continuous Domains

Rewards-driven learning from demonstrations in continuous domains becomes significantly

challenging with approximation methods required to estimate transition dynamics, reward

function, and the optimal policy. Applying RL/IRL on real-world control problems is diffi-
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Figure 2.5: Comparison of first 15 expert and learner strategies for 100 episodes with
ε = 0.1. For every strategy number, the first bar gives the success count of holes for
the expert, the second bar gives the learner’s response to the expert’s strategy. First five
strategies on left correspond to the training set, other mixed strategies are from the testing
set on the right. Holes are numbered from left to right in Fig. 2.4.

cult for a number of reasons. First, the policy search becomes computationally intractable

for moderately high dimensional spaces. Second, it takes too many samples of interaction

with the environment to obtain the optimal policy, leading to exploration vs exploitation

problem. Third, a lot of time is elapsed in constructing a single reward function from

several desired objectives the learner is expected to optimize for in the policy. Finally,

the optimal policy is sensitive to modelling changes in the environment and does not scale

across related tasks/environmental situations easily.

Let us denote ξt ∈ R
D for the state in continuous domain, ut ∈ R

m for the action or

control input, and ξt+1 ∼ P(ξt,ut) to represent the stochastic environment under the MDP

framework. When the environment is deterministic, we describe the transition dynamics

with a non-linear function, ξt+1 = f(ξt,ut). The action ut is generated by the policy π

representing the family of probability distributions ut ∼ π(ξt; θ), where θ represents the

policy parameters. The learner aims to find a distribution that maximizes the probability

of sampling those actions which yield higher rewards. The learning control methods are

classified as [Sutton 1992]: 1) indirect/model-based – optimal control policy is recomputed

from an estimated model of the environmental dynamics at each iteration (without any

explicit exploration noise), and 2) direct/model-free – optimal control policy is determined

without any model of the transition dynamics of the environment. Noise is added to the

policy parameters during learning to search for optimal actions in a given state.

There exists a large repertoire of RL algorithms to find the optimal control policy. A

broad class of RL algorithms encompassing model-based and model-free methods include:
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1) optimal control methods – analytical methods such as linear quadratic regulator

(LQR) and its variant with Gaussian noise (LQG), whereas numerical methods comprise

of direct collocation, single/multiple shooting, iterative LQR [Borrelli 2011]; 2) policy-

gradient methods – the policy parameters are iteratively improved by gradient descent

on the estimated value function under the current policy [Peters 2008, Deisenroth 2013]

(Least-Squares Policy Iteration (LSPI), REINFORCE, natural policy gradient, Probabilis-

tic Inference for Learning Control (PILCO), Trusted Region Policy Optimization (TRPO),

Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Relative Entropy Policy

Search (REPS)); 3) value-function methods – the value function is approximated using

methods such as dynamic programming, value-iteration, temporal difference (TD) learning

and the control policy greedily follows the estimated value function [Szepesvári 2010] (Q-

learning, State-Action-Reward-State-Action (SARSA), Least Squares Temporal Differences

(LSTD)-λ, LSTDQ-λ); 4) expectation-maximization methods – the optimal policy is

derived by expectation-maximization (EM) and the optimization is formulated with im-

mediate rewards [Dayan 1997], as reward-weighted regression problem [Peters 2007], or

as Policy Improvement by Path Integrals PI2 [Theodorou 2010]; 5) actor-critic meth-

ods – the optimal solution is obtained by combining the policy gradient methods with

the value function approximation methods to yield efficient learning with some perfor-

mance guarantees [Konda 2003, Bhatnagar 2009] (actor-critic, natural actor-critic), and 6)

deep RL methods – deep architectures are employed for computing the optimal policy

[Mnih 2013, Lillicrap 2015, Duan 2016] (deep Q-Network (DQN), double Q-network, deep

policy gradient (DPG), deep actor-critics).

In this section, we present several examples of computing optimal policy in continuous

domains based on the task under consideration. We first present our work on actor-

critics with experience replay for model-free RL in continuous challenging environments

[Wawrzynski 2013], and show how the human demonstrations can be used as an initial

policy for speeding up the policy search in continuous environments [Tanwani 2014].

2.3.1 Actor-Critics with Experience Replay

2.3.1.1 Classic Actor-Critic

Actor-critics are an important class of RL methods that can deal with continuous state-

action space in a natural way [Kimura 1998, Konda 2003, Bhatnagar 2009]. They employ

two systems, an actor and a critic. The actor represents a stochastic control policy ut ∼
π(ξt; θ) with parameter θ ∈ R

nθ to generate control actions, while the critic represents

the value-function approximator V̄ (ξt; v) parameterized by vector v ∈ R
nv . The common
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method used by critic for prediction is TD learning on the value function. TD learning, or

simply TD(λ), uses a weighted sum of predicted sequence of states values to estimate the

return or sum of rewards in a given state Rλ
ξt

,

Rλ
ξt

= rξt + γV̄ (ξt+1; v) +
∑

i≥1

(γλ)i(rξt+i
+ γV̄ (ξt+i+1; v)− V̄ (ξt+i; v)). (2.15)

The parameter λ ∈ [0, 1] defines the dependency of the long-term reward on the predicted

value-function V̄ and the actual reward rξt . For λ = 1, the estimator is based on true

rewards and thus unbiased, but its variance may be very high, while λ = 0 ensures low

variance at the cost of high bias of the value-function approximator. TD(0) is also com-

monly known as value iteration and TD(1) is the Monte-Carlo estimation.

The algorithm works in combination such that the actor generates the controls stochasti-

cally and the critic predicts the expected value of Rλ
ξt

. Let φ(ξt, θ, v) and ψ(ξt, θ, v) define

the average direction of improvement along the vectors parameterizing the actor and the

critic respectively. A visit in state ξt modifies the policy vector θ along the estimator

φ̂(ξt, θ, v) that defines the gradient of the true expected return Rλ
ξt

:

φ̂(ξt, θ, v) = (Rλ
ξt
− V̄ (ξt; v))∇θ lnπ(ξt; θ)

θ = θ + βθt φ̂t(ξt, θ, v)
(2.16)

where step-size βθt is a small positive number, and ∇θ is the gradient with respect to

θ. If the action yields the return Rλ
ξt

larger than the approximated value V̄ (ξt; v), the

probability of selecting action ut in state ξt is increased. If, conversely, the action turns

out to bring rewards smaller than expected, then its probability is being decreased. The

critic vector is accordingly adjusted to minimize the discrepancy between Rλ
ξt

and V̄ (ξt; v),

given by its gradient estimate ψ̂(ξt, θ, v). The update is given by the product of estimate

ψ̂(ξt, θ, v) and small positive step-size βvt :

ψ̂(ξt, θ, v) = (Rλ
ξt
− V̄ (ξt; v))∇vV̄ (ξt; v)

v = v + βvt ψ̂(ξt, θ, v)
(2.17)

2.3.1.2 Actor-Critics with Experience Replay

The idea of experience replay [Cichosz 1999, Wawrzynski 2013, Lillicrap 2015, Malla 2017]

is to use previously collected samples to intensify the learning process of the original se-

quential algorithm as if the events have just happened. In the classic actor-critic algorithm

described above, the policy vector is adjusted after every time instant t along the estimate
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of policy improvement φ(ξt, θ, v). Whereas in the actor-critic algorithm with experience

replay, the actor repeatedly chooses one of the recently visited states policy improvement

estimate φ(ξi, θ, v) within each time instant t, and modifies the current policy vector along

the estimate. The actor employs the gathered experience to adjust different policies char-

acterized by different policy vectors. The critic undergoes the same operation as that of

the actor in the modified algorithm with experience replay. Essentially both algorithms

achieve the same goal, but the modified one improves the current actor and critic with the

use of the whole gathered experience rather than only the present event as in the classic

method. Due to more exhaustive exploitation of information, experience replay leads to

faster learning at the cost of additional computation.

The concept of reusing samples evolved from the importance sampling technique

[Sutton 1998]. Although the bias vanishes asymptotically during re-sampling of the pre-

vious states, the variance of the actor-critic estimators significantly increases, thereby,

limiting its use for RL control tasks. In [Wawrzyński 2009], adaptive importance sampling

with randomized-truncated estimators is used to reduce the variation of the estimators

while re-sampling the previously visited states. This ensures stability of the process while

allowing the past experience to intensify the learning process. The randomized truncated

estimators of φ̂r(ξi, θ, v) and ψ̂r(ξi, θ, v) appropriately compensate for the fact that the

current policy is different from the one that generated the actions in the database. They

are given by,

φ̂r(ξi, θ, v) = ∇θ lnπ(ξt; θ)

K∑

k=0

αk
rd(ξi+k; v)min

{
k∏

j=0

π(ξi+j, θ)

π(ξi+j, θi+j)
, b

}

, (2.18)

ψ̂r(ξi, θ, v) = ∇vV̄ (ξt; v)

K∑

k=0

αk
rd(ξi+k; v)min

{
k∏

j=0

π(ξi+j, θ)

π(ξi+j , θi+j)
, b

}

, (2.19)

where b > 1, αr ∈ [0, 1), θi+j is the policy vector to generate ui+j , K is a positive

integer random variable drawn independently from a geometric distribution Geom(ρ)3

with parameter ρ ∈ [0, 1), and d(ξi; v) is the TD(0) of the form

d(ξi; v) = rξi + γV̄ (ξi+1; v)− V̄ (ξi; v). (2.20)

For implementation, we split the algorithm into two threads executing simultaneously: con-

trol thread - one that controls the robot by sampling actions, and actor critics optimization

thread - one that optimizes the parameters of the actor-critic networks. The step sizes of

the actor-critic networks, βθt and βvt , are updated online by fixed point method of step-size

3K has a geometric distribution Geom(ρ) with P (K = m) = (1− ρ)ρm for positive integer m.
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Algorithm 2 Actor-Critics with Experience Replay

Input: Initial actor policy vector θ0, critic vector v0, computation steps nc
procedure CONTROL

1: Ns = 0
2: repeat
3: Draw and execute action, ut ∼ π(ξt; θ)
4: Register the sample < ξt,ut, θ, rξt , ξt+1 > in the database
5: Increase the computation steps, NT = NT + nc
6: until the optimal policy is found π ≈ π∗

procedure ACTOR CRITICS OPTIMIZATION

7: k := 0
8: loop
9: while there are pending total computation steps (k ≤ NT ) do

10: Make sure only N most recent samples are present in the database
11: Draw i ∈ {t−N + 1, t−N + 2, . . . , t}
12: Adjust θ along an estimator of φ(ξi, θ, v) (see Eq. (2.18))

θ := θ + βθt φ̂r(ξi, θ, v)
13: Adjust v along an estimator of ψ(ξi, θ, v) (see Eq. (2.19))

v := v + βvt ψ̂r(ξi, θ, v)
14: k := k + 1
15: end while
16: end loop

estimation [Wawrzynski 2013]. The overall actor-critic algorithm with experience replay is

presented in Algorithm 2.

2.3.2 Octopus Arm and Half-Cheetah Examples

We now demonstrate the effectiveness of our algorithm on simulated control problems in

continuous domains. We choose two diverse and challenging tasks to this end: 1) point

reaching movement of octopus arm, and 2) cyclic running motion of half-cheetah.

2.3.2.1 Octopus Arm Example

Octopus is well-known for exhibiting a high level of flexibility in controlling arm move-

ments [Yekutieli 2005]. The highly developed limbs of octopus make it capable of bending,

stretching, shortening and twisting its arm at any point and in any direction with virtually

unlimited degrees of freedom. A cross-sectional examination of an octopus arm reveals

that the muscles alone — without any rigid skeleton — are responsible for providing the
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Figure 2.6: Octopus arm action set: the activated muscles are indicated by thick blue lines.

structural support and generating the movement of arm. This allows the octopus arm

to execute dexterous motor control tasks that are unprecedented for other biological and

artificial systems. We are interested in learning a reactive control policy for the octopus

arm to reach an arbitrary goal point starting from some random position.

State-Action Space and Reward Function: The octopus arm is represented by a

planar simulator model composed of 10 quadrilateral compartments with fixed base, each

muscle 1-unit long with action duration 0.1 seconds, as described in [Yekutieli 2005]. We

associate 3 frames of reference in polar coordinates that are used to define features to

localize the octopus arm movement towards its goal. The first frame is located at the

center of the point masses of all the quadrilateral compartments, the second one is located

at the center of the point masses of last 5 quadrilateral compartments, and the third one

is located at the center of mass of the last compartment. Based on the three frames and

the goal frame, the state space of our model consists of 12 state variables, normalized to

roughly cover the interval [−1, 1]. The action space consists of a set of 6 actions each of

which pre-defines the activation level in the arm’s muscles, as used in [Engel 2005]. The

action space is shown in Figure 2.6.

The learning task is carried out in episodes. An episode terminates with success when

the last compartment touches the goal. If this goal is not reached within 500 steps, the

episode terminates. The reward function is defined such that the controller is penalized

with a negative score of −1 for all the learning steps in which the goal has not been reached.

Moreover, the arm is rewarded for moving towards the goal in proportion to the velocity

of the last compartment in the direction of the goal. The goal of the octopus arm is to

maximize the reward function by reaching the goal position as quickly as possible.

Actor and Critic Structure: The actor and critic are based on feedforward neural

networks, namely 2-layer perceptrons with sigmoidal neurons in their hidden layers and

linear neurons in their output layers. The initial weights in the hidden layers are drawn

randomly from the normal distribution N (0, I) and the weights of the output layers are

initially set to zero.
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Figure 2.7: Octopus arm results. (left) episode number against duration steps of each
episode, (right) simulated goal reaching movement of octopus arm at the start of episode;
with arm position trying to reach the goal; with arm position at the goal. After learning,
the arm reaches the goal in about 100 steps.

The actor is the combination of a neural network and a generator of discrete numbers. The

network has NA neurons in its hidden layer and 6 neurons in the output layer corresponding

to the size of the discrete action set. The critic is a 2-layer perceptron with NC neurons

in its hidden layer and one neuron in the output layer.

Results and Discussions: The parameter setting of the actor-critic reinforcement learn-

ing algorithm is as follows: NA = 50, NC = 100, γ = 0.98, b = 2, αr = γ = 0.98, nc = 100

and λ = 0.5. Figure 2.7 shows different stages of the octopus arm in reaching the desired

goal. On the left side, the figure presents the learning curve (average rewards vs. episode

number). It can be seen that the learning converges after 240 episodes which is equivalent

to 80 minutes of Octopus time.

2.3.2.2 Half-Cheetah

Half-Cheetah is a 6 degrees of freedom planar robot, introduced in [Wawrzyński 2009]. It

is composed of nine links, eight joints and two paws (see Figure 2.8). The angles of the

fourth and fifth joint are fixed while others are controllable. The torque applied at each

joint acts as input to the model and the next position of the robot is obtained as output

by integrating its dynamic equations of motion. The control problem is to learn a reactive

policy under the MDP framework to make half-cheetah run as fast as possible.

State-Action Space and Reward Function: The state of half-cheetah is defined by

31 variables. The action space is continuous, contrary to that of octopus arm, with 6

dimensions each corresponding to one actuated joint independently. Learning is divided

into episodes with an average duration of 250 steps, for 0.02 second duration of each step.
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Figure 2.8: Half-Cheetah results. (left) episode number against the average rewards in
each episode; (right) simulated run of Half-Cheetah with initial stance, middle stance with
feet in the air, and landing stance. After learning, half-cheetah runs with a speed of about
6.5 m/sec.

The robot is mainly rewarded for its speed of moving forward. Other components are minor

penalties for violating torque limits, joint limits, not moving the trunk in idle position and

touching the ground with other body parts than paws.

Actor and Critic Structure: The actor is composed of two parts: a neural network and a

normal distribution. The input of the network is the state of half-cheetah. The network has

a hidden layer with NA sigmoidal neurons and six linear output neurons corresponding to

the dimensionality of the action space. The output of the network becomes a mean value

of the normal distribution with unit covariance matrix to generate exploratory control

actions. The critic is a 2-layered neural network with NC neurons in its hidden layer and

1 neuron in the output layer.

Results and Discussions: The experiments to make half-cheetah run are configured with

the following parameters: NA = 160, NC = 160, σ = 5, γ = 0.99, b = 2, αr = γ = 0.99,

ρ = λ = 0.9, nc = 30. Figure 2.8 shows various stages of the learned running gait of half-

cheetah. The cat model starts from a standing position and first learns to move forward

with the added noise in the control system. The awkward walk transforms into a trot

gait which at the end of training becomes a smooth nimble run. The use of experience

replay speeds up the learning process of running in proportion to the intensity of replaying

computations. The figure also shows that the algorithm requires 3000 episodes (about 4.2

hours of half-cheetah time) to learn to receive average reward of 6, which corresponds to a

nimble run.
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Figure 2.9: Decoding goal from slow cortical EEG signals on left which moves the KUKA
robot arm optimally to the desired target on right.

2.3.3 Learning with Initial Policy

Considering the amount of time it takes to find an optimal policy in continuous domains,

a lot of effort is made in the RL and robotics community to incorporate prior knowledge

about the task and speed up the learning process. Most of the work has focused on using

the demonstrations provided by the human/simulator to initialize the control policy of the

task, also called the primitive policy or the fixed policy. Human demonstrations can also

be used for initializing the value function and/or learning the transition dynamics model.

The initial policy provides an educated initial guess for the leaner to confine its search to

near optimal regions. The use of initial policy makes the optimization problem feasible in

higher dimensional spaces [Kawato 1999, fang Wang 2016].

Applications include online trajectory modulation with obstacles [Guenter 2007], incorpo-

rating dynamic movement primitives for Ball-in-a-Cup task [Kober 2010] and pancake flip-

ping task [Kormushev 2010], bimanual rod manipulation to hit via-points [Sugimoto 2013],

and optimizing walking gait of a humanoid robot [Tanwani 2011]. Below we present an

application of decoding the EEG signals of the human to reach a desired goal, where the

initial policy learned from human demonstrations is combined with RL to yield better

control policies [Tanwani 2014].

2.3.4 Decoding EEG Signals for Arm Control Example

Decoding the user intention from non-invasive EEG signals is a challenging problem. We

study the feasibility of predicting the goal for rewards-driven control of the robot arm in self-

paced reaching movements, i.e., spontaneous movements that do not require an external

cue. Contrary to decoding the cue-based movements [Musallam 2004, Waldert 2008], we
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consider self-paced reaching movements where the user spontaneously executes the move-

ment without an external cue [Niazi 2011]. Intention here refers to the high-level target of

the user as compared to the low-level muscle activations for executing the movement. The

integrated framework combines the high-level goals encoded in EEG signals with low-level

motion plans to control the robot arm in continuous task space. A promising application

of this work is to use EEG signals for direct motor control of patients with possibly upper-

limb disabilities. The overall system is presented in Fig. 2.9. EEG signals of the user

give the intended goal of moving to one of the four targets in cardinal directions by online

classification. The desired goal fed to the optimal motion plans generator to move the arm

towards the desired target.

Dataset: The dataset used here was designed to perform center-out planar reaching move-

ments to four goal targets in cardinal directions located 10 cm away from the center, while

holding the PHANTOM robotic arm. Four subjects – two healthy and two stroke patients

– participated in the experiment carried out at the San Camillo Hospital, Venice, Italy.

One patient had left paretic arm with left cerebellar hemorrhagic stroke since 2 months;

while other had right paretic arm suffering from left nucleo-capsular stroke since 2 years.

After the target was shown to the subject, the subject was asked to wait for at least 2 sec-

onds to perform a self-paced movement (see [Lew 2012] for details of experimental set-up).

For each arm, subjects performed three runs each containing 80 trials each (20 trials per

target). Trials were extracted ranging from 2 s before the movement onset until 1 s after

the task. For brevity, we only report results of the right arm of the first healthy subject

in this work.

The EEG and EOG signals were simultaneously recorded with a portable BioSemi Ac-

tiveTwo system using 64 electrodes arranged in an extended 10/20 montage. EOG chan-

nels were placed above nasion and below the outer canthi of both eyes in order to capture

horizontal and vertical EOG components. The kinematics data of the robotic arm was

recorded at 100 Hz, while EEG signals were captured at 2048 Hz and then downsampled

to 256 Hz. Preprocessing steps to analyse EEG data required Common Average Referenc-

ing (CAR) procedure to remove the global background activity [Bertrand 1985]. Moreover,

only 34 EEG channels were selected, excluding the peripheral channels and those having

high correlation with the EOG activity. EEG signals were then passed through a zero-

phase low-pass Butterworth filter with cut-off frequency of 120 Hz, further down-sampled

at 128 Hz and finally low-pass filtered at 1 Hz to extract slow cortical potentials. Each

EEG channel and kinematic signal was normalized to have zero-mean and unit-standard

deviation.
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2.3.4.1 Intention Decoding

We perform online classification in a sliding window of 250 ms that shifts by 62.5 ms

within the trial period of [−2 1] seconds to decode the intention/goal . Note that we

start to decode the goal prior to the movement onset to minimize any delays in controlling

the arm (see [Lew 2012] for details). For each of these windows, the features are selected

separately using Canonical Variant Analysis (CVA) with 5 fold cross-validation taking one

EEG sample per window at the end. 10 EEG channels with best discriminant power are

selected in each window to classify among the 4 target goals. For classification, EEG data

is further downsampled to 16 Hz taking into account 4 samples of 10 EEG channels for

a total of 40 features. Linear Discriminant Analysis (LDA) [Duda 2000] is then used for

predicting the i-th goal estimate ξg in every time window from the given EEG feature

vector. For the EEG feature vector represented by ut at time instant t, the classification

of the goal ξgt is based on the probability of belonging to each of the goals

ξgt = g(ut) = arg max
i=1...4

P(ξ(i)g |ut). (2.21)

2.3.4.2 Trajectory Decoding

We want to continuously generate the motion plans to drive the robot arm to the goal in

an optimal manner. We represent this decoder with a dynamical system of the form,

˙̄ξt = f(ξ̄t; θ) + ε, (2.22)

where f is a continuously differentiable function that maps the 2D-planar Cartesian posi-

tion of the robot arm ξt to its Cartesian velocity ξ̇t, and θ ∈ R
nθ represent the parameters

of the function f . The function f here represents the control policy of the robot and

maps the current position of the robot to the velocity which in turn gives the next de-

sired position upon integration. For ease of computation, we transform the coordinates to

ξ̄t = ξt − ξg to signify the change of all goal positions to the origin of the transformed

system (see Fig. 2.12 for the transformed demonstrations pointing to the origin). We are

required to learn the parameters θ such that the robot follows the intended movement of

the user. Note that the encoding of the demonstrations using any function approximator

typically creates spurious attractors or divergent behaviour away from the training data

[Khansari-Zadeh 2010]. Often stability conditions are required [Khansari-Zadeh 2011] and

even if the resulting dynamical system is stable, it may not get the user to the desired goal

in finite amount of time. To this end, we take a two-step methodology: 1) learn the initial

function from demonstrations of the hand kinematics recorded from the subject, and 2)
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optimize the function parameters by RL for effective generalization and generating optimal

motion plans [Sutton 1998].

Initial Dynamical System: In the first stage, we use Support Vector Regression (SVR)

to estimate the initial function in Eq. (2.22) given data samples {ξ̄t, ˙̄ξt} from the experi-

ments. Note that each output dimension is learned separately in this model. To speed up

the learning process, we downsample the kinematic data to 5 Hz for a total of 750 samples

corresponding to the right arm of the first subject in the training set. Hyper-parameters

of the SVR are obtained after grid-search with size of the epsilon-tube, ε = 0.5, width of

the radial basis kernel function γ = 0.5, and complexity parameter C = 1.

Optimized Dynamical System: In the second stage, we modify the landscape of the

learned function to learn optimal policy in the whole state space by maximizing the reward

function. This would enable the robot to decode the movement effectively far from the

training data (see Fig. 2.12 for clarity). Moreover, optimization in the second stage

caters for the imperfection or sub-optimality in the recorded demonstrations (for example,

demonstrations of stroke suffering subjects). We express the reward function rξ̄t as

rξ̄t = − w1ξ̄T
⊤
ξ̄T − w2

˙̄ξT
⊤
˙̄ξT − w3

¨̄ξt
⊤
¨̄ξt, (2.23)

where w1 weighs the cost for distance from the goal/origin at the end of the trial, w2

penalizes for any non-zero velocity at the end of the trial, and w3 is responsible for ensuring

smooth movement in reaching the goal by minimizing the norm of the acceleration vector.

Weights of the reward function after manual tuning are: w1 = 5, w2 = 0.01, w3 = 0.0001.

Maximum velocity ξ̇max is set to 30 cm/s2 and the simulations are carried till T = 2

seconds to prolong the penalty by w1 and w2 after the end of trial at t = 1 second.

Support vectors of the initial function act as basis functions to optimize the function f in

the second stage. Weights of the support vectors θ are optimized by stochastic gradient

ascent on the value function, V (ξ̄t; θ) = 1
T

∑T
t=0 rξ̄t starting from the initial state ξ0

and integrating the dynamics model ˙̄ξt = f(ξ̄t; θ). Note that we do not use a function

approximator to represent the value function, and take the gradient of the estimated value

function as in policy gradient approaches. More precisely, we add noise η sampled from

multivariate normal Gaussian N (0, σ2I) with σ = 0.1 to the parameters θ, evaluate the

value function, V (ξ̄t; θ + η), from episodic roll-outs of the current optimized function,
˙̄ξt = f(ξ̄t; θ + η), and adjust the parameter vector in the direction of increasing value

function, i.e.,

θ = θ + βθt
(
V (ξ̄t; θ + η)− V (ξ̄t; θ)

)
, (2.24)

where βθt is a small step-size parameter set to 0.05 in our experiments. The procedure
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Figure 2.10: Evolving EEG channels activity in the time interval [−1 1] seconds.
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Figure 2.11: Decoding goal direction from EEG signals of first healthy subject (right arm).
Red line shows the chance level; green line indicates the time instant when the classifica-
tion accuracy significantly exceeds the chance level; shaded region shows the variation in
accuracy over 5-folds.

is repeated till the parameter vector stops changing. In our experiments, the parameter

vector is improved for 1500 iterations which increases the value of the function parameters

V (θ) from −118.1 to −4.81. In the proposed framework, the attractor of the optimized

dynamical system is shifted from the origin to the estimated goal from Eq. (2.21) which is

updated after every time window of 250 milliseconds. After the end of trial, the optimized

dynamical system moves the robot arm to the last estimated goal at t = 1 seconds. The

optimized dynamical system/policy takes the form,

ξ̇t = f(ξ̄t + ξgt). (2.25)

Results and Discussions: To analyse the performance of the goal decoding from EEG

signals, we show the topographic plots of selected channels to depict their discriminatory

power at different time instants starting 1 second before the movement onset in Fig. 2.10.
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As the exact time when movement intent occurs in a self-paced movement is unclear,

the plots provide insights about movement-related modulations in different brain regions

during planning and how they evolve over time. It is seen that the activity is dominant in

the frontal-parietal regions of brain consistent with earlier reported studies [Lew 2012].

