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HeadFusion: 360° Head Pose
Tracking Combining 3D Morphable
Model and 3D Reconstruction
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Abstract—Head pose estimation is a fundamental task for face and social related research. Although 3D morphable model (3DMM)
based methods relying on depth information usually achieve accurate results, they usually require frontal or mid-profile poses

which preclude a large set of applications where such conditions can not be garanteed, like monitoring natural interactions from fixed
sensors placed in the environment. A major reason is that SDMM models usually only cover the face region. In this paper, we present
a framework which combines the strengths of a 3DMM model fitted online with a prior-free reconstruction of a 3D full head model
providing support for pose estimation from any viewpoint. In addition, we also proposes a symmetry regularizer for accurate 3DMM
fitting under partial observations, and exploit visual tracking to address natural head dynamics with fast accelerations. Extensive
experiments show that our method achieves state-of-the-art performance on the public BIWI dataset, as well as accurate and robust
results on UbiPose, an annotated dataset of natural interactions that we make public and where adverse poses, occlusions or fast

motions regularly occur.

Index Terms—Head pose, 3D head reconstruction, 3D morphable model

1 INTRODUCTION

HEAD pose plays an important role in face analysis. On
one hand, it is strongly related to the positions of
important facial features, and thus its estimation is often used
as a pre-processing step for tasks like face alignment [1],
expression analysis [2], identity recognition [3] or gaze esti-
mation [4]. On the other hand, the head motion dynamics,
which can be used to convey meaningful signals in daily inter-
action [5], is composed of a series of pose changes. Head pose
estimation is thus also useful in fields like social interaction
analysis [6] and human robot interaction.

Although there have been important advances in recent
years, traditional visual based head pose estimation suffers
from difficulties such as human shape and appearance vari-
ability, extreme head poses, facial expressions, the non-rigid
nature of the face, and illumination variations. The develop-
ment of consumer 3D RGB-D sensors offers an alternative
solution. Instead of only providing 2D observations in
which fundamental information is lost after projection, the
3D sensor measures the depth information that is inherently
required for 3D head pose estimation.
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A number of depth-based approaches have been proposed
for head pose estimation, such as feature matching [7],
nonlinear regression [8] or model based methods [9], [10].
Continuous estimations are achieved by all these methods.
However, the former two approaches do not report as precise
results as the model based ones [10]. The model based meth-
ods rely on a predefined face model and retrieve the head
pose parameter by minimizing the discrepancy between the
observation and the head model. They often use 3D Morph-
able Models (3DMM) [11] to retrieve the subject’s face model,
since they provide a linear and low dimensional representa-
tion of the 3D facial shape variations across a population
allowing online and well constrained model adaptation by
finding the coefficients for the subject of interest. Further-
more, the 3DMM model also provides semantic information
which is fundamental for other tasks such as gaze estimation.
The 3DMM models are usually learned from the 3D scans of
a group people. However, as illustrated in Fig. 1a, the limita-
tion of most 3DMM models is that they only cover the frontal
region of the face. The top, side and back parts of the head are
missing since it is actually quite difficult to extract a linear
statistical basis from the large variations of the hair (and even
the ears) in these parts across the population.

Most applications so far consider applications where the
subject’s face is nearly frontal. However, there are many
applications where such an assumption can not be garanteed,
like when setting sensors in the environment and monitoring
people’s activities and interactions. Being able to track the
head uninterruptedly in non-constrained natural scenarios
(such as our UBImpressed sequences, shown in Fig. 6¢),
where unexpected cases such as fast motions, occlusions, and
more profile or adverse poses are presented, is thus also very
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(a) BEM model (b) online reconstruction

(c) estimation results

Fig. 1. Head model and pose estimation. (a) the 3DMM head representation only covers part of the head. (b) online head reconstruction progressively
incorporating observations. (c) head pose estimation using only a 3DMM (top) and incorporating a reconstruction component (bottom).

important. However, a model only relying on the frontal face
representation lacks the support to handle these cases, as
shown in the top line of Fig. 1c.

In this paper, we thus propose a novel robust and accu-
rate head pose estimation method which fuses the strenghs
of two head representations:

e a 3DMM facial model automatically adapted online
from a collection of samples, able to provide very
accurate head pose estimations for near frontal head
poses, but which has difficulties at tracking heads
otherwise;

e an online reconstruction 3D head model based on a
variant of KinectFusion [12], bringing the robustness
of tracking of the head over a 360 degree range.

