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Abstract
Whilst studies on emotion recognition show that gender-
dependent analysis can improve emotion classification perfor-
mance, the potential differences in the manifestation of depres-
sion between male and female speech have yet to be fully ex-
plored. This paper presents a qualitative analysis of phonetically
aligned acoustic features to highlight differences in the manifesta-
tion of depression. Gender-dependent analysis with phonetically
aligned gender-dependent features are used for speech-based de-
pression recognition. The presented experimental study reveals
gender differences in the effect of depression on vowel-level fea-
tures. Considering the experimental study, we also show that a
small set of knowledge-driven gender-dependent vowel-level fea-
tures can outperform state-of-the-art turn-level acoustic features
when performing a binary depressed speech recognition task. A
combination of these preselected gender-dependent vowel-level
features with turn-level standardised openSMILE features results
in additional improvement for depression recognition.

Index Terms: Depression, Gender, Vowel-Level Formants,
Speech Motor Control, Classification

1. Introduction
It has been predicted that, within the next 15 years, unipolar
depression along with heart disease, will become one of the lead-
ing causes of disabilities worldwide [1]. Despite this increasing
prevalence, diagnostic tools remain rooted, almost exclusively,
in patient-based questionnaires. Such tools are open to a range of
subjective biases including the skill and experience of a clinician
and the reliability of a patient’s own insights on their current
mental state [2]. With the aim of enhancing current diagnostic
techniques, investigations into new approaches for objectively
detecting and monitoring depression based on measurable bio-
logical, physiological or behavioural signals are a highly active
and growing area of research [3–6].

Very recent research suggest that depression impacts speech
motor control [7, 8]. Depression, similar to many speech motor
control disorders [9], can be characterised by prosodic abnormali-
ties, articulatory and phonetic errors [3]. Formants, the dominant
components of the speech spectrum, are considered a major
marker of speech motor control disorders [10]. Unsurprisingly,
there are strong links between alterations in formants’ dynamics
and depression [8,11,12]. Results presented in [11] indicate that
speech affected by depression has significantly reduced second
formant locations; in particular the diphthong /AI/. More recent
results reveal significant reductions in the Vowel Space Area
(VSA) measured using the first and the second formant coor-
dinates of the /i/, /A/, and /u/ of speech affected depression [8].
Formant dynamics are used to form the Vocal Tract Correlation

(VTC) features which have been used to accurately predict an
individual’s level of clinical depression [13].

Interestingly, preliminary investigations into the similarity
and differences between depressed and sleepy speech suggest
that the effects of depression on formant features may differ be-
tween the genders [12]. This result is supported, in part, by stud-
ies which show the usefulness of performing gender dependent
classification when using formant and spectral features [14, 15].
Such results are not unexpected; formant distributions are ex-
pected to differ between genders due to physiological differences
and variations in emotionality [16,17]. Whilst there are some ev-
idences for differentiation in depression symptoms between men
and women (e. g., appetite and weight [18]), possible potential
acoustic differences have received very little attention.

Gender-specific emotion recognisers have been shown to
perform better than those with mixed gender emotional mod-
els [19]. This is also demonstrated by [20] who shows that
the combined performance of a gender-dependent recogniser is
better than that of a gender-independent. In [17], the authors
described a gender-dependent analysis of vowel-level formants
for straight-forward classification of emotional arousal.

Herein, we investigate the effects of depression on formant
dynamics analysed on a per gender basis. Performing vowel-
level formant analysis, we extract a set of gender dependent
formant features, and then test their suitability for detecting de-
pression state. This work builds on previous results offered
in [21], which demonstrate the potential of using phoneme
based features for depression detection. Further, by analysis
of the formant features, we also aim to capture effects relating
to depression-induced changes in speech motor control [7, 8],
to aid the classification of depression affected speech. Earlier
phoneme-level analysis provided an outstanding classification
performance for cross-corpus emotion recognition [22, 23].

2. Depression Corpus
The corpus used to generate all the experimental results presented
in this paper is the Distress Analysis Interview Corpus - Wizard
of Oz (DAIC-WOZ) database. This corpus has recently been
made publicly available as part of the 2016 Audio-Visual Emotion
Challenge and Workshop (AVEC 2016) [24]. The dataset con-
tains audio-visual recordings of interviews of 189 participants
in English with an animated virtual interviewer operated via a
Wizard-of-Oz paradigm [25]. Moreover, each participant was
assigned a single depression value using the PHQ-8 self-assessed
depression questionnaire [26].