Fig. 2.11 reports the classification accuracy of goal decoder in the time window [−1 1]

seconds. Classification accuracy is computed as the ratio between the sum of correctly

classified diagonal entries in the confusion matrix and the total number of instances. The

time instant when the classification accuracy significantly exceeds the chance level is used

as a metric to initiate the movement with the trajectory decoder. Chance level is calculated

by training the classifier on a randomized permutation of the class labels of the training

set. Results are then averaged across 10 iterations each with 5 fold cross-validation. Best

time for subject 1 is 687.5 ms with classification accuracy of 0.34 before the movement

Table 2.1: Performance comparison of initial and optimized dynamical system using: MSE
on the testing set; average correlation in time between simulated and demonstrated posi-
tion trajectories on the testing set; end-point distance from the goal for different initial
conditions

Trajectory MSE Correlation End-Point
Decoder cm/s2 [0 1] Distance (cm)

Initial
2.49 0.51 5.157

SVR
Optimized

- 0.23 0.09
SVR
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Figure 2.12: Evaluation of the policy from different initial conditions: (left) initial learned
dynamical system function with SVR in a supervised manner, (right) optimized dynamical
system with stochastic gradient ascent. Black crosses indicate the initial positions, while
green circles denote the position at the end of the trial
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Figure 2.13: Simulated trajectories of KUKA robot performing center-out reaching task

onset (marked with green line in Fig. 2.11). It is seen that the classification accuracy

gradually improves afterwards with a peak accuracy of 0.85 at 0.5 seconds. We evaluate the

performance of our trajectory decoder using three metrics: 1) Mean-Square Error (MSE)

on the training/testing set, 2) Correlation in time of the simulated position trajectories

with the demonstrated ones, 3) Distance to the goal at the end of the trial computed

by simulating the system from 12 different initial conditions. Table 2.1 summarizes the

performance of the initial and the optimized SVR. The initial dynamical system learned

using SVR performs well in terms of MSE with training and testing error of 2.66 and

2.49 cm/s2 respectively, and a high correlation in position of 0.51 with the demonstrated

trajectories. To evaluate the performance of the system far from the training data, we

sample 12 different initial points in the plane (shown in Fig. 2.12 with crosses) and integrate

the system forward in time for a period of 2 seconds. As seen in Fig. 2.12, the initial

dynamical system with SVR is not able to generalize away from the training data yielding

a high end-point distance error of 5.157 cm. Note that the initial conditions in the cardinal

directions correspond to the training set. On the other hand, optimized SVR is able to

drive the robot arm to the goal from all the sampled initial conditions. This comes at a

cost of relatively low position correlation of 0.23 suggesting the need to further improve

the reward function. This generalization is required in our application since the user is

expected to control the arm from all parts of the state space.

The desired goal is inferred from the EEG signals and the trajectory decoder optimally

guides the robot arm to the desired goal. We test the performance of the integrated

system on the simulated 7 degrees of freedom KUKA robotic arm as shown in Fig. 2.14.

The optimized dynamical system starts to move the robot arm 687.5 milliseconds before

the movement onset on average and guides the robot arm to the last estimated goal at the

end of the trial. Across all the trials, the robot arm reaches the actual goal with a net

accuracy of 79.5% on average. The figure shows simulated trajectories of the robotic arm

reaching different goal positions following the predicted goal from the intention decoder

and the optimal motion plans from the trajectory decoder.

In the aforementioned work, the intention recognition is posed as an online classification
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problem. We now investigate the IRL problem in continuous unknown environments where

the intention is described in the form of a reward function that the user optimizes for in

the demonstrations.

2.4 Inverse Reinforcement Learning in Continuous Domains

Performing IRL in continuous domains is computationally more demanding because of the

time it takes to find an optimal policy in continuous high-dimensional state-action spaces

and the liability of most IRL algorithms to repeatedly find an optimal policy for extract-

ing the reward function. In [Aghasadeghi 2011], the authors follow the maximum entropy

formulation (see Eq. (2.6)) and iteratively improve the approximation of the partition

function in continuous state-space with a set of optimally sampled trajectories for the cur-

rent estimate of the reward function. Kalakrishnan et al. used l1 norm regularization on

the reward function parameters to discard the effect of the redundant features with path

integral IRL [Kalakrishnan 2013]. Boularias et al. extended the maximum entropy frame-

work to estimate the reward function parameters in a model-free setting by minimizing the

KL divergence between the demonstrated and the derived policy [Boularias 2011]. Levine

and Koltun apply the Laplace approximation to the partition function in the maximum

entropy IRL corresponding to locally solving the optimal control problem [Levine 2012].

The approximation allows to optimize the reward function parameters directly and pre-

vent the need of repeatedly finding an optimal policy in the inner loop of a candidate

reward function. In our work presented in [Tanwani 2013a], we demonstrate the use of

IRL in continuous unknown environments for a special class of trajectory reward functions

that penalizes any deviation from a desired reference trajectory.

2.4.1 Model-Based Learning for Trajectory Reward Function

IRL is desirable for estimating the human preferences in the demonstrations for various

task-dependent objectives, and learning rich control policies that generalize beyond the

demonstrated data. We divide our framework in three stages for learning the main con-

stituent components of IRL in an iterative manner: dynamics model, reward function and

optimal policy.
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2.4.1.1 Dynamics Model Learning

Given the set of all demonstrations {ξt,ut}Tt=1, we first learn the dynamics model of the

form, ξ̇ = f(ξt,ut; θ), parameterized by vector θ ∈ R
nθ in a supervised learning manner.

An interested reader can find a review of function approximation methods for supervised

learning in [Stulp 2015].

2.4.1.2 Reward Function Learning

For many manipulation tasks, it is difficult to specify high-level objectives that humans

optimize for during the task. We represent the reward function for such tasks with a desired

reference trajectory (known or unknown) that the humans follow in their demonstrations,

and penalize any deviation from this reference trajectory in a quadratic manner, namely

r(ξt,ut) = −(ξt − ξ∗t )
⊤Q(ξt − ξ∗t )− (ut − u∗

t )
⊤R(ut − u∗

t ), (2.26)

where ξ∗t and u∗
t are the reference trajectories, Q � 0 and R ≻ 0 are diagonal matri-

ces containing the reward function parameters w with Q = diag
[

w1 . . . wD

]

,R =

diag
[

wD+1 . . . wD+m

]

. Note that this reward function is maximized when the optimal

control policy and the desired reference trajectory match with each other. Atkenson and

Schaal in [Atkeson 1997a] used the human demonstration as a trajectory reward function

with hand tuned gains and learned the dynamics model incrementally with the data col-

lected from successive attempts to perform the task of pendulum swing-up. The authors

in [Coates 2008] recover a single trajectory from multiple demonstrations that is consis-

tent with the task dynamics. The reward function and the current task model is used to

generate the control policy via trajectory optimization.

Here, we follow the approach in [Levine 2012] to recover the reward weights w under

which the observed human demonstrations Dπ
E are locally optimal for the given dynamics

model under the maximum entropy distribution (see Eq. (2.6)). The approach requires the

human demonstrations to only be locally optimally with respect to the underlying reward

function. By approximating the integral in the partition function locally around the expert

demonstration using the deterministic Laplace method, the log-likelihood function of the

reward function can be computed as

L(w|DπE) =
1

2
gTH−1g +

1

2
log|−H|, (2.27)

where g = ∂V π

∂π
and H = ∂2V π

∂π2 is evaluated around the locally optimal human demon-
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stration with π = {uE
1 ,u

E
2 , . . . ,u

E
T }. Computing this likelihood requires the gradient and

the Hessian of the value function, which in turn requires linearizing the dynamics along

the expert demonstration. The likelihood function is then maximized using gradient-based

optimization to solve for the reward function parameters w. Note that we did not require

a repeated optimal policy solver to find the locally optimal reward function. However, the

inaccuracy of the dynamics model (due to insufficient number of samples) may require

re-estimation of the dynamics model and subsequently, the reward function.

2.4.1.3 Optimal Policy Learning

We use the iterative linear quadratic regulator (iLQR) [Li 2004] to learn the optimal trajec-

tory for the estimated dynamics model and the reward function. Starting from a random

policy, iLQR successively improves the policy estimate by solving a LQR problem in an

inner loop with quadratic approximation of the reward function and linear approximation

of the dynamics model along the current optimal trajectory. The steps can be highlighted

as: 1) execute the current policy π(j) starting from j = 1 and record the resulting state-

input trajectory {ξt,ut}Tt=1, 2) evaluate the first order partial derivatives of the estimated

dynamics model { ∂f
∂ξt
, ∂f
∂ut
}Tt=1 and the second order partial derivatives of the estimated

reward function {∂rξt
∂ξt

,
∂rξt
∂ut

,
∂2rξt
∂ξ2t

,
∂2rξt
∂u2

t

,
∂rξt

∂ut∂ξt
}Tt=1 along the trajectory {ξt,ut}Tt=1, 3) find

the optimal policy π(j+1) = ût +Kt(ξ̂t − ξt) for linear quadratic system in step 2, where

ût, ξ̂t correspond to the open-loop corrected trajectories and Kt gives the variable stiffness

and damping profile for compliant control (we revisit the details of computing Kt in the

next chapter), 4) set j = j + 1 and go to step 1 till the policy does not improve any more.

The overall algorithm combining the above stages is shown in Algorithm 3. We first

learn the transition dynamics model of the environment from the available samples and

use it to estimate the reward function for the locally optimal reference demonstrations.

If the resulting control policy accumulates the same sum of rewards as that of human

demonstrations, we conclude that the learned reward function, dynamics model and the

control policy for the robot is optimal; otherwise we use the data samples generated by

executing the control policy to improve the dynamics model and repeat the process again.

Since we always execute the optimal policy on the robot for current estimate of the reward

function and the dynamics model, we avoid any explicit exploration characteristic of model-

free reinforcement learning approaches that may harm the robot.
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Algorithm 3 Model-Based IRL for Compliant Manipulation in Unknown Environment

Input: Human demonstrations set DπE

procedure Continuous_IRL

1: Initialize {ξt,ut} with few samples of the environment
2: i := 0
3: repeat
4: i := i + 1
5: Learn the dynamics model parameters with samples in {ξt,ut}:

ξ̇t = fi(ξt,ut+1; θ)

6: Find the reward function using fi(xt, ut+1):

wi = argmax
w
L(w|DπE)

7: Compute the optimal policy using iLQR of the form:

πi = ût +Kt(ξ̂t − ξt)

8: Execute πi on the real model and record samples
9: Add samples {ξ(m)

t ,u
(m)
t }T,Mt=1,m=1 to the set {ξt,ut}

10: until ‖V πi − V πE‖2 is unchanged
11: return reward function, dynamics model, optimal policy

Figure 2.14: Letter writing setup with the KUKA robot.
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2.4.2 Letter Writing Example

In this example, we are interested in learning compliant behaviour for the task of letter

writing using human demonstrations. Writing a letter with a robot is a complex task that

involves several key elements such as grasping force between the hand and the pen, tool-tip

interaction force, orientation of the hand, etc [Yin 2016]. We verify our model-based IRL

framework to find the reward function and write a letter in a compliant manner with the

KUKA robot.

State-Action Space and Reward Function: The state of the robot is described by

the Cartesian position of the pen mounted on the end-effector, ξt ∈ R
3, and the action

corresponds to the 3−dimensional impedance force at the end-effector, ut ∈ R
3. We denote

the 3-dimensional impedance force with the tuple, {Fx, Fy, Fz} to indicate the force in x,y

and z-direction respectively. Let ξ̇t ∈ R
3 denote the tool-tip velocity of the end-effector.

The dynamics model here maps the current tool-tip position and the impedance force to the

tool-tip velocity which we represent as ξ̇t = f(ξt,ut; θ). We are interested in learning the

control policy πt = {u1, . . . ,uT } that regulates the interaction force with the environment

over the course of writing a letter as observed in the human demonstrations.

The reward function is described by a trajectory following a given human demonstration

for writing a letter (see Eq. (2.26)) with Q ∈ R
3×3 and R ∈ R

3×3 as diagonal matrices

containing the reward function parameters w ∈ R
6 with Q = diag

[

w1 w2 w3

]

, and

R = diag
[

w4 w5 w6

]

.

Results and Discussions: We collect 2 trajectories of human demonstrations each for

writing the letters {a, e,m, o, u, y} using a tablet and measure the interaction forces with

a six-axis force torque sensor placed below the tablet (see Fig. 2.14 for the experimental

set-up). The demonstrations are used to learn the dynamics model, ξ̇t = f(ξt,ut; θ) using

a total of 1000 data samples with SVR. The model predicts the Cartesian velocity given the

Cartesian position of the end-effector and the impedance force. Parameter setting for SVR

with C = 100, ε = 0.01, γ = 0.5, gives training and testing set error of 0.0036 and 0.0084

per datapoint. The learned model is used to estimate the reward function for which a given

human demonstration is optimal. Learned trajectory reward function parameters for the

dynamics model corresponds to w =
[

0.528 0.256 0.0004 0.267 0.732 0.216
]⊤

. The

more the weight is along a particular dimension, the more is the required stiffness along that

dimension. The optimal policy behavior is examined for the obtained reward function in

Fig. 2.15. It can be seen that the variable stiffness feedback enables the robot to follow the

desired trajectory of writing a letter under different noisy settings in a compliant manner.



54 Chapter 2. Rewards-Driven Learning from Demonstrations

−0.1 −0.05 0 0.05 0.1 0.15
−0.2

−0.15

−0.1

−0.05

0

0.05

Tablet−x

T
ab

le
t−

y

Writing Letter a with No Noise

 

 
Reference Demo

Open−loop Optimal

Open−loop Simulated

Close−loop Simulated

−0.1 −0.05 0 0.05 0.1 0.15
−0.2

−0.15

−0.1

−0.05

0

0.05

Tablet−x

T
ab

le
t−

y

Writing Letter a with Noise = 0.030

 

 
Reference Demo
Open−loop Optimal
Open−loop Simulated
Close−loop Simulated

Figure 2.15: Optimal policy generalization with different noisy conditions for writing letter
‘a’: (left) no noise, (right) continuous noise added to state at each time step from a Gaussian
distribution with mean 0 and standard deviation of 0.04.

2.5 Conclusions

This chapter presents a broad review of rewards-driven robot learning from demonstra-

tions. In this paradigm, we first extract the reward function from the demonstrations

to infer about the demonstrator preferences in a compact manner and then find the op-

timal policy to generalize better in different unobserved situations. We presented our

approach of learning multiple reward functions in the demonstrations and used transfer

learning to make IRL suitable for moderately high-dimensional spaces. To scale IRL in

high-dimensional continuous domains, we moved from recursive value-function based meth-

ods to actor-critics with experience replay and policy gradient algorithms for finding the

optimal policy in a model-free manner. To avoid explicit exploration during learning, we

presented a model-based IRL approach in continuous unknown environments that itera-

tively updates the dynamic model, the reward function and the optimal policy to mimic

the desired reference trajectory. In the next chapter, we revisit the problem of learning

trajectory reward functions by performing statistics over the multiple demonstrations using

generative models.

The rewards-driven paradigm is attractive for jointly addressing the what-to-imitate and

how-to-imitate problem in learning from demonstrations, however, the practical issues in

its implementation limit the widespread utility of IRL. Besides the high computational

overhead of applying IRL in continuous unknown environments, a lot of effort goes into

engineering the features (setting cut-off values, normalization range etc.) of the reward

function whose unknown weighted combination should give the desired optimal policy. The
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time required for iteratively designing the features is cumbersome to scale the paradigm

for a wide range of problems. Despite the bottlenecks, IRL has been used in continuous

domains to perform acrobatic helicopter manoeuvres [Abbeel 2010], humanoid locomotion

[Mombaur 2010], playing table tennis [Muelling 2014], and grasping objects [Doerr 2015]

among other applications. More recently, there has been a surge in applying deep vari-

ants of RL algorithms on robotic problems. Deep RL algorithms have been used to learn

control policies from raw visual images [Levine 2015, Mnih 2015], and surpass humans in

playing video games [Silver 2016]. Deep architectures for IRL provide a promising alter-

native to learn reward functions features with guided cost learning [Finn 2016], generative

adversarial networks [Goodfellow 2014, Ho 2016], and unsupervised perceptual rewards

[Sermanet 2016].
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Generative models are widely used to learn the distribution of the data for regenerating

new samples from the model. Common examples include probability density function

estimation, image regeneration and so on. Discriminative models, on the other hand,

directly model the target variable(s) distribution given the observed variables. In this

chapter, we learn the joint probability density function of the human demonstrations with
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Figure 3.1: Encoding demonstrations on (left) with 3 components in a GMM on (right).

a hidden semi-Markov model in an unsupervised manner, and smoothly follow the sampled

sequence of states with a linear quadratic tracking controller. We show how the model

can be systematically adopted to changing situations such as position/size/orientation of

the objects in the environment with a task-parameterized formulation. We combine tools

from statistical machine learning and optimal control to segment the demonstrations into

different components or sub-goals that are sequenced together to perform manipulation

tasks [Tanwani 2016a].

3.1 Encoding with Generative Models

3.1.1 Gaussian Mixture Model (GMM)

Probabilistic clustering models, such as Gaussian mixture model (GMM), are widely used

to encode local trends in the data for classification or regression. For the set of T observa-

tions {ξt}Tt=1 with ξt ∈ R
D, the probability density function P of GMM with K mixture

components is represented as,

P(ξt|θ) =
K∑

i=1

πi N (ξt|µi,Σi), (3.1)

where N (µi,Σi) is the multivariate Gaussian distribution with prior πi, mean µi, and

covariance matrix Σi. θ = {πi,µi,Σi}Ki=1 are the set of parameters to be estimated in the

density function. In our case, we are mostly interested in clustering the data to encode

their local trend based on the variance in the demonstrations, instead of trying to interpret

the overall behaviour of the data. The observations {ξt}Tt=1 are assumed to be independent

realizations of a random process whereas the unobserved labels {zt}Tt=1 are assumed to be
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independent realizations of a random variable zt ∈ {1, . . . ,K}. The set of pairs {ξt, zt}Tt=1

compose the complete data set. The log-likelihood of the GMM is,

L(θ|ξ) =
T∑

t=1

log

(
K∑

i=1

πi N (ξt|µi,Σi)

)

. (3.2)

The inference of this model cannot be directly done through the maximization of the

likelihood since the group labels {zt}Tt=1 of the observations are unknown. Given

the initial set of parameters θ old, the auxiliary function of GMM, Q(θ, θ old) =

E

{
∑T

t=1 logP(ξt, zt|θ) | ξt, θ old

}

, takes the form [Dempster 1977],

Q(θ, θ old) ≈ 1

2

T∑

t=1

K∑

i=1

hθ
old

t,i

(
log π2i − log|Σi|− (ξt − µi)

⊤
Σ

−1
i (ξt − µi)−D log(2π)

)
,

(3.3)

where hθ
old

t,i = p(zt = i|ξt, θ old) is the probability of data point ξt to belong to i-th

Gaussian component. Setting the derivative of the auxiliary function with respect to the

model parameters equal to zero results in an Expectation-Maximization (EM) algorithm.

The two steps are iteratively computed until the likelihood function converges to a local

optimum.

E-step:

ht,i =
πi N (ξt|µi,Σi)

∑K
k=1 πk N (ξt|µk,Σk)

. (3.4)

M-step:

πi ←
∑T

t=1 ht,i
T

, (3.5)

µi ←
∑T

t=1 ht,i ξt
∑T

t=1 ht,i
, (3.6)

Σi ←
∑T

t=1 ht,i (ξt − µi)(ξt − µi)
⊤

∑T
t=1 ht,i

. (3.7)

Consider multiple demonstrations of a 3-dimensional Z-shaped movement as shown in Fig.

3.3. Encoding the demonstrations with 3 components in a GMM reveals two important

aspects: 1) the mixture components identify sub-goals of a task, and 2) covariance in

demonstrations gives a measure of the important aspects of a task, i.e., the less is the

variance of a mixture component along a certain direction, the more constrained the model

needs to be for reproduction along that direction.
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3.1.2 Hidden Markov Model (HMM)

Hidden Markov models (HMMs) encapsulate the spatio-temporal information by

augmenting a GMM with latent states that sequentially evolve over time in the demon-

strations1. HMM is thus defined as a doubly stochastic process, one with sequence of

hidden states and another with sequence of observations/emissions. Spatio-temporal en-

coding with HMMs can handle movements with variable durations, recurring patterns,

options in the movement, or partial/unaligned demonstrations. HMMs are widely used for

time series/sequence analysis in speech recognition, machine translation, DNA sequencing,

robotics and many other fields [Rabiner 1989]. An interested reader can find more details

about HMMs in [Rabiner 1989, Ghahramani 2002, Ephraim 2002].

Without loss of generality, we will describe the HMMs in which each state zt is described

by a single Gaussian distribution N (µzt ,Σzt). In case of GMMs, the evaluation of each

datapoint ξt is independent from the other datapoints in the stream of data. An HMM

will instead consider transition probabilities between the K Gaussians, forming a K×K
transition probability matrix, where an element ai,j in the matrix represents the probability

to move from state i to state j in the next iteration. The parameters of an HMM will be

described with parameters θ = {{ai,j}Kj=1,Πi,µi,Σi}Ki=1, where Πi are initial emission

probabilities. For learning and inference in HMMs, it is useful to define intermediary

variables, namely forward variable αHMM

t,i , backward variable βHMM

t,i , smoothed node marginal

γHMM

t,i , and smoothed edge marginal ζHMM

t,i,j .

Forward Variable - αHMM

t,i , P (zt = i, ξ1 . . . ξt|θ): The probability of a datapoint ξt to

be in state i at time step t given the partial observation sequence {ξ1, ξ2, . . . , ξt}, can be

recursively computed with the forward variable as,

αHMM

t,i =
( K∑

j=1

αHMM

t−1,j aj,i

)

N (ξt| µi,Σi), (3.8)

with an initialization given by αHMM

1,i = Πi N (ξ1| µi,Σi). Note that a naive computation

would require marginalizing over all possible state sequences {z1, . . . zt−1} which would grow

exponentially with t. The forward variable takes advantage of the conditional independence

in the network to perform the calculation recursively. Moreover, we consider HMMs with

a single Gaussian as emission distribution, with πi=1, which is dropped in the equations.

The forward variable can be used to compute the probability of the the full observation

1With a slight abuse of terminology, the word state is used to describe each discrete node/cluster
encoding the evolution of a set of variables ξt in the context of HMM. It should not be confused with
the word state in the context of dynamical systems that would instead be used to refer to the same set of
variables ξt.
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ξ = {ξ1, ξ2, . . . , ξT } with, P(ξ|θ) =∑K
k=1 α

HMM

T,k .

Backward Variable - βHMM

t,i , P (ξt+1 . . . ξT |zt = i, θ): Similarly, a backward variable

with a recursion going in the opposite direction can be defined by starting from βHMM

T,i =1

and by recursively computing,

βHMM

t,i =

K∑

j=1

ai,j N (ξt+1| µj,Σj) β
HMM

t+1,j , (3.9)

which corresponds to the probability of the partial observation sequence

{ξt+1, . . . , ξT−1, ξT } given that we are in the i-th state at time step t.

Smoothed Node Marginal - γHMM

t,i , P (zt = i|ξ1 . . . ξT , θ): The probability of ξt to be

in state i at time step t given the full observation sequence ξ is

γHMM

t,i =
αHMM

t,i βHMM

t,i

K∑

k=1

αHMM

t,k βHMM

t,k

=
αHMM

t,i βHMM

t,i

P(ξ|θ) . (3.10)

Smoothed Edge Marginal - ζHMM

t,i,j , P (zt = i, zt+1 = j|ξ1 . . . ξT , θ): The probability of

ξt to be in state i at time step t and in state j at time step t+1 given the full observation

sequence ξ is

ζHMM

t,i,j =
αHMM

t,i ai,j N (ξt+1| µj ,Σj) β
HMM

t+1,j

K∑

k=1

K∑

l=1

αHMM

t,k ak,l N (ξt+1| µl,Σl) β
HMM

t+1,l

=
αHMM

t,i ai,j N (ξt+1| µj ,Σj) β
HMM

t+1,j

P(ξ|θ) .

(3.11)

The expected complete log-likelihood of HMMs for a set of M demonstrations defined with

an additional index m, Q(θ, θ old) = E

{
∑M

m=1

∑T
t=1 logP(ξm,t, zt|θ) | ξ, θ old

}

, is given as

Q(θ, θ old) =

K∑

i=1

M∑

m=1

γHMM

m,1,i log Πi +

K∑

i=1

K∑

j=1

M∑

m=1

T∑

t=1

ζHMM

m,t,i,j log ai,j +

M∑

m=1

T∑

t=1

K∑

i=1

P(zt = i|ξm,t, θ
old) logN (ξm,t|µi,Σi). (3.12)

Maximizing Q(θ, θ old) with respect to the model parameters θ for iteratively performing

the EM steps with
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E-step:

γHMM

m,t,i =
αHMM

t,i βHMM

t,i

K∑

k=1

αHMM

t,k βHMM

t,k

, (3.13)

M-step:

Πi ←
∑M

m=1 γ
HMM

m,1,i

M
, (3.14)

ai,j ←
∑M

m=1

∑Tm−1
t=1 ζHMM

m,t,i,j
∑M

m=1

∑Tm−1
t=1 γHMM

m,t,i

, (3.15)

µi ←
∑M

m=1

∑Tm

t=1 γ
HMM

m,t,i ξm,t
∑M

m=1

∑Tm

t=1 γ
HMM

m,t,i

, (3.16)

Σi ←
∑M

m=1

∑Tm

t=1 γ
HMM

m,t,i (ξm,t − µi)(ξm,t − µi)
⊤

∑M
m=1

∑Tm

t=1 γ
HMM

m,t,i

. (3.17)

Note that numerical underflow issues easily occur with a naive implementation of the above

algorithms. In practice, a simple approach to avoid this issue is to rely on scaling factors

during the computation of the forward and backward variables, which get canceled out

when normalizing the posterior [Rabiner 1989].