Furthermore, we propose to exploit a symmetric regular-

izer for the non-linear fitting of the 3DMM, preventing un-
wanted deformations that can degrade performance when
mainly observing the face from a singe viewpoint away from
the frontal pose. Combined with visual motion tracking cues
based on KLT to enforce a temporal coherence and handle
fast and natural head dynamics, we show that both accurate
and robust head pose estimation can be achieved in natural
and challenging scenarios as shown in Fig. 1c. In summary,
the main contributions of our paper includes:

e A 3D head representation combining the semantic
and the precision of a 3DMM fitting and tracking
under restricted poses with the robustness of a full
head representation reconstructed from depth data.
This includes the estimation and the maintenance of
a fine pose correspondence between the 3DMM and
3D reconstruction.

e A symmetry regularizer for robust online 3DMM
adaptation;

e A framework exploiting both visual motion tracking
and 3D model semantics for frame-to-frame pose
initialization;

e UbiPose, a dataset composed of 22 videos from the
UBImpressed dataset [13] featuring natural role played
interactions, with more than 10k frames annotated
with head pose ground-truth;

e Extensive experiments, with performance beyond the
state-of-the-art on both the BIWI benchmark dataset
and UbiPose.

The rest of the paper is organized as follows. After having

presented the related work, Section 3 present our approach.
Our experimental setting is described in Section 4, followed

by our result analysis and discussion in Section 5 and a con-
clusion in Section 6.

2 RELATED WORKS

A large number of works have been proposed to address
head pose estimation. They mainly differ on how the face is
represented, the tracking approach, and the method used
for pose estimation itself. In the following, we present a
review of methods which are closely related to our work,
either from the sensors used (e.g., depth sensor) or from a
modeling perspective, and contrast them with our work.

2.1 General Methods

Due to the difficulty to model face appearance, early works
relied on keyframes, i.e., face image samples with associated
head poses. The GAVAM model of Morency et al. [14] is a
typical example. It uses differential tracking to compare to
previous observations as well to the set of keyframes, and
constantly updates the current keyframe pose estimates,
and adds new ones when needed.

Regression methods also avoid defining an explicit face
model representation. Using depth data, Fanelli et al. [§]
achieved this by extracting weak features from depth patches
to train a random-forest regression model. However, their
model did not achieve good generalization and suffers from
low accuracy. Also, regression methods in general lack seman-
tics on facial features, which can be of importance for tasks
such as eye-gaze estimation or facial expression recognition.

Facial features tracking is an alternative line of work.
Head pose estimation then becomes a secondary problem
solved through PnP techniques. Constrained local models
(CLM) [15] represent the appearance of local features as lin-
ear subspaces. Their location is found from filter responses
of patch experts, constrained by a shape model. Baltrusaitis
et al. [16] extended the CLM framework by including depth
patches observations, performing better than CLMs or the
GAVAM model. Later, Baltrusaitis et al. [17] proposed the
Constrained Local Neural Fields (CLNF), used in the Open-
Face software, a variant of CLM addressing feature detec-
tion under more challenging scenarios. However, feature
based methods suffer from self occlusions, as they depend
on features visibility.

Deep learning is gaining increased traction for tasks
related to face analysis, such as detection [18], verification
[3], and even gaze estimation from the full face [19]. Deep
learning has also been used for the localization of facial
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features [20], [21]. For instance, Sun et al. [20] proposed a
cascaded model composed of three levels, each of them hav-
ing a set of parallel CNNs for which subgroups predict the
location of the same landmark(s) and their response is aver-
aged to reduce the variance. This process is repeated at the
3 levels, successfully achieving a coarse-to-fine prediction of
the landmarks. Nevertheless, the expectation of these meth-
ods is that facial landmarks are visible, thus restricting the
method to head poses with visible face.

2.2 Model-Based Methods

Model based methods provide both semantic reasoning and
may give better support against missing features. The 3D
Morphable Model, as an extension of the 2D case ASM
(Appearance Shape Model) [22] and AAM (Active Appear-
ance Model) [23], is a parametric linear representation of 3D
shape and appearance. The 3DMM linear basis can be
learned from real data, modeling variations related to iden-
tity [24], [25] or even facial expressions [26].

As with AAMs, the 3DMM can be fit to image data [1], [27],
[28], [29] or depth or shape data to adapt the model to the sub-
ject [30], [31]. One approach proposed is to conduct feature
matching in the depth space, as proposed for instance by
Papazov et al. [7] which relies on view-invariant descriptors
encoding the face 3D shape for matching and pose inference.

Nevertheless, instead of feature matching, most approaches
rely on registration for model fitting, where the aim is to mini-
mize the discrepancy between the data and the parameterized
model. For instance, Weise et al. [9] build a user specific 3D
mesh face model offline using non-rigid registration, and then
use the iterative closest points (ICP) algorithm for real-time
head tracking. Funes and Odobez [31] extends [30] by apply-
ing a multi-instance fitting to build the offline model and also
use ICP for tracking. However, as ICP is a local optimization
technique, it requires a good initialization, and thus often
needs to process data at a high frame rate. To solve this prob-
lem, Meyer et al. [10] combined ICP and Particle Swarm Opti-
mization (PSO) together for joint tracking and online fitting,
thus allowing to propose and evaluate multiple initializations.
Higher pose estimation accuracy is achieved at the expense of
amuch higher computational cost.