As part of the AVEC challenge, the corpus is divided into
training, development, and test partitions [24]. All the partic-
ipants have been assigned into one of two classes depressed
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Figure 1: Positions of average F1 and F2 values of English vowels in F1/F2 [Hz/Hz] space in the training and development partitions
of the DAIC-WOZ depression corpus. Abbreviations: F1 - first formant, F2 - second formant. The formants values for indicative vowels
selected by our analysis are underlined.

Table 1: Distribution, in terms of gender and depression status,
of the participants in the DAIC-WOZ database for training, de-
velopment and test sets. The total number of participant turns in
a particular division is given in parenthesis. Also given is the
total length (hh:mm) of each partition

Gender Class Train Dev. Test hh:mm

Male N-Dep. 55(9018) 12(2085) 18(3333) 10:37
Dep. 8(1129) 4 (709) 5 (644) 1:44

Female N-Dep. 32(4786) 16(3029) 20(3978) 9:44
Dep. 13(1899) 3 (821) 4 (818) 2:33

Total 107 35 47 24:38

(Dep.) and non-depressed (N-Dep.) based on the PHQ-8 scores;
the average score of each class is 2.75 and 15.9, respectively.
The total division of the participants in terms of depression class
and gender is given in Table 1.

During our analysis, we split the individual DAIC-WOZ
recordings into individual participant turns based on the pro-
vided transcriptions. The break-down of the number of turns per
gender, per partition is also provided in Table 1. As one could
see from the Table 1 dataset contains 189 dialogs with therapist,
and 32 249 turns extracted from aligned textual transcriptions
provided with the dataset.

A range of state-of-the-art audio classification approaches
have been tested on this data as part of AVEC challenge. These
include: VTC features [27]; the i-vector paradigm [28]; and a
deep neural network which combined both convolutional and
Long Short Term Memory (LSTM) layers [29].

3. Vowel-Level Formant Analysis
In the first stage of our evaluation, we automatically estimated
the phoneme boundaries using forced alignment provided by
HTK [30]. Mono-phone Hidden Markov Models (HMMs) were
trained on acoustic material presented in the DAIC-WOZ corpus.
To execute a vowel level analysis, a phoneme level transcription
is needed; which requires a corresponding lexicon containing
phonetic transcription of words presented in the corpus. As the
DAIC-WOZ corpus does not provide such a lexicon, phonetic
transcriptions were taken from the CMU Pronouncing Dictionary.
Transcriptions for missing words were generated with grapheme
to phoneme system (G2P). For estimating phoneme alignment
we used 2.5 ms analysis window.

Upon automatic extraction of phoneme borders, we estimate
contours for the first formant (F1) and the second formant (F2)
values. Formant contours were extracted via the Burg algorithm
using PRAAT speech analysis software [31]. The following
setup for the algorithm was used: the maximum number of
formants tracked = 5, the maximum frequency of the highest for-
mant = 6000Hz, the time step between two consecutive analysis
frames = 1 ms, the effective duration of the analysis window =
25 ms, and the amount of pre-emphasis = 50Hz.

Afterwards, we estimated and took average F1 and F2
values for each vowel segment presented in the training, devel-
opment and test samples of the DIAC database. To characterise
the changes of the vowels’ quality under the influence of the
speaker’s depressive state, we estimated the mean of the first and
the second formants for each vowel (15 vowels in the ARPA-
bet non-stressed phoneme set) individually. This resulted in
2x15 = 30 pairs of mean and standard deviations for the aver-
age F1 and F2 values extracted. The random variables which
represent the average F1 and F2 features are approximately
normally distributed. Finally, two sets (one per gender) of 10
gender-dependent vowel-level formant features, which are highly
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Table 2: The 10 most indicative gender-dependent formant features extracted on vowel segments from the training and development
partitions of the DAIC-WOZ depression corpus. Abbreviations: F1 - first formant, F2 - second formant. Note, all z-test scores
correspond with a significant value of p < 0.001

Gender ARPA(IPA)[Z-score]

F1: AE({æ})[7.99], AO({O})[7.44], IY({i})[6.86], UW({u})[6.41], OW({oU})[5.71], AA({A})[5.70]
Male AY({aI})[5.52], AH({2})[5.51], IH({I})[5.41]

F2: AH({2})[5.60]

Female F1: IH({I})[11.38], EH({E})[9.57], IY({i})[8.36], AE({æ})[7.53], AH({2})[6.27], OW({oU})[6.02]
F2: AO({O})[8.80], AY({aI})[7.38], OW({oU})[6.94], AA({A})[6.49]

indicative of the effects of depression in speech, were selected
using the z-test (Table 2).