3.1.3 Hidden Semi-Markov Model (HSMM)

Semi-Markov models relax the Markovian structure of state transitions by relying not

only upon the current state but also on the duration/elapsed time in the current state, i.e.,

the underlying process is defined by a semi-Markov chain with a variable duration time

for each state. The state duration stay is a random integer variable that assumes values in

the set {1, 2, . . . , smax}. The value corresponds to the number of observations produced in

a given state, before transitioning to the next state. The parameter set now additionally

contains the duration distribution for each state psi and the transition probability also

becomes dependent on the duration of time spent in the previous state s
′
and the current

state s, denoted as a(i,s′ )(j,s). Hidden Semi-Markov Models (HSMMs) associate an

observable output distribution with each state in a semi-Markov chain, similar to how we

associated a sequence of observations with a Markov chain in a HMM [Yu 2010]. Depending

upon the assumptions on transition from one state to the other, HSMMs are classified into

different groups including,

• Non-stationary HSMMs in [Marhasev 2006] were introduced in which the state
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duration may be assumed to be independent to the previous state specified as

a(i,s′ )(j,s) = a(i,s′) j p
s
j , i.e., the state switches to state j for the probability dura-

tion of s steps after spending s
′
duration steps in state i.

• In residential time HSMMs [Yu 2006], the state transition is assumed to be in-

dependent to the duration of the previous state with a(i,s′)(j,s) = ai (j,s) specifying

the transition probability that state i ends at time t− 1 and transits to state j for s

duration steps.

• In variable transition HSMMs [Krishnamurthy 1991, Ramesh 1992], the self-

transition is allowed and assumed to be independent to the previous state with

a(i,s′ )(j,s) = a(i,s′) j
∏s−1

τ=1 ajj(τ)[1 − ajj(s)], where ajj(s) is the self-transition proba-

bility when state j has stayed for duration s, and 1 − ajj(s) is the probability that

state j ends with duration s. The model is realized as a HMM with augmented state

(i, s).

• In explicit duration HSMMs [Yu 2006], the transition to the current state is

independent to the duration of the previous state and the duration is only dependent

on the current state with a(i,s′ )(j,s) = ai,j p
s
j. The transition probability specifies the

switch from state i at time t to state j for a stay of duration of s steps in state j at

time [t+ 1, t+ d]. The self transition probabilities ai,i are set to zero in the explicit

duration model. The scope of this thesis is limited to explicit duration HSMMs.

Though HMMs also implicitly assume that the duration of staying in a state follows a geo-

metric distribution, this assumption is often limiting, especially for modelling the sequences

with long state dwell times [Rabiner 1989]. The probability of staying s consecutive time

steps in state i exponentially decreases with time in HMMs as

psi = as−1
i,i (1− ai,i). (3.18)

An explicit duration HSMM sets the self-transition probabilities to zero and explicitly mod-

els the state duration with a parametric distribution. We use a Gaussian distribution here

to model the state duration with parameters {µSi ,ΣS
i }. Note that a lognormal, gamma or

a poisson distribution may also be used to avoid sampling negative time duration steps

from the Gaussian distribution, but this effect is most often negligible in robotic applica-

tions2. The parameter set for an HSMM is defined by
{

Πi, {ai,m}Km=1,µi,Σi, µ
S
i ,Σ

S
i

}K

i=1
.

Learning and inference in HSMMs requires computing the intermediary variables as defined

for the case of HMMs. In practice, as an approximation, we adopted a simpler approach

2We encode movements with few states and a duration distribution whose center is most often far from
zero with relatively small variance.
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Figure 3.2: Graphical representation of a GMM, HMM and HSMM with 7 components
(see [Calinon 2011, Tanwani 2016a, Tanwani 2016c] for use in robotic applications).

to learn the model parameters. Parameters
{

Πi, {ai,m}Km=1,µi,Σi

}K

i=1
are estimated us-

ing the EM algorithm for HMMs as described in the previous section, and the duration

parameters {µSi ,ΣS
i }Ki=1 are estimated empirically from the data after training from the

most likely hidden state sequence zt = {z1 . . . zT }. In Fig. 3.2, we provide a graphical

representation of the difference of encoding among GMM, HMM and a HSMM. A GMM

model encodes the structure of the motion but does not model the transition between the

states. An HMM uses transition probabilities and self-transition probabilities to switch

among states. Self-state transitions are known to only poorly describe the probability that

the system is expected to stay in a given state for a long duration. The HSMM model

instead explicitly models the state duration probabilities as Gaussian distributions, while

keeping the transition probabilities across states.

3.1.4 Kalman Filter and Dynamic Bayesian Networks

It is useful to note that several other modelling representations can be considered to encode

the spatio-temporal patterns in the observations. For example, a Kalman filter model

represents the transition distribution between latent states in a HMM with a continuous

linear dynamical system or a linear state space model, i.e.,

P(zt|zt−1) = N (zt;Akzt−1 + µz,Qz), (3.19)

P(ξt|zt) = N (ξt;Ckξt + µξ,Qξ), (3.20)

where zt ∈ R
Dz is a continuous Dz dimensional latent variable, Ak,Ck are the linear

transformation matrices for hidden state and observation respectively, µz,µξ are the inde-
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pendent additive noise mean variables of state and observation respectively, while Qz,Qξ

are the independent positive semi-definite matrices of state and observation noise respec-

tively. The inference and learning in Kalman filter with linear Gaussian assumptions is

done in an exact manner, while Extended Kalman filter or Unscented Kalman filter are

used for approximating non-linear dynamics [Wan 2000].

Both HMMs and Kalman filter can be considered as special cases of Dynamic Bayesian Net-

works (DBNs), that can model complex patterns in sequential data at the cost of increased

computational and algorithmic complexity. Other important variants of DBNs include

auto-regressive models, input-output HMMs, factorial HMMs, hierarchical HMMs, abstract

HMMs. An interested reader can find more details of these variants in [Murphy 2012].

3.2 Task-Parameterized Generative Models

With increasing functional and behavioural expectations of robots, it has become impera-

tive to encode manipulation tasks such that the robots are able to execute them in previ-

ously unseen contexts. It is often difficult to collect a set of demonstrations for all possible

situations and operating conditions of the task. The reproduction phase also faces a similar

issue, i.e., after having observed a set of demonstrations in some situations, we would like to

generalize the skill to new situations. Task-parameterized models provide a probabilistic

formulation to deal with different real world situations by adapting the model parame-

ters [Wilson 1999, Yamazaki 2005, Krueger 2010, Ureche 2015, Yang 2015, Silverio 2015,

Calinon 2016, Tanwani 2016a], instead of hard coding the solution for each new situation

or handling it in an ad hoc manner.

Most of the existing methods retrieve the movement from the model parameters and

the task parameters as a standard regression problem [Inamura 2004, Alissandrakis 2006,

Ude 2010, Kronander 2011, Kober 2012, Mühlig 2012, Paraschos 2013]. This generality

might look appealing at first sight, but it also strongly limits and bounds the generalization

scope of these models. Task-parameterized models handle new environmental situations

by defining external coordinate systems or frames of reference3. For example, a coordinate

system can be attached to an object whose position and orientation may change during

the task. When a different situation occurs (position/orientation of the object changes),

changes in the task parameters or reference frames are used to modulate the model parame-

ters in order to adapt the robot movement to the new situation. We denote task parameters

to refer to the coordinate systems that describe the current environmental situation, such

3We use the term coordinate system and frame of reference interchangeably in this thesis.



66 Chapter 3. Task-Parameterized Generative Models

as positions of objects in the environment. The model parameters refer to the parameters

learned by the system to encode the movement.

3.2.1 Learning Model Parameters

We represent the task parameters with P coordinate systems, defined by the coordinate

systems {Aj, bj}Pj=1, where Aj denotes the orientation of the coordinate system as a rota-

tion matrix and bj represents the origin of the coordinate system.4 The observations ξt are

observed from different coordinate systems forming a third order tensor dataset {ξ(j)t }T,Pt,j=1

with

ξ
(j)
t = A−1

j (ξt − bj). (3.21)

3.2.1.1 Task-Parameterized GMM

The parameters of the task-parameterized GMM are defined by θp =

{πi, {µ(j)
i ,Σ

(j)
i }Pj=1}Ki=1, where µ

(j)
i and Σ

(j)
i define the mean and the covariance

matrix of the i-th mixture component in frame P . Learning of the parameters is achieved

with the constrained problem of maximizing the log-likelihood under the constraints that

the data in the different frames are generated from the same source, resulting in an EM

process to iteratively update the model parameters until convergence. The probability

of data point ξt to belong to the i-th Gaussian component at time t (E-step) in the

task-parameterized formulation is given by [Calinon 2016]

E-step:

h
θ̂p
t,i =

πi
P∏

j=1
N (ξ

(j)
t | µ

(j)
i ,Σ

(j)
i )

∑K
k=1 πk

P∏

j=1
N (ξ

(j)
t | µ

(j)
k ,Σ

(j)
k )

, (3.22)

where
P∏

j=1
N (ξ

(j)
t | µ

(j)
i ,Σ

(j)
i ) represents the product of the probabilities of the datapoint

observed in P frames to belong to i-th Gaussian in the corresponding frame. Maximum like-

lihood estimates of the parameters remain the same as in a GMM except the computation

is repeated with respect to P different frames, i.e.,

4Without loss of generality, the frames can be time-varying defined at time t by {At,j , bt,j}
P
j=1.
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M-step:

πi ←
∑T

t=1 ht,i
T

, (3.23)

µ
(j)
i ←

∑T
t=1 ht,i ξ

(j)
t

∑T
t=1 ht,i

, (3.24)

Σ
(j)
i ←

∑T
t=1 ht,i (ξ

(j)
t − µ

(j)
i )(ξ

(j)
t − µ

(j)
i )⊤

∑T
t=1 ht,i

. (3.25)

3.2.1.2 Task-Parameterized HSMM

In order to learn the HSMM in the task-parameterized formulation, we assume that the

emission distribution of the i-th state is represented by the product of the probabilities of

the datapoint observed in P frames to belong to the i-th Gaussian in the corresponding

coordinate system. The forward variable of HMM in the task-parameterized formulation

is described as

αTP-HMM

t,i =
( K∑

j=1

αHMM

t−1,j aj,i

) P∏

j=1

N (ξ
(j)
t | µ

(j)
i ,Σ

(j)
i ). (3.26)

Similarly, the backward variable βTP-HMM

t,i , the smoothed node marginal γTP-HMM

t,i ,

and the smoothed edge marginal ζTP-HMM

t,i,j can be computed by replacing the emission

distribution N (ξt| µi,Σi) in Eq. (3.9), Eq. (3.10) and Eq. (3.11) with the product of

probabilities of the datapoint in each frame
∏P

j=1N (ξ
(j)
t | µ

(j)
i ,Σ

(j)
i ).

The initial state probability Πi and the transition probability ai,m of moving to state m are

represented in the same manner as that of HSMM. The parameters of task-parameterized

HSMM are described by θh =
{

Πi, {ai,m}Km=1, {µ
(j)
i ,Σ

(j)
i }Pj=1, µ

S
i ,Σ

S
i

}K

i=1
. Parameters

{

Πi, {ai,m}Km=1, {µ
(j)
i ,Σ

(j)
i }Pj=1

}K

i=1
are estimated with intermediary variables defined as

above using EM in an iterative manner, while the parameters {µSi ,ΣS
i }Ki=1 are estimated

empirically from the data after training similar to the HSMM case. The resulting EM steps

are summarized as [Tanwani 2016a]

E-step:

γTP-HMM

m,t,i =
αTP-HMM

t,i βTP-HMM

t,i

K∑

k=1

αTP-HMM

t,k βTP-HMM

t,k

, (3.27)
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M-step:

Πi ←
∑M

m=1 γ
TP-HMM

m,1,i

M
, (3.28)

ai,j ←
∑M

m=1

∑Tm−1
t=1 ζTP-HMM

m,t,i,j
∑M

m=1

∑Tm−1
t=1 γTP-HMM

m,t,i

, (i 6= j) (3.29)

µ
(j)
i ←

∑M
m=1

∑Tm

t=1 γ
TP-HMM

m,t,i ξ
(j)
m,t

∑M
m=1

∑Tm

t=1 γ
TP-HMM

m,t,i

, (3.30)

Σ
(j)
i ←

∑M
m=1

∑Tm

t=1 γ
TP-HMM

m,t,i (ξ
(j)
m,t − µ

(j)
i )(ξ

(j)
m,t − µ

(j)
i )⊤

∑M
m=1

∑Tm

t=1 γ
TP-HMM

m,t,i

. (3.31)

The duration modelN (s|µSi ,ΣS
i ) is used as a replacement of the self-transition probabilities

ai,i. The hidden state sequence of the demonstrations is obtained as,

zt = argmax
i

γTP-HMM

m,t,i . (3.32)

The hidden state sequence over all demonstrations is used to define the duration model

parameters {µSi ,ΣS
i } as the mean and the standard deviation of staying s consecutive time

steps in the i-th state.

3.2.2 Adapting Model Parameters in New Situations

In order to define the model parameters in new situations, we make use of two properties

of multivariate Gaussians:

Linear Transformation of Gaussians: If ξt follows Gaussian distribution N (u,Σ),

then the linear transformation of the data Aξt+ b in the coordinate system {A, b} follows

the distribution

Aξt + b ∼ N (Aµ+ b,AΣA⊤). (3.33)

Product of Gaussians: The product of two multivariate Gaussians N (µ(1),Σ(1)) and

N (µ(2),Σ(2)) can be approximated as a multivariate Gaussian N (µp,Σp) with

N (µp,Σp) ∝ N (µ(1),Σ(1)) · N (µ(2),Σ(2)), (3.34)

where, Σ
p =

(

Σ
(1) +Σ

(2)
)−1

,

µp = Σ
p
(

Σ
(1)−1

µ(1) +Σ
(2)−1

µ(2)
)

.

Intuitively speaking, the product of Gaussians gives a closed form expression for minimizing
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Figure 3.3: Task-parameterized HSMM: (top-left) each demonstration is observed with
respect to frame 1 (in purple) and frame 2 (in green) respectively, (top-center, top-right)
model is learned in respective coordinate systems, (bottom-left) linear transformation of
Gaussians for new environmental situation described by coordinate systems in purple and
in green, (bottom-center) product of linearly transformed Gaussians and movement repro-
duction for a new situation, (bottom-right) HSMM graphical representation.
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the cost on the resulting µp,

µp = argmin
ξ

2∑

i=1

(

ξ − µ(i)
)⊤

Σ
(i)−1

(

ξ − µ(i)
)

, (3.35)

with a minimization error given by Σ
p. The product of P multivariate Gaussians follows

essentially the same principle. Using these two properties, we adapt the model parameters

for a new unseen environmental situation described by the frames {Ãj, b̃j}Pj=1 after the

training phase. The new model parameters {µ̃i, Σ̃i} for the i-th mixture component cor-

respond to the product of the linearly transformed i-th Gaussian components in P frames

N (µ̃i, Σ̃i) ∝
P∏

j=1

N
(

Ãjµ
(j)
i + b̃j , ÃjΣ

(j)
i Ã

⊤
j

)

. (3.36)

Evaluating the product of Gaussian yields

Σ̃i =





P∑

j=1

(

ÃjΣ
(j)
i Ã

⊤
j

)−1





−1

,

µ̃i = Σ̃i

P∑

j=1

(

ÃjΣ
(j)
i Ã

⊤
j

)−1 (

Ãjµ
(j)
i + b̃j

)

. (3.37)

3.2.3 Sampling from HSMM

Given the new model parameters {µ̃i, Σ̃i}Ki=1 and a sequence of observations {ξ1, . . . , ξt},
we are interested in predicting the probability of the hidden state sequence over the next

time horizon Tp, i.e., p(zt, zt+1, . . . , zTp | ξ1, . . . , ξt) [Tanwani 2016a].

Starting from the initial datapoint ξ1, the probability of datapoint to belong to the i-th

mixture component is

hHMM

1,i =
πiN (ξ1|µ̃i, Σ̃i)

∑K
k=1 πkN (ξ1|µ̃k, Σ̃k)

. (3.38)

The probability of the observed sequence {ξ1 . . . ξt} to belong to a hidden state zt = i at

the end of the sequence (also known as filtering problem) is computed with the help of the

forward variable as

p(zt | ξ1, . . . , ξt) = hHMM

t,i =
αHMM

t,i
∑K

k=1 α
HMM

t,k

. (3.39)

Sampling from the model for predicting the sequence of states over the next time horizon
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can take two forms:

1) Stochastic Sampling: The sequence of states is sampled in a probabilistic manner

given the state duration and the state transition probabilities. By stochastic sampling,

motions that contain different options and do not evolve only on a single path can also be

represented (see [Gowrishankar 2013] for example). The procedure is as follows:

1. start from the initial state zt = i,

2. sample the s duration steps from {µSi ,ΣS
i },

3. sample the next transition state zt+s+1 ∼ πzt+s from the transition probability ma-

trix,

4. repeat step 2 and step 3 until Tp duration steps.

2) Deterministic Sampling: The most likely sequence of states is sampled and remains

unchanged in successive sampling trials. We use the forward variable of HSMM for deter-

ministic sampling from the model. The forward variable αHSMM

t,i , P (zt = i, ξ1 . . . ξt|θ)
requires marginalizing over the duration steps along with all possible state sequences. The

probability of a datapoint ξt to be in state i at time step t given the partial observation

sequence {ξ1, ξ2, . . . , ξt} is now specified as [Yu 2010]

αHSMM

t,i =

min(smax,t−1)
∑

s=1

K∑

j=1

αHSMM

t−s,j aj,i N (s|µSi ,ΣS
i )

t∏

c=t−s+1

N (ξc| µ̃i, Σ̃i), (3.40)

where the initialization is given by αHSMM

1,i = Πi N (1|µSi ,ΣS
i ) N (ξ1| µ̃i, Σ̃i), and the

output distribution in state i is conditionally independent for the s duration steps given as
∏t

c=t−s+1N (ξc| µ̃i, Σ̃i). Note that for t < smax, the sum over duration steps is computed

for t− 1 steps, instead of smax. Without the observation sequence for the next time steps,

the forward variable simplifies to

αHSMM

t,i =

min(smax,t−1)
∑

s=1

K∑

j=1

αHSMM

t−s,j aj,i N (s|µSi ,ΣS
i ). (3.41)

The forward variable is used to plan the movement sequence for the next Tp steps with

t = t + 1 . . . Tp. During prediction, we only use the transition matrix and the duration

model to plan the future evolution of the initial/current state and omit the influence of

the spatial data that we cannot observe, i.e., N (ξt|µ̃i, Σ̃i) = 1 for t > 1. This is used to

retrieve a step-wise reference trajectory N (µ̂t, Σ̂t) from a given state sequence zt computed
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Figure 3.4: Sampling from HSMM in the initial state ξ0 over the next time horizon and
tracking the step-wise desired sequence of states N (µ̂t, Σ̂t) with a linear quadratic tracking
controller.

from the forward variable with,

zt = {zt, . . . , zTp} = argmax
i

αHSMM

t,i , µ̂t = µ̃zt, Σ̂t = Σ̃zt . (3.42)

Fig. 3.4 shows a conceptual representation of the step-wise sequence of states generated

by deterministically sampling from HSMM encoding of the Z-shaped data. In the next

section, we show how to synthesise robot movement from this step-wise sequence of states

in a smooth manner.

3.3 Decoding with Linear Quadratic Regulator/Tracking

(LQR/LQT)

In this section, we combine the generative models with a commonly used tool from control

theory to derive a control policy for the robot to perform manipulation tasks. The basic

idea is to formulate the regulation of the desired pose N (µ̂t, Σ̂t) at time t or the tracking

of the step-wise desired sequence of poses {N (µ̂t, Σ̂t)}Tp

t=1 as long-term optimization of a

scalar cost function with a linear quadratic regulator (LQR) or a linear quadratic tracker
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(LQT) respectively. Note that other alternatives such as trajectory-HSMM can also be

used to smoothly follow the step-wise desired sequence of states [Zen 2007, Sugiura 2011].

We describe our formulation with the finite horizon case for tracking problem and then

show how the infinite horizon case follows naturally from the finite horizon case for both

continuous and discrete time linear systems.

3.3.1 Continuous LQR/LQT

The control policy ut at each time step is obtained by minimizing the cost function over

the finite time horizon Tp,

ct(ξt,ut) =

Tp∑

t=1

(ξt − µ̂t)
⊤Qt(ξt − µ̂t) + u⊤

tRtut, (3.43)

s.t. ξ̇t = Adξt +Bdut,

starting from the initial state ξ1 and following the linear dynamical system specified by Ad

and Bd. Without loss of generality, we consider a linear time-invariant double integrator

system to describe the system dynamics. Alternatively, a time-varying linearization of

the system dynamics along the reference trajectory can also be used to model the system

dynamics as shown in the previous chapter. A physical analogue of the double integrator

system is a unit mass attached to the datapoint ξt and the control input ut applies a force

to drive the unit mass with no friction. The double integrator is defined as

ξ̇t
︷ ︸︸ ︷[

ẋt

ẍt

]

=

Ad
︷ ︸︸ ︷[

0 I

0 0

]

ξt
︷ ︸︸ ︷[

xt

ẋt

]

+

Bd
︷︸︸︷[

0

I

]

ut, (3.44)

with ξt = [xt
⊤ ẋt

⊤]⊤, µ̂t = [µ̂x
t
⊤ µ̂ẋ

t

⊤
]⊤, x, ẋ represent the position and velocity of the double

integrator system, and µ̂x
t , µ̂

ẋ
t denote the desired position and velocity to follow. Setting

Qt = Σ̂
−1
t � 0,Rt ≻ 0, the control input u∗

t that minimizes the cost function is obtained

by minimizing the Hamilton-Jacobi-Bellman equation [Bertsekas 2012],

u∗
t = −R−1

t B⊤
dP t(ξt − µ̂t) +R−1

t B⊤
ddt, (3.45)

= KP
t (µ̂

x
t − xt) +KV

t (µ̂
ẋ
t − ẋt) +R−1

t B⊤
ddt,
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where [KP
t ,K

V
t ] = R−1

t B⊤
dP t are the full stiffness and damping matrices, R−1

t B⊤
ddt is the

feedforward term, and P t,dt are the solutions of the following differential equations

−Ṗ t = A⊤
dP t + P tAd − P tBdR

−1
t B⊤

dP t +Qt, (3.46)

−ḋt = A⊤
ddt − P tBdR

−1
t B⊤

ddt + P t
ˆ̇µt − P tAdµ̂t,

with terminal conditions set to P Tp = 0 and dTp = 0. Note that the gains can be

precomputed before simulating the system if the reference trajectory does not change

during the reproduction of the task. The resulting trajectory ξ∗t smoothly tracks the step-

wise reference trajectory µ̂t and the gains KP
t ,K

V
t stabilize ξt along ξ∗t in accordance with

the precision required during the task.

For the case of infinite horizon with Tp →∞ and Qt = Q in Eq. (3.3.1), the feedforward

term is set to zero and P t−1 = P t = P is obtained by minimizing the Continuous Algebraic

Riccati Equation (CARE)

A⊤
dP + PAd − PBdR

−1B⊤
dP +Q = 0. (3.47)

To solve CARE, we define the Hamiltonian matrix

Ha =

[

Ad −BdR
−1B⊤

d

−Q −A⊤

d

]

. (3.48)

Eigendecomposition of the Hamiltonian matrix is used to extract the subspace of Ha with

negative real eigenvalues defined as,

[

V 1

V 21

]

, i.e.,

Ha = V

[

λ1 0

0 λ2

]

V⊤, with V =

[

V 1 V 12

V 21 V 2

]

. (3.49)

The solution of algebraic Riccati equation solution gives P = V 21V
−1
1 . The control law

for the infinite horizon case can now be expressed as

u∗
t = −R−1B⊤

dP (ξt − µ̂t). (3.50)

The value function for the infinite horizon case, V (ξt) = (ξt− µ̂t)
⊤P (ξt− µ̂t), reveals that

the control law moves in the steepest descent direction of the value function −P (ξt − µ̂t).

The descent direction is projected onto the control space with Bd and scaled with different

weights using R−1.
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3.3.2 Discrete LQR/LQT

The discrete-time dynamical system for the double integrator is defined as,

ξt+1
︷ ︸︸ ︷[

xt+1

xt+2

]

=

Ad
︷ ︸︸ ︷[

I ∆t

0 I

]

ξt
︷ ︸︸ ︷[

xt

xt+1

]

+

Bd
︷ ︸︸ ︷[

I 1
2∆t

2

I∆t

]

ut. (3.51)

The control law u∗
t that minimizes the cost function in Eq. (3.3.1) under finite horizon

subject to the linear dynamics in discrete time is given as,

u∗
t = − (R+B⊤

dP tBd)
−1

B⊤
dP tAd (ξt − µ̂t)− (R+B⊤

dP tBd)
−1

B⊤
d (P t (Adµ̂t − µ̂t) + dt) ,

= KP
t (µ̂

x
t − xt) +KV

t (µ̂
ẋ
t − ẋt)− (R+B⊤

dP tBd)
−1

B⊤
d (P t (Adµ̂t − µ̂t) + dt) , (3.52)

where [KP
t ,K

V
t ] = − (R+B⊤

dP tBd)
−1

B⊤
dP tAd are the full stiffness and damping matri-

ces for the feedback term, and (R+B⊤
dP tBd)

−1
B⊤

d (P t (Adµ̂t − µ̂t) + dt) is the feedfor-

ward term. P t and dt are respectively obtained by solving the Riccati differential equa-

tion and linear differential equation backwards in discrete time from terminal conditions

P Tp = QTp
and dTp = 0,

P t−1 = Qt −A⊤
d

(

P tBd (R+B⊤
dP tBd)

−1
B⊤

dP t − P t

)

Ad, (3.53)

dt−1 =
(

A⊤
d −A⊤

dP tBd (R+B⊤
dP tBd)

−1
B⊤

d

)(

P t

(
Adµ̂t − µ̂t+1

)
+ dt

)

. (3.54)

For the infinite horizon case with T → ∞ and the desired pose µ̂t = µ̂t0
, the control

law in (3.52) remains the same except the feedforward term is set to zero and P t−1 =

P t = P is the steady-state solution obtained by eigen value decomposition of the discrete

algebraic Riccati equation (DARE) in (3.53) [Borrelli 2011]. To solve DARE, we define

the symplectic matrix,

Hb =

[

Ad +BdR
−1B⊤

d(A
−1
d )⊤Q BdR

−1B⊤
d(A

−1
d )⊤

−(A−1
d )⊤Q (A−1

d )⊤

]

. (3.55)

The eigenvectors of Hb corresponding to eigenvalues lying inside the unit circle are used to

solve DARE. Let
[

V⊤
1 V⊤

21

]⊤
denote the corresponding subspace of Hb, then the solution

of DARE is, P = V 21V
−1
1 and the control law takes the form,

u∗
t = −(R+B⊤

dPBd)
−1B⊤

dPAd(ξt − µ̂t). (3.56)

Both discrete and continuous time linear quadratic regulator/tracker can be used to follow
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Figure 3.5: Baxter robot learns to open/close the valve from previously unseen configura-
tions.