Finally, further works have been proposed to address the
3D non-rigid facial expressions, mainly for transfer to
animated avatars. Methods like [2], [32], [33] model facial
deformations through blendshapes which linearly extend a
standard 3DMM. An advantage of these methods, as done by
Bouaziz et al. [2] is that by decomposing the face model, it is
possible to retrieve the components related to face identity
even under facial deformations, as well as adapting the facial
deformation basis online. On the other hand, the authors
in [32] also achieved robust head tracking under occlusion.
They identified outliers by measuring the difference between
the current observation and the head model posed with the
previous estimation. However, due to their focus, these
papers lack a real evaluations on head pose estimation and
on tracking robustness in non near-frontal pose conditions.

2.3 3D Reconstruction Approach

Reconstruction methods aiming at building 3D models of
objects have attracted more attentions since the emergence
of consumer 3D sensors. KinectFusion [12] is a standard
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approach which creates representations of static and rigid
object or scene using a moving camera. Roughly speaking,
it works by estimating the camera pose in each frame
through the registration of successive scene observations,
and projects the multi-angle viewed observations into a uni-
fied model representation for averaging. This approach has
recently been extended via DynamicFusion [34] to also han-
dle non-rigid objects through the estimation of a dense non-
rigid warp field. Both KinectFusion and DynamicFusion
rely on a volumetric representation which can be large and
time consuming to process when aiming for precise recon-
struction. To alleviate this problem, Keller et al. [35] pro-
posed a lighter point based reconstruction and fusion
method, removing in the same way the static scene require-
ment through the robust detection of dynamic objects.

2.4 Our Approach

As we have seen, most previous model based methods are
strongly focused on the face region. Although this is justified,
as the main interest is on this region, it is nevertheless insuffi-
cient to address the large range of head pose variations
observed in many natural human interactions situations of
interest (cf. Fig. 6).

On the other hand, online reconstruction methods can
potentially handle a large variety of poses, but are usually
much more time consuming and have limitations. In particular
they lack face and head semantic information and are more
sensitive to fast motions. In addition, as faces and heads are
not rigid, one could wonder how well such methods can work
when being applied to natural interaction data with talking or
facial expressions, or if the head shape is actually sufficient to
obtain a precise registration when the face is almost not visible.

To address the above issues, in this paper we propose a
model combining the strengths of both approaches, through
the online fitting of a 3DMM to the face region whereas the
subject specific head representation is augmented on-the-fly
through a variant of KinectFusion [12]. Thanks to additional
carefull model fitting (Laplacian fitting with symmetric regu-
larizer) and KLT tracking cues, the resulting method is capa-
ble of achieving high accuracy, to create a face model
representation with associated semantics, and to maintain
track under very challenging dynamic head pose sequences
in real settings.

3 METHOD

3.1 Overview
The proposed framework is illustrated in Fig. 2. It consists of
three main modules: head pose estimation, 3DMM fitting and
head reconstruction. The head pose estimation module aligns,
at every time step i, the current estimate of the head model h’
with the observed RGBD data (I, 0’) (in which I denotes the
RGB image and o denotes the depth map) using the ICP algo-
rithm. This module also exploits two other submodules for
initialization: one relying on face detection and landmark
localization to initialize tracking; a second one relying on
visual KLT tracking for coarse pose temporal alignment from
the previous frame, allowing to handle the fast head accelera-
tion motions regularly observed in natural sequences.

The aim of the 3DMM fitting and head reconstruction
modules is to learn and update the head model h' of the
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Fig. 2. Proposed framework. The head pose estimation module registers the current head model h to the observations. The 3DMM fitting
module personalizes a 3DMM face model m to sample frames online. The reconstruction module aggregates pose rectified depth images
into a full head representation r. Vertex samples from the 3DMM face models m and from the reconstructed one r are used to define the

head model h.

given person using the sequence of past observations. This
is achieved using two main representations: the first one, r,
is a 3D reconstruction of the head obtained through the tem-
poral registration and integration over time of the incoming
depth frames. Its main advantage is that it can represent the
full head without any prior knowledge. The second one is a
3D mesh face representation, m?, built and adapted online
from a multi-instance 3DMM fitting algorithm relying on
automatically selected depth frames.

Note that, in the following sections, we will refer to a repre-

7h
sentation “h” as a set of vertices vy, := {vp[k] }2\;1 and normals
Nh :
ny = {nh[k:]}}zgl, such that h := {vy,n,}. We will use this

notation to refer to the different face representations h, m and
r, while using the “[k]” to index specific vertices or normals.
In this view, the resulting head model, used for pose estima-
tion, is thus given by the joint set of vertices and normals com-
ing from the two representations, i.e., h’ = {m’, r'}.