As one can see from Figure 1, the vowel-level mean values
for the first and the second formants are different for depressed
and non-depressed speech. As expected, the results differ for
each gender; for male speakers we see displacement of mean
values to the left (i. e., lower F1) for depressed speech, as in the
case with low-arousal emotional speech described in [17]. In a
case of low-arousal detection based on vowel-level formant fea-
tures, female and males have common tendency: average values
for F1 are shifted left for indicative vowels. For female speakers,
on the other hand, we see an opposite tendency; displacement to
the right side (i. e., higher F1). This observation forms the basis
for our decision to perform gender-dependent analysis for more
reliable depression detection analysis.

Considering high level of Z-test scores with significance val-
ues p < 0.001, we decided to use only utterances which contain
indicative vowels. As the result, during the second stage we
used just 24185 utterances with indicative vowels out of 32249.
Each of 24185 utterances has a different length and number of
indicative vowels in transcriptions. For generating fix length
vowel-level features, we estimated gender dependent mean val-
ues, later called template values, for each indicative vowel for the
training, development and test data. The template values were
estimated on the speech material of the whole dialogue with
therapist. These mean values will be used as template features
for each selected utterance. If an utterance contains an indicative
vowel, then instead of the template value, we use weighted aver-
age of both template (weight equal to 10) and an estimated turn
level mean average (weight corresponds to number of indicative
vowels in the turn).

4. General Acoustic Features
We compare our proposed features with a general (acoustic-
pattern independent) acoustic feature set, extended Geneva Min-
imalistic Acoustic Parameter Set (eGeMAPS) [32], which has
been developed by experts and widely used for paralinguistic
tasks such as emotion recognition from speech [24, 33, 34]. The
Low-Level Descriptor features and the Functionals (e. g., mean)
are listed in the Table 3. Overall, this set provides 102 features.

5. Experimental Settings
The experimental settings (unless otherwise stated) for our clas-
sification experiments were as follows: we compare the efficacy
of our extracted vowel level formant features (VL-Formants) for
classifying speech affected by depression with the eGeMAPS
audio feature set that been shown to be suitable for a range of
paralinguistic classification tasks including depression recogni-
tion [33, 34]. We form turn-level representations of both feature

Table 3: Set of Low-Level Descriptor features and the Function-
als applied on them, used in the eGeMAPS feature set. (Coef. of
Var. = Coefficient of variations)

LLD Functional

F0 (Linear & semi-tone), Loudness Mean, Coef. of Var.,
Percentile (20,50,80),
Percentile Range (20–
80), Mean/Std of Ris-
ing/Falling Slope

Spectral Flux, MFCC(1–4), Jitter,
Shimmer, Harmonic to Noise Ratio,
Harmonic differences, F1, F2, F3

(bandwidth, amplitude, frequency),
Voiced sounds: alphaRatio, Ham-
berg Index, Spectral Slope (0–
500Hz, 500–1500Hz), MFCC(1–4)

Mean, Coef. of Var.

(Unvoiced) alphaRatio, Hamberg
Index, Spectral Slope (0–500Hz,
500–1500Hz), MFCC(1–4)

Mean

Voiced segments, Loudness Peaks Per second

(Un)Voiced Segment Length Mean, std

Equivalent Sound Level

sets (cf. Table 1). All fusion results reported are for feature
fusion i. e., the concatenation of the both feature representations.

All results are reported in terms of the AVEC-2016 develop-
ment and test partitions [24]. For results reported as development
the systems was trained with data from the training partition only.
Whilst for the results reported as test the systems was trained
with data from both the training partition and development par-
tition. All classifications are performed using the Liblinear
package [35], with the cost parameter, tuned separately for each
experiment via a grid search. Feature standardisation, i. e., sub-
tracting the mean and dividing by the standard deviation, is
applied in an online manner. All classification results are re-
ported in terms of F1-score, the challenges official metric [24],
for the two classes (depressed and not-depressed) calculated on
a per turn level. Results for the eGeMAPs features are calcu-
lated and reported in both gender dependent and independent
scenarios. Whilst the VL-Formants, as they are separate feature
spaces for each gender (Section 3), are calculated and reported
in a gender independent scenario.
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Table 4: Results for depression classification using either eGeMAPS, our gender dependent VL-Formants, and early fusion combination
thereof. Performance is given in terms of F1-score for depressed (not-depressed) classes. F1-scores for depressed(not-depressed)
speaker classification generated using the DAIC-WOZ Corpus according to AVEC 2016 development and test conditions. The results are
based on gender dependent models. Gender independent testing is not performed on the VL-Fromants as extracted on a per gender basis

F1-Score
eGeMaps VL-Formants VL-Formants

& eGeMaps

Gender Ind. Gender Dep. Gender Dep. Gender Dep.