Figure 3.6: Baxter valve opening task: (left) valve opening movement reproduction for a
training set on left and for an unseen valve configuration on right, (right) resulting left-right
HSMM encoding of the task with duration model shown next to each state (smax = 100)

on left, and rescaled forward variable, hHSMM

t,i =
αHSMM
t,i

∑K
k=1 α

HSMM

t,k

, evolution with time on right.

the desired pose/trajectory. The discrete time formulation, however, gives numerically

stable results for a wide range of values of R. A similar treatment of decoding HSMM

with a batch solution of control inputs can be found in [Zeestraten 2016]. Fig. 3.4 shows

the results of applying discrete LQT on the desired step-wise sequence of states sampled

from an HSMM encoding the Z-shaped demonstrations.

3.4 Valve Opening Example

Valve opening task is a standard benchmark in robotics because it can be applied to a wide

range of environments and applications. The goal is to bring the valve in an open position

from different initial configurations of the valve using the torque-controlled Baxter robot

as shown in Fig. 3.5.
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Figure 3.7: Variance of the learned model along position and orientation variables in
coordinate system 1 (top) and coordinate system 2 (bottom). Invariant phase across all
demonstrations (highlighted in blue) is observed for components 3 and 5 in frame 1 and
frame 2 respectively.

The adaptive aspect of the task requires to ascertain where to grasp the valve and

where to stop turning it. Consequently, we attach two frames, one with the observed

initial configuration of valve {A1, b1} and other with the desired end configuration of

the valve {A2, b2} (marked with a visual tag of 0 degree around the valve). We record

eight kinesthetic demonstrations with the initial configuration of the valve corresponding

to {180, 135, 90, 45, 157.5, 112.5, 67.5, 22.5} degrees with the horizontal in the successive

demonstrations, n = 1 . . . 8. The first 4 demonstrations are used for the training test, while

the remaining 4 are used for the test set. Each observation comprises of the end-effector

Cartesian position x
p
t ∈ R

3, quaternion orientation εot ∈ R
4, linear velocity ẋ

p
t ∈ R

3 ,

and quaternion derivative (estimated from angular velocity) ε̇ot ∈ R
4 for a total of 14

dimensions per sample. Each demonstration is further downsampled to a total of 200 dat-

apoints. For notational convenience, we define ξt = [xt
⊤ ẋt

⊤]⊤ with xt =
[

x
p
t
⊤
εot

⊤
]⊤

and

ẋt =
[

ẋ
p
t
⊤
ε̇ot

⊤
]⊤

, and represent the frame as

A
(n)
j =









R
(n)
j 0 0 0

0 E(n)j 0 0

0 0 R
(n)
j 0

0 0 0 E(n)j









, b
(n)
j =









p
(n)
j

0

0

0









, (3.57)

where p
(n)
j ∈ R

3,R
(n)
j ∈ R

3×3, E(n)j ∈ R
4×4 denote the Cartesian position, the rotation

matrix and the quaternion matrix of the j-th frame in the n-th demonstration respectively.

A sketch of different frames in the demonstrations can be seen in top zoomed portion of

Fig. 3.6. Note that we do not consider time as an explicit variable as the duration model

in HSMM encapsulates the timing information locally.
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The number of Gaussians are empirically selected in this experiment based on the impor-

tant phases in the task such as reaching, grasping, turning etc. Alternatively, a Bayesian

information criterion, or a non-parametric approach based on Dirichlet processes can also

be used for model selection as we will see in Chap. 5. Performance setting in our ex-

periments is as follows: {πi,µi,Σi}Ki=1 are initialized using k-means clustering algorithm,

B = 0.1I,R = 9I , where I is the identity matrix. Results of regenerating the movements

with 7 mixture components are shown in Fig. 3.6. For a given initial configuration of the

valve, the model parameters are adapted by evaluating the product of Gaussians for a new

frame configuration. The reference trajectory is then computed from the initial position of

the robot arm using the forward variable (see Fig. 3.6 for HSMM encoding) and tracked

using LQT. The robot arm moves from its initial configuration to align itself with the first

frame {A1, b1} to grasp the valve, and follows it with the turning movement to align with

the second frame {A2, b2} before returning back to the home position. Fig. 3.7 shows that

the task-parameterized formulation exploits variability in the observed demonstrations to

statistically encode different phases of the task. Here, reaching the valve and coming back

to home position have higher variability in the demonstrations, whereas aligning with the

frames for grasping/turning and stopping the valve have no observed variations in their

respective coordinate systems. Consequently, the robot arm is able to reach the valve from

different initial configurations, grasp the valve and turn it to the desired position.

3.5 Conclusion

In this chapter, we have proposed a framework combining generative models, task adapt-

ability and optimal control for learning and reproduction of robot manipulation tasks.

The hidden semi-Markov model approximates the probability density function of the

demonstrations and segments the demonstrations into meaningful components. Task-

parameterization of the model enables the robot to readily adopt for better generalization

in previously unseen environmental situations. By sampling the sequence of states from

the model and following them with a linear quadratic tracking controller, we are able to

autonomously perform manipulation tasks in a smooth manner. An interested reader is

encouraged to see [Pignat 2017] for other robotic applications derived from the framework

presented here for learning robot manipulation skills.
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Dimensionality reduction has long been recognized as a fundamental problem in unsuper-

vised learning. Classical model-based generative models tend to suffer from the curse of

dimensionality when few datapoints are available, as in the case of robot learning from

demonstrations. Statistical subspace clustering methods address this challenge by using a

parsimonious model to reduce the number of parameters that can be robustly estimated.

A simple way to reduce the number of parameters would be to constrain the covariance

structure to a diagonal or spherical/isotropic matrix, thereby, restricting the number of

parameters at the cost of treating each dimension separately. Such decoupling, however,
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cannot encode the important motor control principles of coordination, synergies and action-

perception couplings [Wolpert 2011].

In this chapter, we seek out a latent feature space in the high-dimensional data to reduce the

number of model parameters that can be robustly estimated. The role of latent space is to

decorrelate the data so that the mixture components map the data onto the corresponding

subspaces to cope with insufficient or noisy training data. We base our formulation on low-

rank decomposition of the covariance matrix using Mixture of Factor Analyzers (MFA)

approach [McLachlan 2003]. We then exploit a technique for partially tying the covariance

matrices of the mixture model [Gales 1999]. The technique associates or ties the covariance

matrices of the mixture model with a common latent space, and only uses a diagonal matrix

for appropriate scaling of the basis vectors in the latent space. We combine these latent

space models with hidden semi-Markov model and linear quadratic tracking controller

for encapsulating reactive autonomous behaviour as shown in the previous chapter, and

show the suitability of our approach for learning manipulation tasks in robotics with the

task-parameterized formulation [Tanwani 2016a].

4.1 Subspace Clustering

Gaussian mixture models approximate the probability density function of the demonstra-

tions as a convex combination of K multivariate Gaussian distributions, each having a

mixing coefficient πi, mean µi, and a covariance matrix Σi. The number of parameters in

the covariance matrix Σi grows quadratically with the dimension of datapoints D, lead-

ing to poor performance in high-dimensional spaces. Some typical solutions employed in

practice to address this challenge include [Bouveyron 2014]

• Regularization: To avoid numerical problems in inverting covariance matrices, a

simple regularization term σ is added to each covariance matrix Σi ← Σi+σI during

the maximization step of the EM loop. Other important regularization forms include

lasso and ridge regression in estimating covariance matrix.

• Dimensionality Reduction: Most of the work on clustering models in high

dimensional spaces has focused on global dimensionality reduction methods as a

pre-processing step. Notable examples include principal component analysis (PCA),

factor analysis (FA) and linear discriminant analysis (LDA).

• Parsimonious models: To avoid over-fitting, a parsimonious structure is im-

posed on the covariance matrix with fewer model parameters. Common exam-
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ples in this category include isotropic/spherical covariance, diagonal covariance,

and block-diagonal covariance. Note that the diagonal covariance structure corre-

sponds to a separate treatment of each variable. The assumption is also made

in movement encoding with DMPs [Ijspeert 2013] that are widely used in many

robotics applications. Such assumptions, however, discards the important syn-

ergistic information among the variables shown in several motor control studies

[Mussa-Ivaldi 1994, Todorov 2002, Hogan 2012].

There are alternatives in learning mixture models in between the diagonal and the full

covariances that have rarely been explored in the context of robot skills acquisition. These

alternatives can be studied as a subspace clustering problem, that aims at grouping the

data such that they can be locally projected in a subspace of reduced dimensionality. Sub-

space clustering models learn multiple subspaces to encode the data according to their local

trend, i.e., they perform segmentation and dimensionality reduction simultaneously. Note

that subspace clustering is not the same as performing clustering and dimensionality re-

duction separately [Ghahramani 1997]. A broad range of these models encompasses sparse

subspace clustering [Elhamifar 2013], DP-space clustering [Wang 2015], high-dimensional

data clustering (HDDC) [Bouveyron 2007], parsimonious models [Bouveyron 2014], mix-

ture of factor analyzers (MFA) [McLachlan 2003] or mixture of probabilistic principal com-

ponent analyzers (MPPCA) [Tipping 1999]. We briefly review here a couple of pertinent

methods for statistical subspace clustering (see also [Calinon 2016] for a review).

4.1.1 High-Dimensional Data Clustering

High-dimensional data clustering (HDDC) performs both subspace clustering and regu-

larization by modeling each cluster with a set of di principal eigenvectors (di < D) cor-

responding to eigenvalues λij , and uses a spherical variance for the remaining directions

with the eigenvalue λ̄i such that

λ̄i =
1

D − di

D∑

j=di+1

λij , (4.1)

The eigenvalue λ̄i replaces the last D − di eigenvalues of Σi in order to reconstruct a full

covariance matrix (see also [Bouveyron 2007]).
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Figure 4.1: Parameters representation of a diagonal, full and mixture of factor analyzers
decomposition of covariance matrix. Filled blocks represent non-zero entries.

4.1.2 Mixture of Factor Analyzers (MFA) Decomposition

The basic idea of MFA is to perform subspace clustering by assuming the covariance struc-

ture for each component of the form,

Σi = ΛiΛ
⊤
i +Ψi, (4.2)

where Λi ∈ R
D×d is the factor loadings matrix with d<D for parsimonious representation

of the data, and Ψi is the diagonal noise matrix (see Fig. 4.1 for MFA representation in

comparison to a diagonal and a full covariance matrix). Further structure can be imposed

on the factor loading matrix and the noise matrix to yield a family of parsimonious models

[McNicholas 2008]. For example, the mixture of probabilistic principal component analysis

(MPPCA) model is a special case of MFA with the distribution of the errors assumed to

be isotropic with Ψi=Iσ2i [Tipping 1999]. The MFA model assumes that ξt is generated

using a linear transformation of d-dimensional vector of latent (unobserved) factors f t,

ξt = Λif t + µi + ε, (4.3)

where µi ∈ R
D is the mean vector of the i-th factor analyzer, f t∼N (0, I) is a normally

distributed factor, and ε∼N (0,Ψi) is a zero-mean Gaussian noise with diagonal covariance

Ψi. The diagonal assumption implies that the observed variables are independent given

the factors. The goal of MFA is to model the covariance structure of ξt such that,

ξt ∼ N (µi, ΛiΛ
⊤
i +Ψi) , (4.4)

where the joint distribution of ξt and f t is,

[

ξt

f t

]

∼ N
([

µi

0

]

,

[

ΛiΛ
⊤
i +Ψi Λi

Λ
⊤
i I

])

. (4.5)

The model parameters θ = {πi,µi,Λi,Ψi}Ki=1 are estimated from the data using an EM

algorithm [Ghahramani 1997, McNicholas 2008] summarized as
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E-step:

ht,i =
πi N (ξt | µi,Σi)

∑K
k=1 πk N (ξt | µk,ΛkΛ

⊤
k +Ψk)

. (4.6)

M-step:

πi ←
∑T

t=1 ht,i
T

, (4.7)

µi ←
∑T

t=1 ht,iξt
∑T

t=1 ht,i
, (4.8)

Λi ← SiB
⊤
i (I −BiΛi +BiSiB

⊤
i )

−1, (4.9)

Ψi ← diag (diag (Si −ΛiBiSi)) , (4.10)

Σi ← ΛiΛ
⊤
i +Ψi, (4.11)

where Si is the sample covariance matrix and Bi is the projection of ξt to the latent space

such that, z|ξt ∼ Bi (µi − ξt) with,

Si =

∑T
t=1 ht,i(ξt − µi)(ξt − µi)

⊤

∑T
t=1 ht,i

, (4.12)

Bi = Λ
⊤
i (ΛiΛ

⊤
i +Ψi)

−1. (4.13)

For comparison, the M-step in MPPCA is given by [Tipping 1999],

Λi ← SiΛi(Iσ
2
i +Σ

⊤
i
−1

Λ
⊤
iSiΛi)

−1, (4.14)

σ2i ←
1

D
tr(Si − SiΛiΣ

⊤
i
−1

Λ
⊤
i ), (4.15)

Σi ← ΛiΛ
⊤
i + σ2i I. (4.16)

The MFA modeling approach can be combined with deep learning strategies to learn a

hierarchical structure of layers in latent space [Tang 2012]. Coordinated MFA has found

its application in robotics in tracking 3D human movement from motion capture data

[R. Li 2010], and more recently for learning trajectories in robot programming by demon-

stration framework [Field 2015].

The hypothesis of MFA models can be viewed as less restrictive than HDDC models based

on eigendecomposition since the subspace of each class does not need to be spanned by

orthogonal vectors, whereas it is a necessary condition in models based on eigendecompo-

sition such as PCA [Bouveyron 2007].

Note that each covariance matrix of the mixture component in HDDC and MPPCA has
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its own subspace spanned by the basis vectors of Σi. As the number of components

increase to encode more complex skills, an increasing large number of potentially redundant

parameters are used to fit the data. Consequently, we advocate the need to share the

basis vectors across the mixture components. This concept was first exploited in speech

processing where the covariance matrices in output state sequence of a Hidden Markov

Model (HMM) were tied to a common linear transform [Gales 1999]. Parameter tying, for

example, has been used to robustly estimate the density parameters with thousands of

states in a HMM for building phone models [Leggetter 1995].

To the best of our knowledge, the concept of tying covariance matrices in mixture models

to encode manipulation skills in robotics has not been used. We are interested in exploit-

ing the coordination patterns in the demonstrations by semi-tying the model parameters,

while reducing the number of parameters that can be robustly estimated. We extend the

method to a task-parameterized model and encode the state duration and transition with

a hidden semi-Markov model to enable the handling of previously unseen situations in an

autonomous manner as seen in the previous chapter.

4.2 Semi-Tied Mixture Model

When the covariance matrices of the mixture model share the same set of parameters for

the latent feature space, we call the model a semi-tied Gaussian mixture model. The main

idea behind semi-tied GMMs is to decompose the covariance matrix Σi into two terms:

a common latent feature matrix H ∈ R
D×D and a component-specific diagonal matrix

Σ
(diag)
i ∈ R

D×D, i.e.,

Σi = HΣ
(diag)
i H⊤. (4.17)

The latent feature matrix encodes the locally important synergistic directions represented

by D non-orthogonal basis vectors that are shared across all the mixture components, while

the diagonal matrix selects the appropriate subspace of each mixture component as convex

combination of a subset of the basis vectors of H . Depending upon the sparsity of the

convex combination, there are multiple subspaces to choose. In other words, we search for

a global linear transformation of the data such that the transformed data can be modelled

by a mixture of diagonal covariance matrices only.1

In high-dimensional spaces, Gaussian mixture components with full covariance matrices

1Note that the eigen decomposition of Σi = U iΣ
(diag)
i U⊤

i contains D basis vectors of Σi in U i. In
comparison, semi-tied mixture model gives D globally representative basis vectors that are shared across
all the mixture components.
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Figure 4.2: (left) Semi-tied mixture model encoding of Z-shaped data with 3 components
and basis vectors shown at the origin, (right) pairwise correlation among the mixture
components of semi-tied GMM (see section 4.2.2 for details).

tend to over-fit the training data when the data is noisy and/or the number of datapoints

is insufficient. By tying the covariance matrices, the mixture components are forced to

align along a set of common coordination patterns. This is also in line with biological

motor control where the central nervous system (CNS) is believed to generate complex

movements by temporal modulation of postural synergies [d’Avella 2003]. The implemen-

tation of postural synergies corresponds here to the basis vectors of H , while the diagonal

matrix of each mixture component Σ
(diag)
i modulates the basis vectors in time for efficient

encoding of complex tasks.

To illustrate the concept of semi-tied model parameters, consider the 3-dimensional Z-

shaped demonstrations in Fig. 4.2. Encoding with semi-tied GMM reveals the locally

important basis vectors comprising the latent feature space H . In contrast, PCA here

would yield orthogonal basis vectors along the directions of largest variance globally. Note

that the basis vectors are not required to be orthogonal in the semi-tied GMM. It can

be seen in Fig. 4.2 that the basis vector in red is shared across the first and the third

mixture component, while the basis vector in green is shared across the first and the second

mixture component. The basis vector in blue is tied only to the second mixture component.

This yields high correlation between the first and the third mixture component, and low

correlation of the second Gaussian component with other mixture components (see right

of Fig. 4.2).
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4.2.1 Maximum Likelihood Parameter Estimation

We are interested in maximum likelihood estimates of the parameters of semi-tied GMM,

θ = {{πi,µi,Σ
(diag)
i }Ki=1,H}. Given the initial set of parameters θ̂, substituting the ex-

pression for Σi from Eq. (4.17) in the auxiliary function [Dempster 1977] yields,

Q(θ, θ̂) ≈ 1

2

T∑

t=1

K∑

i=1

hθ̂t,i

(

log
(
π2i − |Σi|

)
− ξi

⊤
t Σ

−1
i ξit

)

,

≈ 1

2

T∑

t=1

K∑

i=1

hθ̂t,i

(

2 log(πi)− log

(

|Σ(diag)
i |
|B|2

)

− ξi
⊤
t B⊤

Σ
(diag)−1
i Bξit

)

, (4.18)

where B = H−1, ξit = ξt − µi, and hθ̂t,i = p(i|ξt, θ̂) is the probability of data point ξt to

belong to i-th Gaussian component at time t. Setting ∂Q(θ,θ̂)
∂B

and ∂Q(θ,θ̂)

∂Σ
(diag)
i

equal to 0, and

solving for B and Σ
(diag)
i respectively results in an expectation-maximization procedure

to compute the maximum likelihood estimate of parameters (see [Gales 1998] for details).

Following this, we get a row-by-row optimisation of B, with bd (d-th row of B) related to

all other rows by the cofactor of B,

bd = cdG
−1
d

√
√
√
√

∑T
t=1

∑K
i=1 h

θ̂
t,i

cdG
−1
d c⊤d

, (4.19)

where cd is the d-th row of cofactors of B with C = cof(B) recomputed after each update

of bd,

C = (B⊤)−1|B|, (4.20)

Gd =

K∑

i=1

1

Σ
(diag)
i,d

Si

T∑

t=1

hθ̂t,i, (4.21)

where Σ
(diag)
i,d is the d-th diagonal element of the i-th Gaussian, and Si is the full sample

covariance matrix given by

Si =

∑T
t=1 h

θ̂
t,i ξ

i
t ξ

i
t
⊤

∑T
t=1 h

θ̂
t,i

. (4.22)

The corresponding maximum likelihood estimate of Σ(diag)
i is computed as

Σ
(diag)
i = diag (BSiB

⊤) . (4.23)
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Algorithm 4 Semi-Tied Gaussian mixture model

Input: {{ξt}Tt=1,K, α
ST}

procedure EM Semi-Tied_GMM
1: Initialize the parameters: {{πi,µi,Σi}Ki=1,B}
2: repeat

3: hθ̂t,i :=
πi N (ξt|µi,Σi)∑K

k=1 πk N (ξt|µk,Σk)

4: πi :=
∑T

t=1 h
θ̂
t,i

T
, µi :=

∑T
t=1 h

θ̂
t,iξt

∑T
t=1 h

θ̂
t,i

5: Compute Si using Eq. (4.22)
6: repeat

7: Compute Σ
(diag)
i using Eq. (4.23)

8: for d := 1 to D do
9: Compute C using Eq. (4.20)

10: Compute Gd using Eq. (4.21)
11: Compute bd using Eq. (4.19)
12: end for
13: until B converges
14: H := B−1, compute Σi using Eq. (4.24)

15: until L(θ|ξ) :=∑T
t=1 log

(
∑K

i=1 πi N (ξt|µi,Σi)
)

converges with θ ≈ θ∗

16: return θ∗ := {π∗i ,µ∗
i ,Σ

∗
i }Ki=1

Note the variational nature of optimisation where the current estimate of Σ(diag)
i is depen-

dent on B and vice versa. Both B and Σ
(diag)
i are iteratively improved in each EM step

and the likelihood is guaranteed to increase at each step.

The mixture components of a semi-tied GMM tend to align themselves towards the basis

vectors of H . To analyze the impact of this alignment on the encoding of movement

synergies, we introduce a tying factor αST ∈ [0, 1] that controls the degree of tying of the

full covariance matrices with the semi-tied covariance matrices, i.e.,

Σi = αSTHΣ
(diag)
i H⊤ + (1− αST)Si, (4.24)

where αST = 1 gives a semi-tied GMM, αST = 0 leads to a standard GMM, and (0 < αST <

1) yields a family of models with intermediate tying of the basis vectors. The overall

algorithm is summarized in Alg. 4.
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4.2.2 Analysis of Semi-Tied Mixture Models

4.2.2.1 Number of Parameters Np

The number of parameters for K covariance matrices in semi-tied GMM is smaller than

the number of parameters for full covariance matrices in GMM (D2 + KD compared to
KD(D+1)

2 of GMM respectively). The decrease in number of parameters is accompanied

with additional computational cost of finding B and Σ
(diag)
i in semi-tied GMM. Compared

to semi-tied GMM, standard GMM only requires the estimate of Si in Eq. (4.22) for the

covariance matrix update in each M step. More importantly, semi-tied GMM reveals the

latent structure in the data and can be exploited to deal with noisy/insufficient data.

4.2.2.2 Correlation of Mixture Components

To analyse the encoding of semi-tied GMMs, we define M c ∈ R
K×K as the correlation

matrix that gives pairwise correlation coefficient between each pair of covariance matrices

in the mixture model, i.e.,

M c = corr
(

vec(Σ1) vec(Σ2) · · · vec(ΣK)
)

, (4.25)

where vec(Σi) above corresponds to the elements of Σi in vector form, and mc(i, j) defines

the correlation between the corresponding pair of mixture components. The metric is based

on the observation that correlation among the mixture components is higher if they share

the same subspace as in semi-tied GMM.

4.2.3 Whole Body Motion Capture Data - Chicken Dance Example

The dataset consists of two subjects performing the chicken dance, publicly available from

the CMU motion capture database [Gross 2001]. The dance involves rapid and brisk whole

body limb movements with D = 94 corresponding to the recorded timestamps (T ≈ 11

seconds) and the 3-dimensional position of 31 joints for one subject, thereby, making it a

challenging problem for the algorithm.

Results of the regenerated dance movement sequence with 75 mixture components and 500

downsampled datapoints are shown in Fig. 4.3. The plots on bottom right show a generic

trend where semi-tied GMM (αST = 1) requires more mixture components to model the

training data in comparison to a standard GMM (αST = 0). Decreasing the tying factor
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Figure 4.3: Chicken dance movement for the two subjects is shown in blue and red. Regen-
erated movement for the subject in red is shown in green using Gaussian mixture regression.
Two plots on bottom right show comparison of mean squared error (MSE) and the number
of parameters Np of covariance matrix in log 10 scale with increasing number of mixture
components K. Time is in seconds, α = 1 represents semi-tied GMM, whereas α = 0
corresponds to a standard GMM.

in a semi-tied GMM gradually pushes the solution towards a standard GMM as seen with

αST = 0.6 and the resulting MSE curve. The number of parameters, however, remain an

order of magnitudes lower for a semi-tied GMM (15, 886 only in comparison to 334, 875

for a standard GMM with 75 mixture components). Pairwise correlation comparison in

Fig. 4.4 reveals that the correlation among the mixture components as defined in Eq. 4.25

increases with the semi-tied GMM in comparison to the correlation observed with the

standard GMM.

4.3 Task-Parameterized HSMM in Latent Space

As seen in the previous chapter, task-parameterized models provide a probabilistic for-

mulation to adapt the model parameters for better generalization in new environmental

situations. As a quick recap, the demonstrations are observed in P frames of reference

defined by the coordinate systems {Aj , bj}Pj=1. The corresponding hidden state sequence

{zt}Tt=1 with zt ∈ {1 . . . K} belongs to the discrete set of K cluster indices, a ∈ R
K×K with

ai,j , P (zt = j|zt−1 = i) denotes the transition probability of moving from state i to state

j, {µSi ,ΣS
i } represent the mean and the standard deviation of staying s consecutive steps in

state i estimated by a Gaussian N (s|µSi ,ΣS
i ). The hidden state follows a multinomial dis-

tribution with zt ∼ Mult(πzt−1) where πzt−1 ∈ R
K is the next state transition distribution
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Figure 4.4: Pairwise correlation comparison among the mixture components for whole body
motion capture data: (left) training with standard GMM, (right) training with semi-tied
GMM.

over state zt−1, starting from the initial state distribution Πi. The demonstrations ob-

served from different frames of reference form a third order tensor dataset {ξ(j)t }T,Pt,j=1 with

ξ
(j)
t = A−1

t,j (ξt − bt,j). The output distribution of state i in frame j is described by a mul-

tivariate Gaussian with parameters {µ(j)
i ,Σ

(j)
i }. The parameters of a task-parameterized

HSMM are defined as before, θh =
{

Πi, {ai,m}Km=1, {µ
(j)
i ,Σ

(j)
i }Pj=1, µ

S
i ,Σ

S
i

}K

i=1
}.

We assume that each Gaussian groups the data in its intrinsic latent space of reduced

dimensionality. We use the semi-tied representation of the parameters where the co-

variance matrices of the mixture model in each frame share a common latent space of

the basis vectors H(j) ∈ R
D×D, and a component specific diagonal matrix Σ

(j)(diag)
i ∈

R
D×D that appropriately maps the subset of basis vectors in the latent space, i.e.,

αSTH(j)
Σ

(j)(diag)
i H(j)⊤ + (1 − αST)S

(j)
i [Tanwani 2016a]. Learning of the model param-

eters is performed in the same manner as described in Sec. 3.2.1.2, except the latent

space parameters {H(j),Σ
(j)(diag)
i } are estimated as described in Alg. 4 for each frame.

Increasing αST from 0 to 1 increases the effect of tying the mixture components in the

task-parameterized formulation. Note that the generalization to MFA decomposition is

straightforward by setting Σ
(j)
i = Λ

(j)
i Λ

(j)⊤

i +Ψ
(j)
i , and estimating the latent space param-

eters as described in Eq. (4.9) and Eq. (4.10) for each frame respectively.

For a new environmental situation represented by the frames {Ãj , b̃j}Pj=1, the resulting

model parameters {µ̃i, Σ̃i} are obtained by first linearly transforming the Gaussians in the

P frames with

N (µ̃
(j)
i , Σ̃

(j)
i ) = N

(

Ãjµ
(j)
i + b̃j , ÃjΣ

(j)
i Ã

⊤
j

)

, (4.26)

and then computing the products of the linearly transformed Gaussians for each component
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Figure 4.5: Baxter valve opening movement reproduction for an unseen valve configuration:
(left) encoding with task-parameterized HSMM (αST = 0), (right) encoding with task
parameterized semi-tied HSMM (αST = 1). Note that the mixture components are better
aligned and scaled in task-parameterized semi-tied HSMM than task-parameterized HSMM
with full covariance matrices.

with

N (µ̃i, Σ̃i) ∝
P∏

j=1

N (µ̃
(j)
i , Σ̃

(j)
i ), (4.27)

Σ̃i =





P∑

j=1

Σ̃
(j)
i





−1

µ̃i = Σ̃i

P∑

j=1

(

Σ̃
(j)
i

)−1 (

µ̃
(j)
i

)

.

Note that the latent space dimension of the product of Gaussians is defined by the minimum

of corresponding subspace dimensions of the Gaussians in P frames, i.e., if the latent

space dimension of Gaussians in each frame is the same, the latent space dimension of

the resulting product of Gaussians is also the same. The degenerate Gaussians signify

the important directions in the demonstrations along which the movement is constrained

during reproduction. The adapted model parameters in a new situation are used to retrieve

a smooth trajectory with linear quadratic tracking as shown in the previous chapter.
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4.3.1 Valve Opening Comparison

In the previous chapter, we introduced the valve opening task using the torque-controlled

Baxter robot. Here, we compare its performance with the task-parameterized semi-tied

HSMM for exploiting the coordination patterns and reusing the synergistic directions such

as when reaching the valve and when coming back to a neutral joint angle configuration

(home position).

Results of the regenerated movements with 7 mixture components for task-parameterized

HSMM with and without semi-tied parameters are shown in Fig. 4.5. It can be seen that

the semi-tied mixture components are better aligned and scaled, while independently mod-

eling each covariance matrix is prone to over-fitting. Semi-tying model parameters allows

encoding of similar coordination patterns with a set of basis vectors. The alignment of cor-

related mixture components improves the generalization ability of the model in previously

unseen situations.

Table 4.1 quantifies the encoding results with different values of αST. We can see that the

task-parameterized semi-tied HSMM (αST = 1) drastically reduces the number of param-

eters and yields better testing error than training error compared to task-parameterized

HSMM with αST = 0.

Table 4.1: Performance analysis of tying factor αST in task-parameterized semi-tied HSMM
with training MSE, testing MSE, number of covariance matrix parameters using 7 mixture
components and 2 frames, and time required for training the model in seconds. Units are
in meters.

αST
Training Testing Number of Training

MSE MSE Parameters Time (s)

valve opening

0.0 0.0021 0.0146 1470 2.45

0.5 0.0038 0.0119 1470 5.40

1.0 0.0040 0.0119 588 9.78

pick-and-place via obstacle avoidance

0.0 0.0023 0.0138 1470 2.21

0.5 0.0028 0.0129 1470 4.73

1.0 0.0033 0.0127 588 10.21

4.3.2 Pick-and-Place with Obstacle Avoidance Example

The objective in this task is to place the object in a desired target position by picking it

from different initial positions and orientations of the object, while adapting the movement
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Figure 4.6: (left) Baxter robot picks the glass plate with a suction lever and places it on
the cross after avoiding an obstacle of varying height, (right) reproduction for previously
unseen object and obstacle position.

Figure 4.7: Task-Parameterized Semi-Tied HSMM performance on pick-and-place with ob-
stacle avoidance task: (top) training set reproductions, (bottom) testing set reproductions.
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to avoid the obstacle. The setup of pick-and-place task with obstacle avoidance is shown

in Fig. 4.7. The Baxter robot is required to grasp the glass plate with a suction lever

placed in an initial configuration as marked on the setup. The obstacle can be vertically

displaced to one of the 8 target configurations. We describe the task with two frames,

one for the object initial configuration with {A1, b1} as defined in Eq. (3.57) and other

for the obstacle {A2, b2} with A2 = I and b2 to specify the centre of the obstacle. We

collect 8 kinesthetic demonstrations with different initial configurations of the object and

the obstacle successively displaced upwards as marked with the visual tags in the figure.

Alternate demonstrations {1, 3, 5, 7} are used for the training set, while the rest are used

for the test set. Each observation comprises of the end-effector Cartesian position x
p
t ∈

R
3, quaternion orientation εot ∈ R

4, linear velocity ẋ
p
t ∈ R

3 , and quaternion derivative

ε̇ot ∈ R
4 with ξt =

[

x
p
t
⊤
εot

⊤ ẋ
p
t
⊤
ε̇ot

⊤
]⊤

, D = 14, P = 2, and a total of 200 datapoints per

demonstration.

During evaluation of the learned task-parameterized semi-tied HSMM, we can see that the

robot arm is able to generalize effectively by following a similar pattern to the recorded

demonstrations in picking and placing the object (see Fig. 4.7 for reproductions). The

model even proves robust to the examples requiring extrapolation of the training data.

Table 4.1 depicts a similar trend to the valve opening task, thereby verifying the efficacy

of the proposed method for learning manipulation tasks.

4.4 Conclusion

In this chapter, we have presented generative models in latent space for robust learning

and adaptation of robot manipulation tasks. We have presented a technique to tie the

covariance matrices of the mixture model with a shared set of basis vectors. The approach

is based on the hypothesis that similar coordination patterns occur at different phases in

a manipulation task. By exploiting the spatial and temporal correlation in the demon-

strations, we reduced the number of parameters to be estimated while locking the most

important synergies to cope with perturbations. This allowed the reuse of the discovered

synergies in different parts of the task having similar coordination patterns. In contrast,

the MFA decomposition of each covariance matrix separately cannot exploit the temporal

synergies, and has more flexibility in locally encoding the data. Recently, semi-tying model

parameters has also been shown to explain multiple movements in generating calligraphic

movements [Berio 2017]. We have shown that the task-parameterized semi-tied HSMM

encoding enables the robot to autonomously deal with different situations in manipulation

tasks with much fewer parameters and better generalization ability. This has enabled the
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Baxter robot to tackle valve opening and pick-and-place via obstacle avoidance problems

from previously unseen configurations of the environment.
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Adapting statistical learning models online with large scale streaming data is a challeng-

ing problem. Bayesian non-parametric mixture models provide flexibility in model selec-
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tion, however, their widespread use is limited by the computational overhead of exist-

ing sampling-based and variational techniques for inference. Small variance asymptotics

is emerging as a useful technique for inference in large scale Bayesian non-parametric

mixture models. This chapter analyses the online learning of robot manipulation

tasks with Bayesian non-parametric mixture models under small variance asymptotics

[Tanwani 2016c, Tanwani 2016b]. The analysis gives a scalable online sequence cluster-

ing (SOSC) algorithm that is non-parametric in the number of clusters and the subspace

dimension of each cluster. SOSC groups the new datapoint in its low dimensional subspace

by online inference in a non-parametric mixture of probabilistic principal component ana-

lyzers (MPPCA) based on Dirichlet process, and captures the state transition and state

duration information online in a hidden semi-Markov model (HSMM) based on hierarchical

Dirichlet process. Task-parameterized formulation of our approach autonomously adapts

the model to changing environmental situations during manipulation. We apply the algo-

rithm in a teleoperation setting to recognize the intention of the operator and remotely

adjust the movement of the robot using the learned model. The generative model is used

to synthesize both time-independent and time-dependent behaviours by relying on the

principles of shared and autonomous control. Experiments with the Baxter robot yield

parsimonious clusters that adapt online with new demonstrations and assist the operator

in performing remote manipulation tasks.

Figure 5.1: SOSC model illustration with Z-shaped streaming data composed of multiple
trajectory samples. The model incrementally clusters the data in its intrinsic subspace.
It tracks the transition among states and the state duration steps in a non-parametric
manner. The generative model is used to recognize and synthesize motion in performing
robot manipulation tasks.
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5.1 Background and Related Work

With the influx of high-dimensional sensory data in robotics, an open challenge is to

compactly encode the data online so that the robots are able to perform under vary-

ing environmental situations and across range of different tasks. Online/Incremental

learning methods update the model parameters with streaming data, without the need to

re-train the model in a batch manner [Neal 1999, Song 2005]. Incremental online learning

poses a unique challenge to the existing robot learning methods with high-dimensional

data, model selection, real-time adaptation and adequate accuracy or generalization af-

ter observing a fewer number of training samples. Non-parametric regression methods

have been commonly used in this context such as locally weighted projection regression

[Vijayakumar 2005], sparse online Gaussian process regression [Gijsberts 2013] and their

fusion with local Gaussian process regression [Nguyen-Tuong 2009]. Kulic et al. used

HMMs to incrementally group whole-body motions based on their relative distance in

HMM space [Kulic 2008]. Lee and Ott presented an iterative motion primitive refinement

approach with HMMs [Lee 2010a]. Kronander et al. locally reshaped an existing dynamical

system with new demonstrations in an incremental manner while preserving its stability

[Kronander 2015]. Hoyos et al. experimented with different strategies to incrementally

add demonstrations to a task-parametrized GMM [Hoyos 2016]. Bruno et al. learned

autonomous behaviours for a flexible surgical robot by online clustering with DP-means

[Bruno 2016].

Bayesian non-parametric treatment of the HMMs/HSMMs provides flexibility in model

selection by maintaining an appropriate probability distribution over parameter values,

P(ξt) =
∫
P(ξt|θ)P(θ)dθ. They automate the number of states selection procedure by

Bayesian inference in a model with infinite number of states [Beal 2002, Johnson 2013].

Niekum et al. used the Beta Process Autoregressive HMM for learning from unstructured

demonstrations [Niekum 2012]. The authors in [Garg 2016, Krishnan 2018] defined a hier-

archical non-parametric Bayesian model to identify the transition structure between states

with a linear dynamical system. Figueroa et al. used the transformation invariant co-

variance matrix for encoding tasks with a Bayesian non-parametric HMM [Figueroa 2017].

Inferring the maximum a posteriori distribution of the parameters in non-parametric mod-

els, however, is often difficult. Markov Chain Monte Carlo (MCMC) sampling or variational

methods are required which are difficult to implement and often do not scale with the size

of the data. Although attractive for encapsulating a priori information about the task, the

computational overhead of existing sampling-based and variational techniques for inference

limit the widespread use of these models.
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Recent analysis of Bayesian non-parametric mixture models under small variance asymp-

totic (SVA) limit has led to simple deterministic models that scale well with large size

applications. For example, as the variances of the mixture model tend to zero in

a GMM, the probabilistic model converges to its deterministic counterpart, k-means,

or to its non-parametric Dirichlet process (DP) version, DP-Means [Kulis 2012]. SVA

analysis of other richer probabilistic models such as dependent DP mixture models

[Campbell 2013], hierarchical Dirichlet process (HDP) [Jiang 2012], infinite latent feature

models [Broderick 2013], Markov jump processes [Huggins 2015], infinite hidden Markov

models [Roychowdhury 2013], and infinite mixture of probabilistic principal component

analysers (MPPCA) [Wang 2015] leads to similar algorithms that scale well and yet retain

the flexibility of non-parametric models.

This chapter builds upon these advancements in small variance asymptotic analysis of

Bayesian non-parametric mixture models. We present a non-parametric online unsu-

pervised framework for robot learning from demonstrations, which scales well with se-

quential high-dimensional data. We formulate online inference algorithms of DP-GMM,

DP-MPPCA, and HDP-HSMM under small variance asymptotics. We then learn a task-

parameterized generative model online for encoding and motion synthesis of robot manip-

ulation tasks.

In this chapter, we seek to incrementally update the parameters θ with each new observa-

tion ξt+1 without having to retrain the model in a batch manner and store the demonstra-

tion data. We present an online inference algorithm for clustering sequential data, called

scalable online sequence clustering (SOSC). SOSC incrementally groups the streaming data

in its low-dimensional subspace by online inference in the Dirichlet process MPPCA under

small variance asymptotics, while being non-parametric in the number of clusters and the

subspace dimension of each cluster. The model encapsulates the state transition and the

state duration information in the data with online inference in an HSMM based on HDP.

A task-parameterized formulation of the model is used to adapt the model parameters to

varying environmental situations in a probabilistic manner [Tanwani 2016a]. The proposed

approach uses the learning from demonstrations paradigm to teach manipulation tasks to

robots in an online and intuitive manner. We show its application in a teleoperation

scenario where the SOSC model is built online from the demonstrations provided by the

teleoperator to perform remote robot manipulation tasks (see Fig. 5.1 for an overview of

our approach). The chapter contains the following,

• Online inference algorithms for DP-GMM, DP-MPPCA and HDP-HSMM under

small variance asymptotics,
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• Non-parametric SOSC algorithm for online learning and motion synthesis of high-

dimensional robot manipulation tasks,

• Task-parameterized formulation of the SOSC model to systematically adapt the

model parameters to changing situations such as position/orientation/size of the

objects,

• Learning manipulation tasks from demonstrations for semi-autonomous teleopera-

tion.

5.2 Problem Formulation under Small Variance Asymptotics

(SVA)

Let us consider the streaming observation sequence {ξ1, . . . , ξt} with ξt ∈ R
D obtained at

current time step t while demonstrating a manipulation task. The corresponding hidden

state sequence {z1, . . . , zt} with zt ∈ {1, . . . ,K} belongs to the discrete set of K cluster

indices at time t, and the observation ξt is drawn from a multivariate Gaussian with

mixture coefficients πt,i ∈ R, mean µt,i ∈ R
D and covariance Σt,i ∈ R

D×D at time t.

We seek to update the parameters online upon observation of a new datapoint ξt+1, such

that the datapoint can be discarded afterwards. Small variance asymptotic (SVA) analysis

implies that the covariance matrix Σt,i of all the Gaussians reduces to the isotropic noise

σ2, i.e., Σt,i ≈ limσ2→0 σ
2I [Kulis 2012, Broderick 2013, Roychowdhury 2013]. Note that

if the covariance matrices Σt,i of all the mixture components in a GMM are set equal to the

isotropic matrix σ2I , the expected value of the complete log-likelihood of the data a.k.a.

the auxiliary function, Q(ΘGMM,Θ
old
GMM

) = E
{
logP(ξt, zt|ΘGMM) | ξt,Θ old

GMM

}
, takes the

form [Dempster 1977]

K∑

i=1

P(i|ξt,Θ old
GMM)

(

log πt,i −
D

2
log 2πσ2 − ‖ξt − µt,i‖22

2σ2

)

. (5.1)

Applying the small variance asymptotic limit to the auxiliary function with

limσ2→0Q(ΘGMM,Θ
old
GMM

), the last term
‖ξt−µt,i‖22

2σ2 dominates the objective function and

the maximum likelihood estimate reduces to the k-means problem,1 i.e.,

maxQ(ΘGMM,Θ
old
GMM) = argmin

zt,µt

‖ξt − µt,zt‖22. (5.2)

1SVA analysis of the Bayesian non-parametric GMM leads to the DP-means algorithm [Kulis 2012].
Similarly, SVA analysis of the HMM yields the segmental k-means problem [Roychowdhury 2013].
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Figure 5.2: SOSC parameter representation using non-parametric HSMM with non-
parameter MPPCA as observation distribution given the streaming data ξ1, ξ2, . . . ξt.

By restricting the covariance matrix to an isotropic/spherical noise, the number of pa-

rameters grows up to a constant with the dimension of datapoint D. Although attractive

for scalability and parsimonious structure, such decoupling cannot encode the important

motor control principles of coordination, synergies and action-perception couplings as we

have seen in the previous chapter. Consequently, we further assume that the ith output

Gaussian groups the observation ξt in its intrinsic low-dimensional affine subspace of di-

mension dt,i at time t with projection matrix Λ
dt,i
t,i ∈ R

D×dt,i , such that dt,i < D and

Σt,i = Λ
dt,i
t,i Λ

dt,i
⊤

t,i + σ2I. Under this assumption, we apply the small variance asymptotic

limit on the remaining (D − dt,i) dimensions to encode the most important coordination

patterns while being parsimonious in the number of parameters.

In order to encode the temporal information among the mixture components, let at ∈
R
K×K with at,i,j , P (zt = j|zt−1 = i) denote the transition probability of moving from

state i at time t − 1 to state j at time t. The parameters {µSt,i,ΣS
t,i} represent the mean

and the standard deviation of staying s consecutive time steps in state i estimated by a

Gaussian N (s|µSt,i,ΣS
t,i). The hidden state follows a multinomial distribution with zt ∼

Mult(πzt−1) where πzt−1 ∈ R
K is the next state transition distribution over state zt−1,

and the observation ξt is drawn from the output distribution of state j, described by a

multivariate Gaussian with parameters {µt,j ,Σt,j} (see Fig. 5.2 for graphical representation

of the problem). The K Gaussian components constitute a GMM augmented with the

state transition and the state duration model to capture the sequential pattern in the

demonstrations.

The overall parameter set of SOSC is represented by Θt,SOSC =
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{

µt,i,Σt,i, {at,i,m}Km=1, µ
S
t,i,Σ

S
t,i

}K

i=1
.2 We are interested in updating the parameter

set Θt,SOSC online upon observation of a new datapoint ξt+1, such that the datapoint can

be discarded afterwards. We first apply the Bayesian non-parametric treatment to the

underlying mixture models and formulate online inference algorithms for DP-MPPCA and

HDP-HSMM under small variance asymptotics. This results in a non-parametric online

approach to robot learning from demonstrations.

5.3 SVA of DP-GMM

In this section, we review the fundamentals of Bayesian non-parametric extension of GMM

under small variance asymptotics using the parameter subset ΘGMM = {πi,µi,Σi}Ki=1 and

present a simple approach for online update of the parameters.

5.3.1 Dirichlet Process GMM (DP-GMM)

Consider a Bayesian non-parametric GMM with Chinese Restaurant Process (CRP) prior

over the cluster assignment with αDP as concentration parameter, zt ∼ CRP(αDP), and

non-informative prior over cluster means with ̺2 as small constant, µi ∼ N (0, ̺2ID). The

likelihood function for a set of datapoints is evaluated as

P(ξt|z,µ) =
K∏

i=1

T∏

t=1

N (ξt|µi, σ
2I). (5.3)

The parameters z and µ are obtained by maximizing the posterior distribution

argmax
K,z,u

P(z,µ|ξt) ∝ argmin
K,z,u

− logP(ξt,z,µ). (5.4)

Computing the joint posterior distribution and setting αDP = exp(− λ
2σ2 )

P(ξt,z,µ) = P(ξt|z,µ) P(z) P(µ) =
K∏

i=1

T∏

t=1

N (ξt|µi, σ
2I) CRP(exp(− λ

2σ2
)) N (0, ̺2ID).

(5.5)

Taking the log of the joint posterior distribution and applying the SVA limit limσ2→0 yields

the DP-means algorithm [Kulis 2012]. The limit pushes the posterior mass on one of the

clusters leading to a deterministic assignment based on the distance of the datapoint to

2With a slight abuse of notation, we represent the parameters with an added subscript t for online
learning. For example, Θt,h denotes the parameters of Θh at time t.
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the nearest cluster. The resulting loss function L(z,µ) to optimize is given as

argmin
K,z,u

lim
σ2→0

− logP(ξt,z,µ) ≈ argmin
K,z,u

L(z,µ) = argmin
K,z,u

K∑

i=1

T∑

t=1

‖ξt − µi‖22 + λK. (5.6)

The algorithm is similar to k-means algorithm except that it is non-parametric in the

number of clusters. The algorithm iteratively assigns the datapoint(s) to its nearest cluster

center, and if any of the datapoints are farther away from the cluster center than a certain

threshold λ, a new cluster is created with the distant datapoints and a penalty λ added

to the loss function. The algorithm converges to a local minimum just like the k-means

algorithm.

5.3.2 Online Inference in DP-GMM

In the online setting, we want to update the parameters Θt,GMM with each new observation

ξt+1 such that the loss function in Eq. (5.6) is minimized. The update consists of the cluster

assignment step and incremental update of parameters step.

5.3.2.1 Cluster Assignment zt+1:

In the online setting, the cluster assignment zt+1 for new datapoint ξt+1 is based on the

distance of the datapoint to the existing cluster means. If the minimum distance is greater

than a certain threshold λ, a new cluster is initialized with that datapoint; otherwise the

assigned cluster prior, mean and the corresponding number of datapoints wt+1,zt+1 are

incrementally updated. We can thus write,

zt+1 = argmin
j=1...K+1







‖ξt+1 − µt,j‖22, if j ≤ K
λ, otherwise.

(5.7)
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5.3.2.2 Parameters Update Θt+1,GMM:

Given the cluster assignment zt+1 = i and the covariance matrix set to Σt,i = σ2I, the

parameters are updated with

πt+1,i =
1

t+ 1

(

tπt,i + 1
)

,

µt+1,i =
1

wt,i + 1

(

wt,iµt,i + ξt+1

)

, (5.8)

where wt,i is the weight assigned to the i-th cluster parameter set at time t to control the

effect of the parameter update with the new datapoint at time t+1 relative to the updates

seen till time t (see next section for updates of wt+1,i).

Loss function L(zt+1,µt+1,zt+1
): The loss function optimized at time step t+ 1 is

L(zt+1,µt+1,zt+1
) = λK + ‖ξt+1 − µt+1,zt+1

‖22 ≤ L(zt+1,µt,zt+1
). (5.9)

It can be seen that direct application of small variance asymptotic limit with isotropic Gaus-

sians severely limits the model from encoding important coordination patterns/variance

in the streaming data. We next apply the limit to discard only the redundant dimensions

in a non-parametric manner and project the new datapoint in a latent subspace by online

inference in a Dirichlet process mixture of probabilistic principal component analyzers.

5.4 Online DP-MPPCA

In this section, we consider the problem formulation with a mixture of probabilistic principal

component analyzers (MPPCA) using the parameter subset ΘMPPCA = {µi,Λ
d
i , di}Ki=1.

We consider its non-parametric extension with the Dirichlet process under small variance

asymptotics and present an algorithm for online inference.

5.4.1 Dirichlet Process MPPCA (DP-MPPCA)

The basic idea of MPPCA is to reduce the dimensions of the data while keeping the observed

covariance structure. The generative model of MPPCA approximates the datapoint ξt as

a convex combination of K subspace clusters [Tipping 1999]

P(ξt|ΘMPPCA) =

K∑

i=1

P(zt = i) N (ξt|µi,Λ
d
iΛ

d⊤
i + σ2i I), (5.10)
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where P(zt = i) is the cluster prior, Λ
d
i ∈ R

D×d is the projection matrix with d < D

and d = di, σ2i I is the isotropic noise coefficient for the i-th cluster, and the covariance

structure is of the form Σi = Λ
d
iΛ

d⊤
i + σ2i I .3 The model assumes that ξt, conditioned on

zt = i, is generated by an affine transformation of d-dimensional latent variable f t ∈ R
d

with noise term ε ∈ R
D such that

ξt = Λ
d
i f t + µi + ε, f t ∼ N (0, Id), ε ∼ N (0, σ2i I). (5.11)

The model parameters of MPPCA are usually learned using an Expectation-Maximization

(EM) procedure [Tipping 1999]. But in this case, both the number of clusters K and the

subspace dimension of each cluster d need to be specified a priori, which is not always

trivial in several domains.

Bayesian non-parametric extension of MPPCA alleviates the problem of model selection

by defining prior distributions over the number of clusters K and the subspace dimension

of each cluster di [Zhang 2004, Chen 2010, Wang 2015]. Similar to DP-GMM, a CRP prior

is placed over the cluster assignment zt ∼ CRP(αDP), along with a hierarchical prior over

the projection matrix Λ
di
i and an exponential prior on the subspace rank di ∼ rdi where

r ∈ (0, 1). Applying small variance asymptotics on the resulting partially collapsed Gibbs

sampler leads to an efficient deterministic algorithm for subspace clustering with an infinite

MPPCA [Wang 2015]. The algorithm iteratively converges by minimizing the loss function

L(z,d,µ,U) = λK + λ1

K∑

i=1

di +
T∑

t=1

dist(ξt,µzt,U
d
zt
)2, (5.12)

where dist(ξt,µzt ,U
d
zt)

2 represents the distance of the datapoint ξt to the subspace of

cluster zt defined by mean µzt and unit eigenvectors of the covariance matrix Ud
zt (see Eq.

(5.13) below), and λ, λ1 represent the penalty terms for the number of clusters and the

subspace dimension of each cluster respectively. The algorithm optimizes the number of

clusters and the subspace dimension of each cluster while minimizing the distance of the

datapoints to the respective subspaces of each cluster. Note that the clustering objective is

similar to the DP-means algorithm except that the distance to the cluster means is replaced

by the distance to the subspace of the cluster and an added penalty is placed on choosing

clusters with more subspace dimensions. In other words, DP-GMM is the limiting case of

DP-MPPCA with very large penalty on the subspace dimension.

3Note that MPPCA is closely related to MFA, and uses isotropic noise matrix instead of the diagonal
noise matrix used in MFA as we have seen in the previous chapter.
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5.4.2 Online Inference in DP-MPPCA

In the online setting, we seek to incrementally update the parameters Θt,MPPCA (ΘMPPCA

at time t) with the new observation ξt+1 without having to retrain the model in a batch

manner and store the demonstration data. The parameters are updated in two steps: the

cluster assignment step followed by the parameter updates step.

5.4.2.1 Cluster Assignment zt+1:

The cluster assignment zt+1 of ξt+1 in the online case follows the same principle as

in Eq. (5.7), except the distance is now computed from the subspace of a cluster

dist(ξt+1,µt,i,U
dt,i
t,i )

2, defined using the difference between the mean-centered datapoint

and the mean-centered datapoint projected upon the subspace U
dt,i
t,i ∈ R

D×dt,i spanned by

the dt,i unit eigenvectors of the covariance matrix, i.e.,

dist(ξt+1,µt,i,U
dt,i
t,i ) =

∥
∥
∥(ξt+1 − µt,i)− ρiU

dt,i
t,i U

dt,i
⊤

t,i (ξt+1 − µt,i)
∥
∥
∥
2
, (5.13)

where

ρi = exp

(

−‖ξt+1 − µt,i‖22
bm

)

weighs the projected mean-centered datapoint according to the distance of the datapoint

from the cluster center (0 < ρi ≤ 1). Its effect is controlled by the bandwidth parameter bm.