DEVELOPMENT SET
Male 0.14 (0.73) 0.48 (0.62) 0.53 (0.71) 0.52 (0.70)
Female 0.78 (0.86) 0.83 (0.90) 1.00 (1.00) 1.00 (1.00)
Overall 0.55 (0.79) 0.65 (0.77) 0.75 (0.87) 0.74 (0.86)

TEST SET
Male 0.07 (0.79) 0.18 (0.64) 0.28 (0.51) 0.21 (0.60)
Female 0.65 (0.85) 0.80 (0.93) 1.00 (1.00) 1.00 (1.00)
Overall 0.44 (0.82) 0.46 (0.80) 0.54 (0.80) 0.53 (0.82)

6. Results
The advantages of performing gender dependant depression clas-
sification using the eGeMAPS feature sets can be seen in Table 4.
Most notably for males, a relative improvement in the depression
F1-score of approximately 200% is seen for both development
and test sets, when compared the gender independent and de-
pendent systems. It should be noted that, the male eGeMAPS
gender independent test set F1-score is exceptionally poor.

The VL-Formants consistently outperform the eGeMAPS
features, highlighting their suitability for capturing depression in-
formation (cf. Table 4). These results provide a strong evidence
in support of our decision to perform gender dependent feature
extraction and classification. In both the development and test
sets, the VL-Features achieve the best possible best F1-score of
1.00 for both the depressed and non-depressed female classes.
This provides strong evidence that key depression information
manifests in the formants of female speakers. The difference in
performance of the VL-Formants between the genders is larger
than expected but not completely unsurprising. Gender differ-
ence in formant difference have been reported for both emotional
speech [17] and depression [8].

The early fusion of VL-Formants with eGeMAPS does not
improve system performance over using VL-Formants alone (cf.
Table 4). Given the strong performance of the VL-Formants,
especially for females, this is not unexpected. We also tested late
fusion of the different feature sets. However, the improvements
gained did not outperform the early fusion set-up.

The results of our VL-Formant system is highly competitive
when compared to the results published on the DAIC-WOZ
corpus (under the conditions of AVEC-2016). Our system easily
outperformed the challenge audio baseline which was set using
the COVAREP feature representation and a SVM classifier [24].
COVAREP feature set mainly captures voice quality as well
as prosodic characteristics of speech [36]. The VL formant
depression F1-scores of 0.75 and 0.54, for the development and
test sets, achieved a relative improvement of 63% and 33% over
the baselines F1-score of 0.46 and and 0.41.

They also outperformed the development set depression
F1-score of 0.50 obtained using vocal tract correlation fea-
tures [27], which are well known to capture depression informa-
tion in speech [13, 27] (Note that, the test set scores were not
given in [27]). The VL-Formants also outperformed the i-vector
paradigm depression F1-scores on the development and test sets
(0.57 and 0.48, as presented in [28]). Impressively, they match

performance with the DepAudioNet system presented in [29].
This system feeds spectral features into a network containing
two Convolutional layers, a max pooling layer and a Long Short
Term Memory (LSTM) layer. With this topology they reported
the best F1-score of 0.52 for both the development and test sets.
The strong performance of the VL-formants in comparison with
these state-of-the-art systems provides even more support of our
decision to perform gender dependent feature extraction and
classification.

7. Conclusions

Results presented in this paper indicate the suitability of gender
dependant vowel-level formant features for classifying depres-
sion from speech. A key finding of our analysis is that the effects
of depression may manifest differently in formant measures for
male and females. Based on this finding, we extracted two sets of
gender dependant vowel level formant features (VL-Formants)
which showed promising performance improvement for classi-
fying depression from speech. They outperformed, a range of
state-of-the-art approaches including Vocal Tract Correlation fea-
tures, i-vectors, and a deep neural network. Our results confirm
two key findings presented in the literature: firstly, depression
manifests at the phoneme level of speech [21]; and secondly,
the effects of depression in speech can be captured by features
which characterise speech motor control [7, 8].

As future work, we aim to verify these findings on other
depression-speech databases. We also plan to explore techniques
for performing accurate Automatic Speech Recognition (ASR)
on speech affected by depression and complementing acoustic
based classification with linguistic features derived from ASR
generated transcripts.
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