If bm is large, then the far away clusters have a greater influence; otherwise nearby clusters

are favored. Note that ρi assigns more weight to the projected mean-centered datapoint

for the nearby clusters than the distant clusters to limit the size of the cluster/subspace.

Our subspace distance formulation is different from [Wang 2015] as we weigh the subspace

of the nearby clusters more than the distant clusters. This allows us to avoid clustering

all the datapoints in the same subspace (near or far) together. The cluster assignment is

deterministically updated using

zt+1 = argmin
i=1...K+1







dist(ξt+1,µt,i,U
dt,i
t,i )

2, if i ≤ K
λ, otherwise.

(5.14)

5.4.2.2 Parameter Updates Θt+1,MPPCA:

Given the cluster assignment zt+1 = i at time t+1, the prior and the mean of the assigned

cluster are updated in the same way as DP-GMM (see Eq. (5.8)). Depending upon the
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nature of the streaming data, wt+1,i can be updated as follows:

• For stationary online learning problems where the data is sampled from some fixed

distribution, we update the weight wt+1,i linearly with the number of instances be-

longing to that cluster, namely

wt+1,i = wt,i + 1, w0,i = 1. (5.15)

• For non-stationary online learning problems where the distribution of streaming data

varies over time, we update the weight vector based on the eligibility trace that

takes into account the temporary occurrence of visiting a particular cluster.4 The

trace indicates how much a cluster is eligible for undergoing changes with the new

parameter update. The trace is updated such that the weights of all the clusters are

decreased by the discount factor ζ ∈ (0, 1) and the weight of the visited cluster is

incremented, i.e., the more often a state is visited, the higher is the eligibility weight

of all the previous updates relative to the new parameter update, namely

wt+1,i =







ζwt,i + 1, if i = zt+1

ζwt,i, if i 6= zt+1.
(5.16)

• For non-stationary problems where learning is continuous and may not depend upon

the number of datapoints, the weight vector is kept constant wt+1,i = wt,i = w∗ at

all time steps as a step-size parameter.

The covariance matrix could then be updated online as

Σ̄t+1,i =
wt,i

wt,i + 1
Σt,i +

wt,i

(wt,i + 1)2
(ξt+1 − µt+1,i)(ξt+1 − µt+1,i)

⊤. (5.17)

However, updating the covariance matrix online in D-dimensional space can be pro-

hibitively expensive for even moderate size problems. To update the covariance matrix

in its intrinsic lower dimension, similarly to [Bellas 2013], we compute gt+1,i ∈ R
di as the

projection of datapoint ξt+1 onto the existing set of basis vectors of U
dt,i
t,i . Note that the

cardinality of basis vectors is different for each covariance matrix. If the datapoint belongs

to the subspace of U
dt,i
t,i , the retro-projection of the datapoint in its original space, as given

by the residual vector pt+1,i ∈ R
D, would be a zero vector; otherwise the residual vector

belongs to the null space of U
dt,i
t,i , and its unit vector p̃t+1,i needs to be added to the

4Eligibility traces are commonly used in reinforcement learning to evaluate the state for undergoing
learning changes in temporal-difference learning [Sutton 1998].
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existing set of basis vectors, i.e.,

gt+1,i = U
dt,i
t,i

⊤
(ξt+1 − µt,i),

pt+1,i = (ξt+1 − µt,i)−U
dt,i
t,i gt+1,i,

p̃t+1,i =







pt+1,i

‖pt+1,i‖2
, if ‖pt+1,i‖2 > 0

0D, otherwise.

The new set of basis vectors augmented with the unit residual vector is represented as

U
dt,i
t+1,i = [U

dt,i
t,i , p̃t+1,i] Rt+1,i, (5.18)

where Rt+1,i ∈ R
(dt,i+1)×(dt,i+1) is the rotation matrix to incrementally update the aug-

mented basis vectors. Rt+1,i is obtained by simplifying the eigendecomposition problem

Σ̄t+1,i = U
dt,i
t+1,i Σ

(diag)
t+1,i U

dt,i
t+1,i

⊤
. (5.19)

Substituting the value of Σ̄t+1,i from Eq. (5.17) and U
dt,i
t+1,i from (5.18) yields the reduced

eigendecomposition problem of size (dt,i + 1)× (dt,i + 1) with

wt,i

wt,i + 1

[

Σ
(diag)
t,i 0dt,i

0
⊤
dt,i

0

]

+
wt,i

(wt,i + 1)2

[

gt+1,i g
⊤
t+1,i νigt+1,i

νig
⊤
t+1,i ν2i

]

= Rt+1,i Σ
(diag)
t+1,i R⊤

t+1,i,

(5.20)

where νi = p̃⊤
t+1,i(ξt+1 − µt+1,i). Solving for Rt+1,i and substituting it in Eq. (5.18) gives

the required updates of the basis vectors in a computationally and memory efficient manner.

The subspace dimension of the i-th mixture component is updated by keeping an estimate

of the average distance vector ēt,i ∈ R
D whose k-th element represents the mean distance

of the datapoints to the (k − 1) subspace basis vectors of Uk
t,i for the i-th cluster. Let

us denote δi as the vector measuring the distance of the datapoint ξt+1 to each of the

subspaces of U k
t,i for the i-th cluster where k = {0 . . . (dt,i + 1)}, i.e.,

δi =







dist(ξt+1,µt+1,i,U
0
t+1,i)

2

...

dist(ξt+1,µt+1,i,U
dt,i+1
t+1,i )

2






, (5.21)

where dist(ξt+1,µt+1,i,U
0
t+1,i)

2 is the distance to the cluster subspace with 0 dimension

(the cluster center point), dist(ξt+1,µt+1,i,U
1
t+1,i)

2 is the distance to the cluster subspace

with 1 dimension (the line), and so on. The average distance vector ēt+1,i and the subspace
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Figure 5.3: Non-parametric online clustering of Z-shaped streaming data under small vari-
ance asymptotics with: (top) online DP-GMM, (bottom) online DP-MPPCA.

dimension dt+1,i are incrementally updated as

ēt+1,i =
1

wt,i + 1

(

wt,iēt,i + δi

)

, (5.22)

dt+1,i = argmin
d=0:D−1

{

λ1d+ ēt+1,i

}

. (5.23)

Given the updated set of basis vectors, the projection matrix and the covariance matrix

are updated as

Λ
dt+1,i

t+1,i = U
dt+1,i

t+1,i

√

Σ
(diag)
t+1,i , (5.24)

Σt+1,i = Λ
dt+1,i

t+1,i Λ
dt+1,i

t+1,i

⊤
+ σ2I. (5.25)

Loss function L(zt+1, dt+1,zt+1 ,µt+1,zt+1
,U

dt+1,zt+1

t+1,zt+1
): The loss function optimized at time

step t+ 1 is

L(zt+1, dt+1,zt+1 ,µt+1,zt+1
,U

dt+1,zt+1

t+1,zt+1
) = λK+λ1dt+1,zt+1+dist(ξt+1,µt+1,zt+1

,U
dt+1,zt+1

t+1,zt+1
)2

≤ L(zt+1, dt,zt+1 ,µt,zt+1
,U

dt,zt+1

t,zt+1
).
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The loss function provides an intuitive trade-off between the fitness term

dist(ξt+1,µt+1,zt+1
,U

dt+1,zt+1

t+1,zt+1
)2 and the model selection parameters K and dk. In-

creasing the number of clusters or the subspace dimension of the assigned cluster decreases

the distance of the datapoint to the assigned subspace at the cost of penalty terms λ and

λ1. Parameters of the assigned cluster are updated in a greedy manner such that the

loss function is guaranteed to decrease at the current time step. In case a new cluster is

assigned to the datapoint, the loss function at time t is evaluated with the cluster having

the lowest cost among the existing set of clusters. Note that setting dt,i = 0 by choosing

λ1 ≫ 0 gives the same loss function and objective function as the online DP-GMM

algorithm with isotropic Gaussians.

To illustrate the difference of encoding between online DP-means and online DP-MPPCA,

we evaluate the performance of the algorithms on a Z-shaped 3-dimensional stream of

datapoints with penalty parameters {λ = 35, σ2 = 100} for online DP-GMM, and

{λ = 14, λ1 = 2, σ2 = 1, bm = 1 × 104} for online DP-MPPCA. Fig. 5.3 shows that

online DP-GMM under small variance asymptotics fails to represent the variance in the

demonstrations with d = 0, whereas the number of clusters and the subspace dimension

adequately evolves for online DP-MPPCA to model the underlying distribution.

5.5 Online HDP-HSMM

We now consider the Bayesian non-parametric extension of HSMM and present our in-

cremental formulation to estimate the parameters of an infinite HSMM, , ΘHSMM =
{

µi,Σi, {ai,m}Km=1, µ
S
i ,Σ

S
i

}K

i=1
, where the output distribution of i-th state is represented

by a parsimonious multivariate Gaussian N (µi,Λ
di
i Λ

di
i

⊤
+ σ2I). Compared to the previ-

ous section, transition probabilities and an explicit state duration model for each state are

introduced as additional parameters.

5.5.1 Hierarchical Dirichlet Process HSMM (HDP-HSMM)

Specifying the number of latent states in an HMM/HSMM is often difficult. Model selec-

tion methods such as cross-validation or Bayesian Information Criterion (BIC) are typically

used to determine the number of states. Bayesian non-parametric approaches compris-

ing of HDPs provide a principled model selection procedure by Bayesian inference in an

HMM/HSMM with an infinite number of states. Interested readers can find details of

DPs and HDPs for specifying an infinite set of conditional transition distribution priors in
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[Teh 2006].

HDP-HMM [Beal 2002, Van Gael 2008] is an infinite state Bayesian non-parametric gen-

eralization of the HMM with HDP prior on the transition distribution. In this model, the

state transition distribution for each state follows a Dirichlet process Gi ∼ DP(αDP,G0)

with concentration parameter αDP and shared base distribution G0, such that G0 is the

global Dirichlet process G0 ∼ DP(γDP,H) with concentration parameter γDP and base

distribution H . The top level DP enables sharing of the existing states with a new state

created under a bottom level DP for each state and encourages visiting of the same con-

sistent set of states in the sequence. Let β denote the weights of G0 in its stick-breaking

construction [Sethuraman 1994], then the non-parametric approach takes the form

β|γDP ∼ GEM(γDP),

πi|αDP,β ∼ DP(αDP,β),

{µi,Λ
di
i , di} ∼ H ,

zt ∼ Mult(πzt−1),

ξt|zt ∼ N (µi,Λ
di
i Λ

di
i

⊤
+ σ2I),

where GEM represents the Griffiths, Engen and McCloskey distribution [Pitman 2002], and

we have used the parsimonious representation of a Gaussian for the output distribution of

a state without loss of generality.

Johnson et al. presented an extension of HDP-HMM to HDP-HSMM by explicitly

drawing the state duration distribution parameters and precluding the self-transitions

[Johnson 2013]. Other extensions such as sticky HDP-HMM [Fox 2008] add a self-

transition bias parameter to the DP of each state to prolong the state-dwell times. We

take a simpler approach to explicitly encode the state duration by setting the self-transition

probabilities to zero and estimating the parameters {µSi ,ΣS
i } empirically from the hidden

state sequence {z1, . . . , zT }.

Note that learning the model in this Bayesian non-parametric setting involves computing

the posterior distribution over the latent state, the output state distribution and the tran-

sition distribution parameters. The problem is more challenging than the maximum likeli-

hood parameter estimation of HMMs and requires MCMC sampling or variational inference

techniques to compute the posterior distribution. Performing small-variance asymptotics

of the joint likelihood of HDP-HMM, on the other hand, yields the maximum aposteriori
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estimates of the parameters by iteratively minimizing the loss function5

L(z,d,µ,U ,a) =
T∑

t=1

dist(ξt,µzt ,U
di
zt
)2 + λ(K − 1)

+ λ1

K∑

i=1

di − λ2
T−1∑

t=1

log(azt,zt+1) + λ3

K∑

i=1

(τi − 1),

where λ2, λ3 > 0 are the additional penalty terms responsible for prolonging the state

duration estimates compared to the loss function in Eq. (5.12). The λ2 term favours the

transitions to states with higher transition probability (states which have been visited more

often before), λ3 penalizes for transition to unvisited states with τi denoting the number

of distinct transitions out of state i, and λ, λ1 are the penalty terms for increasing the

number of states and the subspace dimension of each output state distribution.

5.5.2 Online Inference in HDP-HSMM

For the online setting, we denote the parameter set ΘHSMM at time t as Θt,HSMM. Given

the observation ξt+1, we now present the cluster assignment and the parameter update

steps for the online incremental version of HDP-HSMM.

5.5.2.1 Cluster Assignment zt+1:

The datapoint ξt+1 is assigned to cluster zt+1 based on the rule

zt+1 = argmin
i=1:K+1







dist(ξt+1,µt,i,U
dt,i
t,i )

2 − λ2log at,zt,i, if {at,zt,i > 0, i ≤ K}
(5.26)

dist(ξt+1,µt,i,U
dt,i
t,i )

2 − λ2log
1

∑K
k=1ct,zt,k+1

+λ3, if {at,zt,i = 0, i ≤ K}

(5.27)

λ− λ2log
1

∑K
k=1 ct,zt,k + 1

+ λ3, otherwise, (5.28)

where ct,i,j is an auxiliary transition variable that counts the number of visits from state

i to state j till time t. The assignment procedure evaluates the cost on two main criteria:

1) distance of the datapoint to the existing cluster subspaces given by dist(ξt+1,µt,i,U
di
t,i),

and 2) transition probability of moving from the current state to the state at,zt,i. The

5Setting di = 0 by choosing λ1 ≫ 0 gives the loss function formulation with isotropic Gaussian under
small variance asymptotics as shown in [Roychowdhury 2013].
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procedure favours the next state to be one whose distance from the subspace of a cluster

is low and whose transition probability is high, as seen in Eq. (5.26). If the probability

of transitioning to a given state is zero, an additional penalty of λ3 is added along with

a pseudo transition count to that state 1∑K
k=1 ct,zt,k+1

. Finally, if the cost of transitioning

to a new state at subspace distance λ in Eq. (5.28) is lower than the cost evaluated in Eq.

(5.26) and Eq. (5.27), a new cluster is created with the datapoint and default parameters.

5.5.2.2 Parameter Updates Θt+1,HSMM:

Given the cluster assignment zt+1 = i, we first estimate the parameters µt+1,i,U
dt,i
t+1,i, dt+1,i,

and Σt+1,i following the update rules in Eqs (5.8), (5.18), (5.23) and (5.25), respectively.

We update the transition probabilities via the auxiliary transition count matrix with

ct+1,zt,zt+1 = ct,zt,zt+1 + 1, (5.29)

at+1,zt,zt+1 = ct+1,zt,zt+1 /

K∑

k=1

ct+1,zt,k. (5.30)

To update the state duration probabilities, we keep a count of the duration steps st in

which the cluster assignment is the same, i.e.,

st+1 =







st + 1, if zt+1 = zt,

0, otherwise.
(5.31)

Let us denote nt,zt as the total number of transitions to other states from the state zt till

time t. When the subsequent cluster assignment is different, zt+1 6= zt, the duration count is

reset to zero, st+1 = 0, the transition count to other states is incremented, nt+1,zt = nt,zt+1,

and the duration model parameters {µSt+1,zt ,Σ
S
t+1,zt} are updated as

µSt+1,zt = µSt,zt +
(st − µSt,zt)
nt,zt + 1

, (5.32)

et+1,zt = et,zt + (st − µSt,zt)(st − µSt+1,zt), (5.33)

ΣS
t+1,zt =

et+1,zt

nt,zt
. (5.34)

Loss function L(zt+1, dt+1,zt+1 ,µt+1,zt+1
,U

dt+1,zt+1

t+1,zt+1
, at+1,zt,zt+1): The parameters updated
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at time step t+ 1 minimizes the loss function

L(zt+1, dt+1,zt+1 ,µt+1,zt+1
,U

dt+1,zt+1

t+1,zt+1
, at+1,zt,zt+1) = λ(K−1) + λ1dt+1,zt+1 − λ2 log(azt,zt+1)

+ λ3 τzt+1 + dist(ξt+1,µt+1,zt+1
,U

dt+1,zt+1

t+1,zt+1
)2

≤ L(zt+1, dt,zt+1 ,µt,zt+1
,U

dt,zt+1
t,zt+1

, at,zt,zt+1). (5.35)

A decrease of the loss function ensures that the assigned cluster parameters are updated

in an optimal manner. In case a new cluster is assigned to the datapoint, the loss function

at time t is evaluated with the cluster having the lowest cost among the existing set of

clusters.

Remark: Note that λ2 encourages visiting the more influential states, and λ3 restricts

creation of new states. We do not explicitly penalize the deviation from the state dura-

tion distribution in the cluster assignment step or the loss function, and only re-estimate

the parameters of the state duration in the parameter update step. Deviation from the

state duration parameters may also be explicitly penalized as shown with small variance

asymptotic analysis of hidden Markov jump processes [Huggins 2015].

5.6 Scalable Online Sequence Clustering (SOSC)

SOSC is an unsupervised non-parametric online learning algorithm for clustering time-

series data. It incrementally projects the streaming data in its low dimensional subspace

and maintains a history of the duration steps and the subsequent transition to other sub-

spaces. The projection mechanism uses a non-parametric locally linear principal component

analysis whose redundant dimensions are automatically discarded by small variance asymp-

totic analysis along those dimensions, while the spatio-temporal information is stored with

an infinite state hidden semi-Markov model. During learning, if a cluster evolves such that

it is closer to another cluster than the threshold λ, the two clusters are merged into one

and the subspace of the dominant cluster is retained. The overall algorithm is shown in

Alg. 5.

The algorithm yields a generative model that scales well in higher dimensions and does

not require computation of numerically unstable gradients for the parameter updates at

each iteration. These desirable aspects of the model comes at a cost of hard/deterministic

clusters which could be a bottleneck for some applications. Non-parametric treatment aids

the user to build the model online without specifying the number of clusters and the sub-



116 Chapter 5. Bayesian Non-Parametric Online Generative Models

Algorithm 5 Scalable Online Sequence Clustering (SOSC)

Input: < λ, λ1, λ2, λ3, σ
2, bm >

procedure SOSC
1: Initialize K := 1, {d0,K , c0,K,K, µ

S
0,K , n0,K, eK} := 0

2: while new ξt+1 is added do
3: Assign cluster zt+1 to ξt+1 using cases in Eq. (5.26), Eq. (5.27) and Eq. (5.28)
4: if zt+1 = K + 1 then
5: K := K + 1, µt+1,K := ξt, Σt+1,K := σ2I

6: {dt+1,K , ct+1,K,K, µ
S
old,K , nt+1,K , et+1,K} := 0

7: else
8: Update µt+1,zt+1

using Eq. (5.8)

9: Solve Rt+1,zt+1 , update U
dt,zt+1

t+1,zt+1
using Eq. (5.18)

10: Update dt+1,zt+1 using Eq. (5.23)
11: Update Σt+1,zt+1 using Eq. (5.25)
12: end if
13: Update ct+1,zt,zt+1, at+1,zt,zt+1 using Eq. (5.29), (5.30)
14: if zt+1 = zt then
15: st+1 := st + 1
16: else
17: st+1 := 0, nt+1,zt := nt,zt + 1
18: Update µSt+1,zt using Eq. (5.32)
19: Update et+1,zt using Eq. (5.33)
20: Update ΣS

t+1,zt using Eq. (5.34) for nt,zt > 1
21: end if
22: zt := zt+1

23: for i := 1 to K do
24: if ‖µt+1,zt+1

− µt,i‖2 < λ then {i 6= zt+1}
25: Merge_Clusters(zt+1, i)
26: end if
27: end for
28: end while
29: return θ∗t,s = {µt,i,Σt,i, {at,i,j}Kj=1, µ

S
t,i,Σ

S
t,i}Ki=1
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Figure 5.4: Non-parametric online clustering of Z-shaped streaming data under small vari-
ance asymptotics with different ordering of data on top and bottom can lead to different
models.

space dimension of each cluster, as the parameter set grows with the size/complexity of

the data during learning. The penalty parameters introduced are more intuitive to specify

and act as regularization terms for model selection based on the structure of the data.

Note that the order of the streaming data plays an important role during learning, and

multiple starts from different initial configurations may lead to different solutions as we

update the model parameters after registering every new sample (see Fig. 5.4). Alterna-

tively, the model parameters can be initialized with a batch algorithm after storing a few

demonstrations, or the parameters can be updated sequentially in a mini-batch manner.

Systematic investigation of these approaches is subject to future work.

5.6.1 Task-Parameterized Formulation of SOSC

Task-parameterized models provide a probabilistic formulation to deal with different real

world situations by adapting the model parameters in accordance with the external task

parameters that describe the environment/configuration/situation, instead of hard coding

the solution for each new situation or handling it in an ad hoc manner [Wilson 1999,

Tanwani 2016a]. When a different situation occurs (position/orientation of the object

changes), changes in the task parameters/reference frames are used to modulate the model

parameters in order to adapt the robot movement to the new situation.

For the online setting, we represent the task parameters with P coordinate systems, defined

by {At,j, bt,j}Pj=1, where At,j denotes the orientation of the frame as a rotation matrix and
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bt,j represents the origin of the frame at time t. Each datapoint ξt is observed from the

viewpoint of P different experts/frames, with ξ
(j)
t = A−1

t,j (ξt− bt,j) denoting the datapoint

observed with respect to frame j. The parameters of the task-parameterized SOSC model

are defined by θt,TP-HSMM =
{

{µ(j)
t,i ,Σ

(j)
t,i }Pj=1, {at,i,m}Km=1, µ

S
t,i,Σ

S
t,i

}K

i=1
, where µ

(j)
t,i and

Σ
(j)
t,i define the mean and the covariance matrix of i-th mixture component in frame j at

time t. Parameter updates of the task-parameterized SOSC algorithm remain the same

as described in Alg. 5, except the computation of the mean and the covariance matrix is

repeated for each coordinate system separately.

In order to combine the output of the experts for an unseen situation represented by the

frames {Ãt,j , b̃t,j}Pj=1, we linearly transform the Gaussians back to the global coordinates

with {Ãt,j , b̃t,j}Pj=1, and retrieve the new model parameters {µ̃t,i, Σ̃t,i} for the i-th mixture

component by computing the products of the linearly transformed Gaussians

N (µ̃t,i, Σ̃t,i) ∝
P∏

j=1

N
(

Ãt,jµ
(j)
t,i + b̃t,j , Ãt,jΣ

(j)
t,i Ã

⊤
t,j

)

. (5.36)

The product of Gaussians can be evaluated in a closed form solution with

µ̃t,i = Σ̃t,i

P∑

j=1

(

Ãt,jΣ
(j)
t,i Ã

⊤
t,j

)−1 (

Ãt,jµ
(j)
t,i + b̃t,j

)

,

Σ̃t,i =





P∑

j=1

(

Ãt,jΣ
(j)
t,i Ã

⊤
t,j

)−1





−1

. (5.37)

Under the small variance asymptotics, the loss function at time step t + 1 for the task-

parametrized SOSC model with the resulting N (µ̃t+1,zt+1
, Σ̃t+1,zt+1) yields

L(zt+1, d̃t+1,zt+1 , µ̃t+1,zt+1
, Ũ

d̃t+1,zt+1

t+1,zt+1
, at+1,zt,zt+1) = λ(K−1)+λ1d̃t+1,zt+1−λ2 log(azt,zt+1)

+ λ3 τzt+1 + dist(ξt+1, µ̃t+1,zt+1
, Ũ

d̃t+1,zt+1

t+1,zt+1
)2

≤ L(zt+1, d̃t,zt+1 , µ̃t,zt+1
, Ũ

d̃t,zt+1

t,zt+1
, at,zt,zt+1),

where Ũ
d̃t+1,zt+1

t+1,zt+1
corresponds to the basis vectors of the resulting Σ̃t+1,zt+1 and d̃t+1,zt+1 =

minj d
(j)
t+1,zt+1

, i.e., the product of Gaussians subspace dimension is defined by the minimum

of corresponding subspace dimensions of the Gaussians in P frames for the zt+1 mixture

component.
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5.7 Experiments, Results and Discussions

In this section, we first evaluate the performance of the SOSC model to encode the syn-

thetic data with a 3-dimensional illustrative example followed by its capability to scale in

high dimensional spaces. We then consider a real-world application of learning robot ma-

nipulation tasks for semi-autonomous teleoperation with the proposed task-parameterized

SOSC algorithm. The goal is to assess the performance of the SOSC model to handle noisy

online time-series data in a parsimonious manner.

Figure 5.5: Online streaming data generated from a left-right cyclic HSMM on top and
encoding with the SOSC model on bottom: (left) K = 4, dk is randomly chosen, t =
1 . . . 2500, (middle) K = 4, dk = D − dk, t = 2501 . . . 5000, (right) K = 6, dk is the same
as before, t = 5001 . . . 7500.
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Figure 5.6: Evolution of K and dk with number of datapoints.

5.7.1 Synthetic Data

5.7.1.1 Non-Stationary Learning with 3-Dimensional Data

We consider a 3-dimensional stream of datapoints ξt ∈ R
3 generated by stochastic sampling

from a mixture of different clusters that are connected in a left-right cyclic HSMM. The

centers of the clusters are successively drawn from the interval [−5, 5] such that the next

cluster is at least 4
√
D units farther than the existing set of clusters. Subspace dimension

of each cluster is randomly chosen to lie up to (D − 1) dimensions (a line or a plane for

3-dimensions), and the basis vectors are sampled randomly in that subspace. Duration

steps in a given state are sampled from a uniform distribution in the interval [70, 90] after

which the data is subsequently generated from the next cluster in the model in a cyclic

manner. A white noise of N (0, 0.04I) is added to each sampled data point. Model learning

is divided in three stages: 1) for the first 2500 instances, the number of clusters is set to 4

and the subspace dimension of each cluster is fixed, 2) for the subsequent 2500 instances,

we change the subspace dimension of each cluster to (D− dk) for k = 1 . . . K (for example,

a line becomes a plane), while keeping the same number of clusters, and 3) two more

clusters are then added in the mixture model for the next 2500 instances without any

change in the subspace dimension of the previous clusters. The parameters are defined as

{λ = 3.6, λ1 = 0.35, λ2 = λ3 = 0.025, σ2 = 0.15, bm = 50}. The weights of the parameter

update are based on eligibility traces as in Eq. (5.16) with a discount factor of 0.995.

Results of the learned model are shown in Fig. 5.5. We can see that the SOSC model is

able to efficiently encode the number of clusters and the subspace dimension of each cluster

in each stage of the learning process. The model projects each datapoint in the subspace of

the nearest cluster, in contrast to the K-means clustering based on the Euclidean distance

metric only. The model is able to adapt the subspace dimension of each cluster in the
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Figure 5.7: (left) Learned HSMM transition matrix and state duration model representa-

tion with smax = 150, (right) rescaled forward variable, hHSMM

t,i =
αHSMM
t,i

∑K
k=1 α

HSMM

t,k

, sampled

from initial position.

Figure 5.8: SOSC model evaluation to encode synthetic high-dimensional data. Results are
averaged over 10 iterations. Black dotted lines indicate the reference value: (top-left) silhou-
ette score (SS), (top-middle) normalized mutual information score (NMI), (top-right) time
in seconds, (bottom-left) average distance between learned cluster means and ground truth,
(bottom-middle) number of clusters, (bottom-right) average subspace dimension across all
clusters.
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second stage of the learning process and subsequently incorporate more clusters in the

final stage with the non-stationary data. Fig. 5.6 shows the evolution of the number of

clusters and the subspace dimension of each cluster with the streaming data. Note that

the encoding problem is considerably hard here as the model starts with one cluster only

and adapts during the learning process. Clusters that evolve to come closer than a certain

threshold are merged during the learning process. Fig. 5.7 shows the graphical model

representation of the learned HSMM with the state transitions and the state duration

model, along with a sample of the forward variable generated from the initial position.

5.7.1.2 Stationary Learning with High-Dimensional Data

In this experiment, we sample the data from a stationary distribution corresponding to

the first stage of the previous example where K = 4 and the subspace of each cluster does

not change in the streaming data. Dimensionality of the data is successively chosen from

the set D = {10, 25, 50, 75}, and the number of instances are varied for each dimension

from the set T = {1000, 2500, 5000, 7500}. Parameter λ is experimentally selected for

each experiment to achieve satisfying results, and the weights of the parameter update are

linearly incremented for each cluster. Fig. 5.8 shows the performance of the SOSC model

to encode data in high dimensions averaged over 10 iterations. Our results show that the

algorithm yields a compact encoding as indicated by high values of the average silhouette

score (SS),6 and the normalized mutual information (NMI) score,7 while being robust to

the intrinsic subspace dimension of the data and the number of clusters.

5.7.2 Tracking Screwdriver Target and Hooking Carabiner Examples

We are interested in learning the task-parameterized SOSC model online from the tele-

operator demonstrations and provide a probabilistic formulation to predict his/her in-

tention while performing the task. The model is used to recognize the intention of the

6Silhouette score (SS) measures the tightness of a cluster relative to the other clusters without using
any labels,

SSi ,
bi − ai

max{ai, bi}
, SSi ∈ [−1, 1],

where ai is the mean distance of ξi to the other points in its own cluster, and bi is the mean distance of
ξi to the points in the closest ‘neighbouring’ cluster.

7Normalized mutual information (NMI) is an extrinsic information-theoretic measure to evaluate the
alignment between the assigned cluster labels Z and the ground truth cluster labels X ,

NMI(Z,X ) ,
I(Z,X )

[H(Z) +H(X ))]/2
, NMI(Z,X ) ∈ [0, 1],

where I(Z,X ) is the mutual information and H(X ) is the entropy of cluster labels X .
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Figure 5.9: Semi-autonomous teleoperation with the Baxter robot for guided assistance of
manipulation tools: (left) screwdriving with a frame attached to the movable target, (right)
hooking a carabiner with a frame attached to a rotatable rod. The target for screwdriver
is a given pose, while the carabiner can be hooked anywhere along the rod from different
initial conditions.

Figure 5.10: Joint distribution of the task-parameterized SOSC model for guided assis-
tance in the screwdriving task (left) and hooking a carabiner task (right). For each task,
demonstrations and model with respect to the input part of the coordinate system on (left),
and with respect to the output part of the coordinate system on (right).
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Figure 5.11: Semi-autonomous teleoperation for a new target pose with a screwdriver (left)
and a carabiner (right). For each task, the shared control example is on (left) and the
autonomous control example is on (right). In the shared control example, the teleoperator
demonstration (in red) strays away from the target pose, while the corrected trajectory
(in blue) reaches the target pose. Desired state is shown in purple, teleoperator state in
red, and predicted state in green. In the autonomous control example, the arm movement
is randomly switched (marked with a cross) from direct control (in red) to autonomous
control (in purple) in which the learned model is used to generate the movement to the
target pose.

Figure 5.12: HSMM graphical model representation (smax = 150) on (left) along with evo-
lution of the rescaled forward variable on (right). The left two figures are for screwdriving
task and the right two figures are for hooking a carabiner task.
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teleoperator, and synthesize motion on the remote end to perform manipulation tasks in a

semi-autonomous manner. Two didactic examples of manipulation tasks are incrementally

learned for guided assistance: target tracking with a screwdriver and hooking a carabiner.

The tasks are selected to reflect typical constraints encountered in daily life. The screw-

driver task requires the robot to be invariant to the target pose, while the carabiner can

be hooked anywhere along the rod (see also our work on [Havoutis 2016] for application to

hot-stabbing task akin to peg-in-a-hole task).

We represent the state of the environment as ξt =
[

ξI⊤
t ξO⊤

t

]⊤
with ξI

t ∈ R
7 and ξO

t ∈ R
7

representing respectively the state of the teleoperator arm and the state of the teleoperator

arm observed in the coordinate system of the target pose of the tool (screwdriver/carabiner).

The state of the teleoperator arm is represented by the position x
p
t ∈ R

3 and the orientation

εot ∈ R
4 of the teleoperator arm end-effector in their respective coordinate systems with

D = 14. We attach a frame {At,1, bt,1} to the target pose of the tool. Note that the frame

has two components, the input component represents the teleoperator pose in the global

frame corresponding to ξI
t , while the output component maps the teleoperator state with

respect to the target pose corresponding to ξO
t .

Based on the learned joint distribution of the task-parameterized SOSC model, we seek to

recognize the intention of the teleoperator and subsequently correct the current state of

the teleoperated arm by estimating the conditional distribution P(ξO
t |ξI

t ). The intention

here refers to the cluster or the mixture component to which the teleoperator belongs.

The correction is time-independent and control is shared between the teleoperator and the

remote arm. In case of communication disruptions, we solicit the model to generate the

movement on the remote arm in a time-dependent autonomous manner. After the task is

completed, the arm comes back to the desired position as estimated under shared control.

We provide the details of shared and autonomous control formulations of the generative

model in the next chapter.

We collect 6 kinesthetic demonstrations for screwdriving with the initial pose of the target

rotated/translated in the successive demonstrations, and perform 11 demonstrations of

hooking a carabiner at various places on the rod for 3 different rotated configurations of

the rod segment. Demonstrations are subsampled around 7 Hz and limited to 200 data-

points for each demonstration. The parameters are defined as {λ = 0.65, λ1 = 0.03, λ2 =

0.001, λ3 = 0.04, σ2 = 2.5 × 10−4, κ2 = 0.01}.

Results of the task-parameterized SOSC model for the two tasks are shown in Fig. 5.10.

We observe that the model exploits the variability in the demonstrations to statistically en-

code different phases of the task in the joint distribution. Demonstrations corresponding to
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Table 5.1: Performance comparison of the SOSC model against parametric batch HSMM
models using number of parameters Np, and the endpoint error between the teleoperated
arm and the target. Teleoperation modes are direct control (DC), shared control (SC) and
autonomous control (AC). Errors are reported in meters.

Model Np
DC SC AC

Error Error Error

screw-driving task (K = 3,D = 14)

FC-HSMM 372
0.095± 0.038±
0.025 2.5 × 10−5

ST-HSMM 295
0.094± 0.037±

0.30± 0.026 1.8 × 10−5

MFA-HSMM
267

0.17 0.099± 0.037±
(dk = 4) 0.022 7.7 × 10−6

SOSC
211

0.084± 0.043±
(d̄k = 3.67) 0.018 1.3 × 10−4

hooking carabiner task (K = 4,D = 14)

FC-HSMM 500
0.081± 0.099±
0.056 0.068

ST-HSMM 332
0.082± 0.022±

0.10± 0.058 2.6 × 10−4

MFA-HSMM
360

0.062 0.08± 0.037±
(dk = 4) 0.056 8.8 × 10−4

SOSC
318

0.08± 0.073±
(d̄k = 4.25) 0.056 3.7 × 10−4
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the input component of the frame encode the reaching movement to different target poses

with the screwdriver and the carabiner in the global frame, while the output component

of the frame represents this movement observed from the viewpoint of the target (respec-

tively shown as converging to a point for the screwdriver and to a line for the carabiner).

The learned model for the screwdriving task contains 3 clusters with subspace dimensions

{4, 3, 4}, while the carabiner task model contains 4 clusters with subspace dimensions

{5, 5, 4, 3}.

Fig. 5.11 (left) shows how the model adjusts the movement of the teleoperator based on

his/her current state in a time-independent manner. When the teleoperator is away from

the target, the variance in the output conditional distribution is high and the desired state

is closer to the teleoperator as in direct teleoperation. As the teleoperator moves closer to

the target and visits low variance segments, the desired state moves closer to the target

as compared to the teleoperator. Consequently, the shared control formulation corrects

the movement of the teleoperator when the teleoperator is straying from the target. Table

5.1 shows the performance improvement of shared control over direct control where the

endpoint error is reduced from 0.3 to 0.084 meters for the screwdriving task, and from 0.1

to 0.08 meters for the carabiner task. Error is measured at the end of the demonstration

from the end-effector of the teleoperated arm to the target of the screwdriver, and to the

rod segment for hooking the carabiner.

To evaluate the autonomous control mode of the task-parameterized SOSC model, the

teleoperator performs 6 demonstrations and switches to the autonomous mode randomly

while performing the task. The teleoperated arm evaluates the current state of the task and

generates the desired sequence of states to be visited for the next T steps using the forward

variable of HSMM (see Fig. 5.12). Fig. 5.11 (right) shows that the movement of the robot

converges to the target from different initial configurations of the teleoperator. The ob-

tained results are repeatable and more precise than the direct and the shared control results,

as shown in Table 5.1. Moreover, the table also compares the performance of the SOSC

algorithm against several parametric batch versions of HSMMs with different covariance

models in the output state distribution, including full covariance (FC-HSMM), semi-tied

covariance (ST-HSMM), and MFA decomposition of covariance (MFA-HSMM). Results of

the SOSC model are used as a reference for model selection of the batch algorithms. We can

see that the proposed non-parametric online learning model gives comparable performance

to other parametric batch algorithms with a more parsimonious representation (reduced

number of model parameters).
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5.8 Conclusions

Non-parametric online learning is a promising way to adapt the model on the fly with new

training data. In this chapter, we have presented online learning algorithms for Bayesian

non-parametric mixture models under small variance asymptotics. The resulting scalable

online sequence clustering algorithm, obtained by online inference in HDP-HSMM with DP-

MPPCA as output state distribution, incrementally groups the streaming data with non-

parametric locally linear principal component analysis and encodes the spatio-temporal

patterns using an infinite hidden semi-Markov model. Non-parametric treatment gives the

flexibility to continuously adapt the model with new incoming data. Learning the model

online from a few human demonstrations is a pragmatic approach to teach new skills to

robots. The proposed skill encoding scheme is potentially applicable to a wide range of

tasks, while being robust to varying environmental conditions with the task-parameterized

formulation. We showed the efficacy of the approach to learn manipulation tasks online

for semi-autonomous teleoperation, and assist the operator with shared control and/or

autonomous control in performing remote manipulation tasks.
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This chapter exploits the use of task-parameterized generative models for providing as-

sistance to the teleoperator in performing remote manipulation tasks. We present time-

independent shared control and time-dependent autonomous control formulations of the hid-

den semi-Markov model that captures the intention of the teleoperator and subsequently,

provides manipulation assistance to the teleoperator [Tanwani 2017]. In the shared control
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mode, the model corrects the remote arm movement based on the current state of the

teleoperator; whereas in the autonomous control mode, the model generates the movement

of the remote arm for autonomous task execution. We show the formulation of the model

with well-known virtual fixtures [Abbott 2007] and provide comparisons to benchmark our

approach. Teleoperation experiments with the Baxter robot reveal that the proposed

methodology improves the performance of the teleoperator and caters for environmental

differences and communication delays in performing remote manipulation tasks.

We are interested in performing dexterous manipulation tasks in remote challenging un-

derwater environments within the DexROV project [Gancet 2015]. Large communication

delays with satellite communication render direct teleoperation infeasible, thereby, requir-

ing semi-autonomous capabilities of the remotely operated arm to carry out manipula-

tion tasks. The operational costs are significantly reduced by moving the teleoperation

personnel from the vessel to operate the vehicle from a remote facility. We use the two-

armed Baxter robot as a mock-up of the teleoperation system, i.e., one arm becomes the

input device for the teleoperator, and the other one is used for performing the manipu-

lation task. The operator controls/teleoperates the remote arm with a simulated delay

using the other arm by getting visual feedback from the remote arm. A set of kines-

thetic demonstrations of the teleoperator is used to teach the robot how to perform each

task. We seek to leverage upon our previous work on probabilistic generative models

[Tanwani 2016a, Tanwani 2016c, Tanwani 2016b] to understand the intention of the tele-

operator and assist the movement on the robot side under varying environmental situations.

6.1 Teleoperation Scenario - An Illustrative Example

Consider a simple task of grasping an object on the remote site by teleoperation. The

task is demonstrated on the teleoperator site from different initial configurations of the

arm and the object. After learning the model from a few demonstrations, the model

parameters are passed to the remote site during the start of the mission (implemented as

a ROS service). During teleoperation, the teleoperator arm data is continuously streamed

to the remote site, while the remote robot arm data and the object description (reference

frames described as task parameters) are sent back to the teleoperator side. To simulate

communication latency in teleoperation, data is buffered on both the teleoperation and

the remote sites. Fixed time delays of up to 2 seconds are introduced, under which the

teleoperator perceives the object with delayed feedback.

The teleoperator has two modes of assistance as illustrated in Fig. 6.1: 1) shared con-

trol, and 2) autonomous control. Shared control continuously adjusts/corrects the robot
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Figure 6.1: Semi-autonomous teleoperation framework: Step 1) the teleoperator provides
a few demonstrations of the manipulation task under different object positions shown in
green (the green targets depict the end of the demonstrations); Step 2) a task-parameterized
HSMM is learned, with the input frame of reference representing the demonstrations in
the global coordinate system, and the output frame of reference representing the demon-
strations in the coordinate system attached to the object (Gaussian depicted as an ellipse
represents the emission distribution of a state; the graphical representation of HSMM shows
transition among states and the state duration modeled with a Gaussian); Step 3) (left) the
teleoperator performs the imprecise movement (in orange) to grasp the perceived object in
green, (right) the shared control mode corrects the movement of the robot (in blue) locally
in accordance with the actual object position on the remote site, while the autonomous
control mode generates the movement to the object (in dark red) after the teleoperator
switches to the autonomous mode (marked with a cross). Note that the output frame
component adapts the model locally in accordance with the object.

movement given the teleoperator arm data based on the learned model that locally adapts

according to the object position [Vogel 2016]. The model exploits the variability observed

in the teleoperator demonstrations. Where the variance is high such as away from the ob-

ject, the correction is mild, whereas for low variance regions close to the object, the model

strongly corrects the remote arm to track the object. Supervisory control gives the robot

more autonomy as the model detects the state of the task and generates the remote arm

movement to accomplish the task. Fig. 6.2 shows the setup used to deploy the proposed

semi-autonomous teleoperation of ROV in real underwater environments.
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Figure 6.2: Teleoperation setup to control ROV: (left) exoskeleton and the virtual reality
headset worn by the teleoperator, (middle) third person view of the teleoperator in the
virtual reality environment, (right) ROV with manipulator controlled by the teleoperator.

6.2 High Level Architecture

Our high level architecture of controlling distant robots by semi-autonomous teleoperation

consists of two modules: cognitive engine and proxy cognitive engine . The cognitive

engine provides a method for teleoperation to cope with long transmission delays while

assisting the teleoperator in performing remote manipulation tasks. The engine is com-

prised of a library of task models. The model parameters of each task are learned from

the demonstrations provided by the teleoperator. The set of task models are concatenated

together and used – during the mission and in subsequent missions – to provide assistance

to the teleoperator in performing remote manipulation tasks. The aim is to reduce the

cognitive load of the teleoperator for repetitive or well structured tasks, while also increas-

ing efficiency and accuracy by closing a local sensory feedback loop. The cognitive engine

is split between the teleoperator site and the remote site, described using the following

subsystems:

6.2.1 Cognitive Engine

The cognitive engine resides on the teleoperator site. It is mainly responsible for handling

the input provided by the teleoperator. Within the DexROV project, the teleoperator’s

input comes from external interfaces, namely the exoskeleton and the virtual reality envi-

ronment used to immerse the teleoperator with the remote environment.

The cognitive engine has two phases of operation: a model learning phase, and a semi-

autonomous teleoperation phase.
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6.2.1.1 Model Learning

The model learning phase is offline. In this phase, the teleoperator provides demonstrations

of the task to be performed. The environmental setup of each task is either physically

constructed or simulated in the virtual reality in which the teleoperator can interact with

the object(s) in the environment. The teleoperator performs a few demonstrations of the

underlying task, and the cognitive engine learns a task-parameterized generative model

used online during the mission. Task by task a library is built that can serve multiple

future missions. Before the start of a new mission, the teleoperator loads the model of the

task from the library which has already been performed. The protocol of the teleoperator

is defined as follows.

The teleoperator prepares for a new mission by defining all the important coordinate sys-

tems/frames of reference in the environment. The frames describe the coordinate systems

with respect to which the movement needs to be adapted. For each task, the teleoperator

provides the task description by defining the task name, input and output components of the

frame relevant for the task. After initializing the task, the teleoperator typically performs

4 − 10 demonstrations each containing 50 − 200 datapoints. The operator learns a task-

parameterized HSMM from the demonstrations and verifies the shared and autonomous

control modes of teleoperation. If the teleoperator is satisfied with the assistance behaviour

of the model, he/she can save the model in the database. Alternatively, he/she can either

add more demonstrations or change the hyperparameters of the algorithm. If the model

and/or the demonstrations are not satisfactory, the teleoperator may delete the model. The

saved models are associated with a unique task id which can be loaded again for future

missions.

6.2.1.2 Manipulation Assistance

The learned model is used to assist the teleoperator online while performing remote manip-

ulation tasks. The cognitive engine receives the teleoperator input from external sources

such as the exoskeleton and the virtual reality environment at each time step. The model

recognizes the intention of the teleoperator and provides assistance in performing remote

manipulation tasks in a time-independent shared control or time-dependent autonomous

control manner.
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Figure 6.3: Cognitive engine on (left) is used for handling input demonstrations from the
teleoperator and proxy cognitive engine on (right) locally adjusts the teleoperator input
to provide assistance in performing remote manipulation tasks. The top figure shows
the teleoperator and the remote control sites, the middle figure shows the control panel,
whereas the bottom figure displays the congitive engine simulator instance in autonomous
mode.

6.2.2 Proxy Cognitive Engine

As the name indicates, the proxy cognitive engine is a copy of the cognitive engine that

resides on the remote site. Prior to the start of the mission, the model parameters are

transmitted from the cognitive engine to the proxy cognitive engine on the remote site. The
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perception system on the remote site locally updates the coordinate systems to describe

the environmental situation and transmits this information back to the cognitive engine

over satellite communication. The proxy cognitive engine receives delayed input from the

teleoperator site about the current state of the teleoperator which is locally adjusted in

accordance with the task model to provide manipulation assistance in performing remote

manipulation tasks. Fig. 6.3 shows a minimalist cognitive engine simulator interface split

into the cognitive engine side on left and the proxy cognitive engine on right. During

autonomous mode, the simulator displays the trajectories of the teleoperator and the robot

arm on the cognitive engine and the proxy side, respectively.

6.2.3 Communication Interfaces

The communication between the cognitive engine, proxy cognitive engine and external in-

terfaces is done using ROS messages and services. Fig. 6.4 summarizes the communication

interfaces for the cognitive engine. An example of the communication interfaces for the

valve turning task is shown in Fig. 6.5.

Learned Models

Cognitive
Engine

/Exoskeleton State
/VR State

/model parameters
/task parameters
/recognized skill

/activation weights

Proxy Cognitive
Engine

3D Environment
Model

/desired end-effector state
/acceptable variability
/skill to be executed

Remote
manipulation controller

Figure 6.4: ROS based system representation of the cognitive engine.

6.3 Intention Recognition and Manipulation Assistance

We denote an observation of the teleoperator arm as ξt ∈ R
D with ξt =

[

ξI⊤
t ξO⊤

t

]⊤

where ξI
t and ξO

t respectively represent the pose of the end-effector of the teleoperator

arm at time t in a global coordinate system and the same pose observed with respect
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Figure 6.5: ROS publishers and subscribers for valve opening task encoded with 1 frame
and 2 mixture components. h1 and h2 respectively denote the activation weights of the
mixture components based on the current position of the robot arm.

to another coordinate describing the current context or situation (superscripts I and O

represent the input and the output components). The aim of augmenting the teleoperator

pose with different coordinate systems is to couple the movement of the teleoperator arm

with external environmental variables, i.e., we learn the mapping between the teleoperator

pose in two reference frames: in a global frame and in the object frame, modeled as a

joint distribution. We assume that the reference frames are specified by the user, based on

prior knowledge about the carried out task. Typically, reference frames will be attached

to objects, tools or locations that could be relevant in the execution of a task.

The pose of the teleoperator arm describes the position x
p
t ∈ R

3 and the unit quaternion

orientation εot ∈ S3 of the end-effector (D = 14 with 7 dimensional pose of the input

dimension and 7 dimensional pose of the output dimension observed with respect to task
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parameters). We represent the task parameters with P coordinate systems, defined by

the reference frames {Aj , bj}Pj=1 where Aj denotes the orientation of the frame and bj

represents the origin of the frame. The frame {Aj, bj} is described by

Aj =






II
0 0

0 RO
j 0

0 0 EO
j




 , bj =






0

pO
j

0




 , (6.1)

where pO
j ∈R3, RO

j ∈R3×3, EO
j ∈R

4×4 denote the Cartesian position, the rotation matrix

and the quaternion matrix of the j-th frame, respectively.

The observation sequence {ξt}Tt=1 of T datapoints, observed from the perspective of differ-

ent coordinate systems, forms a third order tensor dataset {ξ(j)t }T,Pt,j=1 with ξ
(j)
t =A−1

j (ξt−bj).
This dataset is used to train a task-parameterized HSMM with K hidden states represented

by the parameter set θh =
{

Πi, {ai,m}Km=1, {µ
(j)
i ,Σ

(j)
i }Pj=1, µ

S
i ,Σ

S
i

}K

i=1
. The parameter set

can be learned in a batch manner as in Chap. 3 or in a non-parametric online manner as

in Chap. 5. Additionally, the data can be modeled in latent space to avoid overfitting and

exploit coordination patterns based on statistical decomposition of the covariance matrix

as seen in Chap. 4.

In the reproduction phase for a given environmental situation represented by the frames

{Ãj, b̃j}Pj=1, the resulting model parameters {µ̃i, Σ̃i} are obtained by first linearly trans-

forming the Gaussians in the P frames with

N (µ̃
(j)
i , Σ̃

(j)
i ) = N

(

Ãjµ
(j)
i + b̃j , ÃjΣ

(j)
i Ã

⊤
j

)

, (6.2)

and then computing the products of the linearly transformed Gaussians for each component

with

N (µ̃i, Σ̃i) ∝
P∏

j=1

N (µ̃
(j)
i , Σ̃

(j)
i ), (6.3)

Σ̃i =





P∑

j=1

Σ̃
(j)
i





−1

, µ̃i = Σ̃i

P∑

j=1

(

Σ̃
(j)
i

)−1 (

µ̃
(j)
i

)

.

We now present the details of two formulations of the learned model to assist the tele-

operator in performing remote manipulation tasks: 1) time-independent shared control, 2)

time-dependent autonomous control.
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6.3.1 Time-Independent Shared Control

In shared control, we seek to continuously correct the movement of the robot arm accord-

ing to the learned model given the input data from the teleoperator. We approximate

the conditional probability distribution of the teleoperator pose in each output frame com-

ponent given the current teleoperator pose as P(ξOj

t |ξI
t ) ≈ N (µ̃

Oj

t , Σ̃
Oj

t ), based on the

joint distribution of the linearly transformed Gaussians N (µ̃
(j)
i , Σ̃

(j)
i ). Denoting the block

decomposition of the joint distribution as,

µ̃
(j)
i =

[

µ̃
Ij

i

µ̃
Oj

i

]

, Σ̃
(j)
i =

[

Σ̃
Ij

i Σ̃
IOj

i

Σ̃
OIj

i Σ̃
Oj

i

]

, (6.4)

the conditional output distribution N (µ̃
Oj

t , Σ̃
Oj

t ) is approximated using Gaussian mixture

regression [Ghahramani 1994],

µ̃
Oj

t =

K∑

i=1

hi(ξ
I
t ) µ̂

Oj

i (ξI
t ), (6.5)

Σ̃
Oj

t =
K∑

i=1

hi(ξ
I
t )
(

Σ̂
Oj

i +µ̂
Oj

i (ξI
t )µ̂

Oj

i (ξI
t )

⊤
)

−µ̃Oj

t µ̃
Oj

t

⊤
, (6.6)

with hi(ξ
I
t ) =

πi N (ξI
t | µ̃

Ij

i , Σ̃
Ij

i )
∑K

k πk N (ξI
t | µ̃

Ij

k , Σ̃
Ij

k )
, (6.7)

µ̂
Oj

i (ξI
t ) = µ̃

Oj

i + Σ̃
OIj

i Σ̃
Ij

i

−1
(ξI

t − µ̃
Ij

i ), (6.8)

Σ̂
Oj

i = Σ̃
Oj

i − Σ̃
OIj

i Σ̃
Ij

i

−1
Σ̃

IOj
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The conditional probability distribution N (µ̃
Oj

t , Σ̃
Oj

t ) predicts the teleoperator pose ac-

cording to the learned model and the uncertainty associated with the pose in the given

frame {Ãj , b̃j}. The conditional probability distributions in all the frames are com-

bined using the product of Gaussians to yield the desired pose at each time instant,

N (µ̂t, Σ̂t) ∝
∏P

j=1N (µ̃
Oj

t , Σ̃
Oj

t ) (see Eq. (6.3)). Note that the variance of the resulting

product of Gaussians determines the trade-off between direct teleoperation and correction

applied by the model. If the variance is low, the correction is strong and the robot arm

follows the model better than the teleoperator. A similar variance based shared control

architecture has also been adopted by authors in [Abi-Farraj 2017].
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6.3.2 Time-Dependent Autonomous Control

Continuously operating the remote arm for routine tasks can be cumbersome for the teleop-

erator, especially in the presence of communication latency. In such a situation, the teleop-

erator may switch at any point in time to to the autonomous control mode upon which the

robot arm recursively re-plans and executes the task for the next T steps. When the task

is accomplished or the communication channel is re-established, the operator switches back

to the direct/shared control upon which the robot arm returns to the desired teleoperated

state.

The input part of the learned model is used to recognize the most likely state of the task at

to given the teleoperator pose ξI
t . The desired movement sequence is then computed with

the help of the forward variable of HSMM as seen in Sec. 3.2.3. The forward variable is

initialized with the current state of the task ξto using αHSMM

to,i
=

πiN (ξto |µ̃i,Σ̃i)
∑K

k=1 πkN (ξto |µ̃k,Σ̃k)
, and is

subsequently used to plan the movement sequence for the next T steps with t=(to+1) . . . T .

This is used to retrieve a stepwise reference trajectory N (µ̂t, Σ̂t) from the state sequence

zt computed from the forward variable, with

zt = argmax
i

αHSMM

t,i , µ̂t = µ̃O
zt
, Σ̂t = Σ̃

O
zt
. (6.10)

The desired pose in the shared control mode or the stepwise desired sequence of poses in

the autonomous control mode is respectively followed with an infinite or a finite horizon

discrete-time linear quadratic regulator, see Sec. 3.3.2 for details. The cost function

minimized during tracking with our defined state variables is expressed as

ct(ξ̄
I
t ,ut) =

T∑

t=t0

(ξ̄
I
t − µ̄t)

⊤Qt(ξ̄
I
t − µ̄t) + u⊤

tRtut,

s.t. ξ̄
I
t+1 = Adξ̄

I
t +Bdut,

starting from the initial value ξ̄
I
t0

=
[

ξI
t0

⊤
0
⊤
]⊤

, with ξ̄
I
t =

[

ξI
t
⊤

ξI
t+1

⊤
]⊤

, µ̄t =

[

µ̂t
⊤

0
⊤
]⊤

, Ad =

[

I ∆tI

0 I

]

and Bd =

[
1
2∆t

2I

∆tI

]

. Solving the dynamic Riccati equation

backwards in time gives the optimal control input u∗
t ∈ R

7. For the infinite horizon case

in shared control with Qt = Q, T →∞ and the desired pose µ̂t = µ̂t0
, the control law is

obtained by eigendecomposition of the discrete algebraic Riccati equation. The resulting

path ξ∗t
I smoothly follows the desired pose/trajectory µ̂t and the computed gains stabilize

ξI
t along ξ∗t

I in accordance with the precision required during the task. The tracking force

on the remote arm F r ∈ R
6 is computed with a proportional-derivative (PD) controller
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using fixed pose Kp
r∈R6×7 and twist gains Kv

r ∈R6×7,

F r = Kp
r(ξ

∗
t
I + ξoffset − ξr)−Kv

r ξ̇r, (6.11)

τ qr = J⊤
qr
F r +

(

I − J⊤
qr
J†
qr

⊤
)

kqp(qneu − qr)− kqv q̇r,

where ξoffset maps the desired pose in the workspace of the remote arm, ξr, ξ̇r ∈R7 is the

pose and twist of the end-effector of the remote arm, Jqr ∈ R
6×7 is the Jacobian of the

remote arm that maps the tracking force F r to the joint torques τ qr ∈R7. (I−J⊤
qr
J†
qr

⊤
)

is the null space of the Jacobian with right pseudoinverse J†
qr
=J⊤

qr
(J qrJ

⊤
qr
)−1, that keeps

the joint configuration of the remote arm qr ∈R7 similar to the neutral starting position

qneu ∈ R
7 with tracking gain kqp . The last term kqv q̇r dampens the joint velocities of

the remote arm by gain kqv . The two arms are clutched during teleoperation, and the

remote arm is teleoperated under unilateral control mode, i.e., no force is fed back to the

teleoperator. Using a haptic interface to feed back interaction forces on the teleoperation

site is subject to future work.

6.4 Comparison with Virtual Fixtures

Virtual fixtures or virtual guides are used to constrain the movement of the remote arm

to follow a desired trajectory [Rosenberg 1993, Abbott 2007]. In [Raiola 2015], the end-

effector of the teleoperator arm is virtually coupled to the desired trajectory by a spring

damper system. Like a cart being pulled on a rail, the teleoperator arm movement induces

the motion of the remote arm along the trajectory (see Fig. 6.6 for the use of virtual

guided fixtures in teleoperation). The desired remote arm pose along the trajectory µ̂svm

is specified by the phase variable svm with svm = 0 at the beginning of the trajectory,

svm = 1 at the end of the trajectory, and ˆ̇µsvm = Jsvm ṡvm where Jsvm ∈ R
7 is the

mapping Jacobian. The teleoperator arm movement ξI
t induces the dynamics on the phase

variable with

ṡvm =
(
J⊤

svm
BσJsvm

)−1
J⊤

svm

(

Kσ(ξ
I
t −µ̂svm) +Bσξ̇

I
t

)

, (6.12)

where Kσ and Bσ define the stiffness and the damping of the virtual fixture.

A task-parameterized HSMM can be used as a virtual fixture by augmenting the teleopera-

tor data with the phase variable svm during the demonstrations step. In the teleoperation

phase, the desired remote arm pose is retrieved by Gaussian conditioning on the phase

variable (see Eq. (6.5)) with P(µ̂svm |svm) ≈ N (µ̃O
t , Σ̃

O
t ) while the Jacobian Jsvm is ob-

tained by evaluating the analytical derivative of Eq. (6.5) with respect to svm. Note that



6.5. Experiments, Results and Discussions 141

Figure 6.6: Virtual guided fixtures for teleoperation. The teleoperator end-effector (in
red square) is virtually connected to the remote arm end-effector (in blue square) with
a spring-damper system. The movement of the teleoperator arm guides the remote arm
along the desired trajectory. The desired trajectory is adapted locally according to the
remote situation.

the input component here is svm and the output component N (µ̃O
t , Σ̃

O
t ) gives the desired

pose µ̂svm and its uncertainty, along with the Jacobian Jvm that governs the evolution of

the phase variable in Eq. (6.12) to guide the arm along the trajectory.

In virtual fixture control, the teleoperator arm movement governs the evolution of the

phase variable and Gaussian conditioning on the phase variable gives the desired pose of

the remote arm; whereas in shared control, Gaussian conditioning on the teleoperator arm

pose gives the desired pose of the remote arm. In our implementation of virtual guides, we

used the logistic function for the phase variable (instead of the linear ramp function) to

slow down the cart at the beginning and at the end of the trajectory. The transformation of

the phase variable is important to limit injection of arbitrarily high velocities in Eq. (6.12).

Alternatively, the trajectory length can also be used as an input variable to normalize the

Jacobian and control the velocities of the cart in the boundary conditions [Raiola 2015].

Moreover, more datapoints are typically required than in shared control to ensure smooth

evolution of the phase variable during teleoperation.

6.5 Experiments, Results and Discussions

In this section, we evaluate our semi-autonomous teleoperation framework for reaching a

movable screwdriver target (see Sec. 5.7.2) and opening a valve (see Sec. 3.4) with the

Baxter robot. Our experimental protocol remains the same as described in Sec. 6.1.

Reaching a Movable Object: The objective of this task is to reach a target point
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Figure 6.7: Reaching a movable target (in green squares) for screw driving: (left) demon-
strations and model shown in the input frame; (center-left) demonstrations and model in
the output frame; (center-right) the teleoperator demonstration (in red) is corrected under
shared control (in blue) to reach a new target location shown in green; (right) the teleoper-
ator switches from direct control to autonomous control mode (marked with a cross) after
which the movement is autonomously generated to the new target location.

with a screwdriver while adapting the movement for different target configurations. We

describe the task with a single frame {A1, b1} attached to the target and collect 6 kines-

thetic demonstrations (4 for training and 2 for testing) with the initial pose of the target

rotated/translated in the successive demonstrations. Results of the joint distribution with

2 mixture components for different target poses are shown in Fig. 6.7. Demonstrations

for the input frame represent the movement of the end-effector of the teleoperator’s arm

to different target poses, while the output frame maps the demonstrations to a pose as

observed from the target perspective.

Opening a Valve: The goal of this task is to bring the valve in an open position from

different initial configurations of the valve [Tanwani 2016a]. The task is described by two

frames, one with the observed initial configuration of valve {A1, b1} and the other with the

desired end configuration of the valve {A2, b2}. The changing configuration of the valve is

tracked using an augmented reality (AR) tag with a Kinect 2.0. We record 8 kinesthetic

demonstrations (6 for training and 2 for testing) with the initial configuration of the valve

corresponding to {180, 135, 90, 45, 157.5, 112.5, 67.5, 22.5} degrees with the horizontal in

the successive demonstrations. Results of the learned model with 2 frames and 7 mixture

components are shown in Fig. 6.8. The input components of both frames represent the

demonstrations identically in global coordinates. The output components of the frames

depict high variability in reaching the valve and coming back to the home position, whereas

there is no variation in grasping/turning and stopping the valve in their respective coordi-

nate systems. This allows the robot arm to reach the valve from different configurations,

grasp the valve and turn it to the desired open position.

All the demonstrations are collected with a controller compensating for the effect of gravity
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Figure 6.8: Open valve (in gray) from different initial configurations A
(i)
1 to final configu-

ration A2: (top) learned model in the input and the output frames, and left-right HSMM
with state transition and state duration model (smax=100); (bottom) the teleoperator per-
forms the task (in red) with respect to the perceived valve configuration on the left, where
the different control modes assist the remote arm (in blue) to perform the task with ac-
tual valve configuration. The spring displayed in bottom right inset represents the virtual
fixture between the teleoperator pose and the desired pose along the trajectory.

by a human operator who is familiar with the robot, but not an expert in teleoperation. We

evaluate the performance of our approach using three different criteria: 1) task performance

error, 2) environmental differences, and 3) execution time.

6.5.1 Task Performance Error

Our objective is to assist the teleoperator to perform remote manipulation tasks in a

repeatable and precise manner while reducing the workload of the teleoperator. Results

of the shared and autonomous modes of assistance for target reaching task are shown

in Fig. 6.7. In shared control, the model corrects the movement of the teleoperator in

accordance with the output component of the model that adapts locally to the target. If

the variance of the resulting conditional distribution is low, the correction is stronger and

vice versa. While demonstrating autonomous control, the teleoperator tests the system by

randomly switching between control modes during the task. Fig. 6.7 (right) shows how

the movement of the robot converges to the target from different switching instants, while

being repeatable and more precise than the direct and the shared control results.
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Table 6.1: Performance comparison of the teleoperation modes with direct control (DC),
shared control (SC), autonomous control (AC), and virtual fixture control (VFC). Np is
the number of parameters of the model, and the errors represent average mean squared
errors between the demonstrations and the model predictions (in centimeters).

SC AC VFC
Train Test Train Test Train Test

valve opening (K = 7, DC Train = 1.412 ± 1.20, DC Test = 1.261 ± 1.13)

0.717 ± 0.67 0.721 ± 0.68 0.737 ± 0.62 0.464 ± 0.33 2.836 ± 2.07 2.011 ± 0.83

target snapping (K = 2, DC Train = 1.954 ± 2.04, DC Test = 1.959 ± 1.81)

0.23 ± 0.25 0.31± 0.26 0.109 ± 0.08 0.178 ± 0.09 0.183 ± 0.12 0.311 ± 0.27

6.5.2 Robustness to Different Environments

Performance of the teleoperator is typically affected by the environmental differences be-

tween the teleoperator and the remote sites. Such differences exist as streaming full Oc-

toMaps over satellite communication for updating the remote environment on the teleop-

erator site are only possible at a very low frequency. In Fig. 6.8, we compare different

assistance approaches to handle these discrepancies by setting different configurations of

the valve on the teleoperator and the remote end. We can see that the task-parameterized

model successfully adapts to the external situation on the teleoperator and the remote site,

thereby, mitigating the difference of environmental situation on the two sites. The teleoper-

ator performs the movement according to the perceived valve configuration or switches to

the autonomous mode while performing the task, and the generated movement is adapted

locally with shared, autonomous or virtual fixture control.

Table 6.1 summarizes the results of different control modes to mitigate imprecise teleop-

erator movements with our model. For each target or valve configuration in the training

or testing set, all the demonstrations in the training and testing sets are treated in a

given control mode and compared with the human demonstration for that particular tar-

get. Mean-squared endpoint errors for target tracking and mean-squared trajectory errors

for valve opening tasks are averaged over all demonstrations and for all target or valve

configurations. The results show that the autonomous control gives the most repeatable

and precise assistance among different teleoperation modes. Moreover, we observe high

performance errors of the virtual fixture control on valve opening task as change of move-

ment directions in the teleoperator demonstration tends to induce remote arm movement

in the reverse direction along the trajectory, often resulting in an unsuccessful trial.
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Table 6.2: Average execution time of performing a manipulation task in seconds under
different teleoperation modes.

Task DC SC AC VFC Preferred Mode

valve opening 18.2 13.6 12.3 13.1 AC

target snapping 7.2 4.3 5.1 5.6 SC

6.5.3 Execution Time

In order to evaluate the effect of teleoperation mode on the task execution time, the

human operator performs the task 5 times for each teleoperation mode from different

initial conditions. At the end of all trials, the operator reveals the preferred mode of

assistance for each task. Results in Table 6.2 suggest performance improvement in task

execution time using the learned model as compared to the direct teleoperation mode.

6.6 Conclusion

In this chapter, we used the task-parameterized HSMMs for semi-autonomous teleoperation

of remote manipulation tasks. The HSMM clustered the demonstrations into meaningful

segments/primitives and encoded the transition patterns among the segments. Using the

methodology, we presented our approach to assist the teleoperator using the learned model

by: 1) continuously correcting the movement of the remote arm given the teleoperator arm

data based on shared control, or 2) generating the movement of the remote arm based on

autonomous control. We compared our approach with virtual fixtures to benchmark the ma-

nipulation assistance methods in teleoperation. We established the merits of our approach

by: 1) allowing the teleoperator to perform the task locally with respect to the perceived

environment(often delayed/inconsistent compared to the actual remote environment), and

adapting the movement locally with the actual situation using the task-parameterized for-

mulation, 2) improving the task performance of the teleoperator by mitigating the effect

of imprecise movements using time-independent shared control and/or time-dependent au-

tonomous control, and 3) reducing the average execution time of performing a remote

manipulation task.





Chapter 7

Concluding Remarks and Future

Directions

Robotics is entering in a golden age where machine learning is becoming well poised to

tackle large scale real world problems. In this thesis, we have explored several frontiers

in imitation and reinforcement learning for acquiring manipulation skills in robots. We

summarize the findings of the thesis in this chapter and provide an outlook to the future

directions.

• Is reinforcement learning from scratch practical for skill acquisition in real

world ?

Our work on actor-critics with experience replay for model-free reinforcement learning

shows high sample complexity for simulated running of half-cheetah and reaching of octopus

arm tasks [Wawrzynski 2013]. Learning from scratch on real world tasks in a model-free

manner is often dangerous due to the explicit noise added during exploration, along with

the high sample and time complexity required to find a reasonable control policy. Model-

based methods avoid the problem of explicit exploration by improving the models estimate

for a given policy, but often require good initial model to start learning. Using human

demonstrations to seed the initial policy/value-function/dynamics model gives promising

results for a variety of tasks [Tanwani 2013a, Tanwani 2014]. Note that the deep learning

variants of these algorithms are also gaining popularity for learning directly from images

[Mnih 2013] and for bridging the gap between simulation and reality for skill acquisition

[Rusu 2016].
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• How is inverse reinforcement learning useful in learning from demonstra-

tions ? Does learning multiple reward functions help in learning bet-

ter/richer control policies ?

Inverse RL aims to recover the unknown reward function that is being optimized in the

human demonstrations. It remains an ill-posed problem as many reward functions are op-

timal for a given set of demonstrations. This requires a lot of engineering effort in setting

up the features of the reward function as there is no direct correspondence between the

reward function features and the policy samples. Although some effort has been employed

in learning reward function directly from images and/or reinterpreting the reward function

as a sub-goal or a trajectory, solving the reward function parameters in its original formu-

lation remains a difficult problem at this stage for learning new skills where the dynamics

model, reward function and optimal policy are all unknown. To mitigate the ill-posed na-

ture of the problem, our efforts have been on learning multiple reward functions that can

instead encapsulate a set of useful behaviours in the demonstrations while using transfer

of knowledge to bootstrap the learning process [Tanwani 2013b]. This primarily relaxes

the strict assumption of demonstrations being optimal with respect to a particular reward

function and allows the demonstrations to be unstructured by being optimal with respect

to multiple reward functions.

• What are the promising ways of teaching new skills to robots from human

demonstrations ?

Considering the sample and time complexity of (inverse) RL to learn new manipulation

tasks, robot learning directly from human demonstrations is a promising way to acquire

new skills. Most of this work has been on direct trajectory learning in a supervised man-

ner using DMPs or dynamical systems in general. In this thesis, we have emphasized

learning manipulation skills from human demonstrations in an unsupervised manner using

a family of hidden Markov models by sequencing the atomic movement segments or

primitives [Tanwani 2016a, Tanwani 2016c]. Recently, several other approaches are being

proposed for deep imitation learning from images directly such as Generative Adversar-

ial Imitation Learning [Ho 2016], one-shot imitation learning [Duan 2017, Finn 2017], and

time contrastive networks [Sermanet 2017]. Further work will be required to combine these

different learning strategies and determine in which settings they can be applied.

• Why are generative models useful in learning robot manipulation skills ?

Generative models typically learn the probability density function of the demonstrations
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in order to regenerate new samples from the model. This is in contrast to discriminative

models that would typically model the target variables directly by regression. While dis-

criminative training has arguably been performing better over the years, the generative

models encapsulate complex relationships between target and observed variables and pro-

vide a direct way to evaluate the model with the regenerated samples. Common generative

models include Gaussian mixture models, hidden Markov models, latent Dirichlet alloca-

tion, variational autoencoders, restricted Boltzmann machines, and generative adversarial

networks. In this thesis, we have built upon a family of hidden Markov models, namely

hidden semi-Markov models, for acquiring manipulation tasks from human demonstra-

tions. Hidden semi-Markov models posit a duration interval for each state/action, thereby,

segmenting the demonstrations into sub-goals that are sequenced together in performing

manipulation tasks [Tanwani 2016a]. We have presented several of its variants in this thesis

and demonstrated its use for learning robot manipulation tasks from a few demonstrations

with no labeled examples. In comparison to inverse reinforcement learning approaches,

the models are straightforward to use and require considerably less time in training and

validating the model.

• What is the role of task-parameterized models? How did the task-

parmeterized formulations of the hidden semi-Markov models help in

learning robot manipulation tasks ?

Task-parameterized models encapsulate the invariant representations of the task by adapt-

ing the model parameters with respect to the changing task parameters describing the

environmental situation. The task parameters refer to the coordinate systems that, for

example, can move with the position/orientation of objects, or scale with the size of the

objects of interest in the environment. Capturing such invariant representations has allowed

us to compactly encode the task variations than using a standard regression problem. We

have presented their formulation and applications with hidden semi-Markov model and

its variants for latent space and Bayesian non-parametric online learning of robot manip-

ulation skills [Tanwani 2016a, Tanwani 2016c, Tanwani 2017]. An important direction of

future work is to not rely on specifying the task parameters manually, but to infer them

simultaneously from demonstrations.

• How did these task-parameterized hidden semi-Markov models scale with

high-dimensional data and limited number of demonstrations ?

Modeling probabilistic distributions in high-dimensional spaces is a challenging problem.

We advocate learning in latent spaces to exploit the structure of the problem in order
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to overcome this problem with generative models. In this thesis, we have widely ex-

ploited two basic latent space representations in our formulations: 1) Mixture of factor

Analyzers (MFA) or mixture of probabilistic principal component analysis (MPPCA), 2)

semi-tied model parameters. MFA/MPPCA gives a separate low-rank decomposition of

each covariance matrix in the mixture model [Tanwani 2016b, Tanwani 2016c]; whereas the

semi-tied representation shares a set of basis vectors across all the mixture components

[Tanwani 2016a]. The latent space representations allow the model to generalize better and

exploit coordination patterns with noisy and/or insufficient training data. Our experiments

yield comparable or better performance in latent space representations with much less pa-

rameters than mixture models with full covariance matrices. A systematic investigation of

the effect of number of basis vectors in these latent space models is a promising direction

of future work (see extended maximum likelihood linear transform (EMLLT) [Olsen 2004],

and multiple linear transforms (MLT) [Goel 2001] for reference). Our other promising

direction of future work is to exploit the structural constraints of the data (quaternions,

tensors) and/or the model parameters (symmetry, orthogonality, low-rank) in learning the

mixture models (see [Jaquier 2017] for example).

• How did the Bayesian non-parametric formulations of the model perform

in learning manipulation skills online from human demonstrations ?

Bayesian non-parametric mixture models avoid problem in model selection which is re-

quired for online learning problems. Computational overhead of existing sampling-based

and variational techniques led us to present online formulations of Bayesian non-parametric

mixture models under small variance asymptotics [Tanwani 2016b]. The resulting scalable

online sequence clustering algorithm incrementally clusters the streaming data with non-

parametric locally linear Dirichlet process MPPCA and encodes the temporal information

in an infinite hierarchical Dirichlet process hidden semi-Markov model. The non-parametric

skill encoding scheme can encode a wide range of tasks, while being robust to environmen-

tal situations with the task-parameterized formulation [Tanwani 2016c]. In future work,

we plan to bootstrap the online learning process with the batch algorithm after a few initial

demonstrations of the task. We would like to use the initialized model to make an educated

guess about the penalty parameters for non-parametric online learning.

• Teleoperation vs shared autonomy vs full autonomy? How does the role

of human operator vary in performing manipulation tasks ?

Human-in-the-loop robot learning is going to speed up the process of making robots an

everyday reality. On one end of this spectrum, we have direct teleoperation where a human
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operator directly commands the robot to follow in joint space/task space in performing an

underlying task, and on the other hand of the spectrum is the full autonomy where the

robot gathers the intent of the teleoperator and autonomously executes the task without

any human intervention [Tanwani 2017]. The shared autonomy lies in between the two

ends and provides manipulation assistance as a virtual guide to the teleoperator from the

learned model of the task. Semi-autonomy instead of full autonomy is desirable where full

autonomy is too hard to provide satisfying results (e.g., driving assistance vs self-driving

cars). Semi-autonomous manipulation allows the operator to reach distant hazardous

environments and gain confidence in controlling the system, which is a potential barrier in

several real world applications.

• How feasible is it to perform remote manipulation tasks over satellite

communication in the presence of delays? How the generative models

helped to perform remote manipulation tasks in the context of DexROV

?

Performing remote manipulation tasks over satellite communication is difficult because of

the delays introduced in the transmission and the feedback of the signals. In naive imple-

mentation, the teleoperator typically has to resort to a piecewise move-and-wait strategy

in order to wait for the remote arm to catch up with the teleoperator. Within DexROV, we

have designed and developed a cognitive engine to mitigate the effect of delays in perform-

ing remote manipulation tasks. The cognitive engine – comprised of the task-parameterized

generative models – recognizes the intention of the teloperator on one hand and adjusts

the movement of the robot arm to assist the teleoperator in performing remote manipula-

tion tasks using the same model. We have seen how the shared and autonomous control

modes of the cognitive engine reduce task errors and the execution time, while handling

differences of contexts between the teleoperator site (virtual reality environment) and the

remotely operated vehicle site [Tanwani 2017]. In our future work, we plan to test the

models with large communication delays over satellite communication in real underwater

environments.

• Where does the field of robot learning stand today ? What are the next

milestones in robot learning from demonstrations ?

Robot learning is increasingly gaining more interest from various scientific communities

including neuroscience, machine learning, artificial intelligence, computer vision, control

systems and human-computer interaction. There is a global consensus that robots need to

learn and adapt their skills to pave their way into the real world. The main prospective
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Figure 7.1: Spectrum of related robot learning directions.

directions of research and development in robot learning are somewhat varied depending

upon the scientific community and the application scenario. In Fig. 7.1, we have out-

lined a broad spectrum of research directions related to our work in this thesis. The

discretion is made on the basis of: 1) skill acquisition methodology – whether the skills

are pre-programmed, learned from human demonstrations and/or acquired with reinforce-

ment learning; 2) state mapping – whether the state of the environment is mapped to

low-level actions, segments/sub-goals, rewards or a high-level symbolic planner; 3) input

data – whether the state of environment is described by trajectories/poses, images/videos,

speech/text and/or haptic feedback; 4) demonstration interfaces – what interfaces are used

for collecting data from user such as IMU, motion capture markers (mocap), kinesthetic

demonstrations or using wearables such as exoskeleton and virtual reality headsets. A gen-

eral trend of advancement with deep learning techniques has been to encompass the right

end of the spectrum with abstract state representations, multiple interface modalities, and

using high performance computing resources to deal with large scale sensory data. Nev-

ertheless, the real world applications of robotics today are more concentrated on the left

end of the spectrum. One of the main challenges to resolve going forward is to standardize

the datasets, algorithms, architectures, simulators, low-level/high-level primitives and the

hardware platforms. Having a library of standardized segments such that the appropriate

segments can be sequenced together in a given situation is a powerful way of performing
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complex manipulation tasks. This will help to plan over much longer time horizons than

managed with current robot learning methodologies. Unsupervised learning is well-suited

for dealing with copious amounts of unlabelled sensory data in future. Although, it seems

not clear at this stage what internal predictive representations need to be acquired of the

objects (and their relationships with other objects) in the environment so that the robots

can learn and reason about what to do in a given situation in order to interact with humans

in everyday life tasks.

The main take away message of the thesis is that robot learning from humans is a promis-

ing way to acquire new skills. Generative mixture models are useful for learning from a few

examples that are not explicitly labelled. The contributions are inspired by the need to

make generative mixture models easy to use for robot learning in a variety of applications,

while requiring considerably less time in implementation. We have presented formulations

for learning invariant task representations with hidden semi-Markov models for recognition,

prediction, and reproduction of manipulation tasks; learning in latent space for robust pa-

rameter estimation of mixture models with high-dimensional data; and learning online with

Bayesian non-parametric mixture models under small variance asymptotics for streaming

data. The cognitive engine based on these generative mixture models is used for recogniz-

ing the intention of the user and providing assistance to remotely perform manipulation

skills by semi-autonomous teleoperation. As a result, the operation costs of teleoperating

dexterous remotely operated vehicles are reduced and the efficiency of the teleoperator is

improved in performing remote manipulation tasks.
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