While in principle after several frames we could rely only
on the reconstructed model r for head pose estimation, we
keep the 3DMM-based face model m as part of the head
representation as it has several advantages. First, the seman-
tic meaning of vertices from m is well known, which can be
useful for face analysis, or if we want to further combine the
model with appearance information provided by facial land-
mark detectors. Second, besides personalization of the face
model to specific individuals, the 3DMM-based face model
can be extended to include further elements, e.g., deforma-
tions due to expressions, which could be useful for further
facial analysis. Third, the existence of the 3DMM can pre-
vent possible tracking failures caused by the sudden emer-
gence of face regions which had not been seen so far and are
thus not yet reconstructed, thus regularizing the resulting
model.

Note that both the 3DMM-based face model and the head
reconstructions are built online without any manual inter-
vention. Details of pose estimation and head representation
learning are provided in the following sections.

3.2 3D Head Pose Estimation

The objective of this module is to estimate the 3D head pose
p' = (R',t') at time i from the RGBD map (I, o). Here p’
represents a rigid transformation relating the head coordi-
nate system (in which h is defined) to the world coordinate
system, parametrized by a rotation matrix R' € R**® (also
characterized by three rotation angles yaw, pitch and roll),
and a translation matrix t' € R**!.

The head pose estimation problem is formulated as finding
the transform p’ of the head model h’ which minimizes the
surface alignment error to the depth observations o’. How-
ever, this is intractable, as it requires to estimate jointly the
pose and the point-wise semantic alignment between the sur-
faces. Thus, the cost is usually minimized using some form of
ICP algorithm.

In the following, we first present in Section 3.2.1 the
approach for ICP-based head pose estimation. Since being
trapped in local minima is a typical weakness of ICP, in
Section 3.2.2 we describe our method to initialize ICP close
to the target pose either in the first frame (tracking initializa-
tion) or from frame-to-frame (during tracking).

3.2.1 Pose Estimation

Pose estimation is achieved using a variant of ICP, i.e., mini-
mizing the registration error by iterating between the corre-
spondence search and the rigid pose estimation steps.

More precisely, at each iteration, we first find the vertex
correspondences of the head model, rigidly transformed by
the current pose estimate, to the data o’ using the method
in [36], which is a fast implementation of normal shooting.
We will denote ¢’ (k) the index of the vertex in o’ found to be
the correspondence of the vertex & in h. Then the pose esti-
mate is improved by minimizing the point-to-plane ICP
cost B (R, t') given by:

S wlk) (R ) (R + € ~vif(B) . @)

k
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where the time index i indicate that the set of vertices vj,
and normals nj, refer to the head model h at time 1.

The robust weights {w[k]}, aim to discard bad correspond-
ences. Assuming §[k] is the euclidean distance between a
transformed vertex and its correspondence, w[k] is computed
at each ICP iteration as follows: 1) wl[k] is set to zero for corre-
spondences whose normals differ by more than 45°, or if
8[k] > 4 cm;ii) wik] is 1 for 8[k] < 1 cm;iv) otherwise, w[k] =

w[k]r—lr)” where | and r; are two parameters controlling the
v =T2

weight decay. We use the same weighting strategy for all ICP
methods in this paper.

3.2.2 Pose Initialization

Initializing the ICP algorithm is needed in two distinct sit-
uations: to start the tracking of a newly detected head (or
restart it upon a detected tracking failure); and during track-
ing, given the output result from the previous frame. Below
we describe these two cases.

Tracking Initialization. In most applications, the tracking
may have to start with any pose from the head. To do so,
we initialize the system by inferring the head pose from
facial landmark detections. The toolkit Dlib [37] is used to
detect the face and facial landmarks from the RGB image I
using the method of Kazemi and Sullivan [38]. These land-
marks are then back-projected into the 3D space using the
depth map o and used to form one-to-one point pairs with
the corresponding 3D landmarks of m, whose indices are
known from the 3DMM semantics. Then the rigid rotation
and translation of the head are inferred from these 3D point
pairs using the method in [39].

Temporal Coarse Alignment. A common strategy in tracking
is to use the pose estimated in frame i — 1 as prediction and
then initialization for frame ¢, or to use a more complex state-
based dynamic model. These strategies have nevertheless dif-
ficulties in case of sudden acceleration (lagging behind) or
deceleration (over shooting). A better strategy, as demon-
strated in other tracking framework (e.g.,, GAVAM [14]) is to
exploit visual motion for prediction. More precisely, a coarse
alignment between frame ¢ — 1 and i is conducted based on
facial feature tracking. Concretely, 3D facial features {f"'[I]},
(where [ denotes the feature index) of the head model set with
the estimated pose of frame ¢ — 1 are projected into the 2D
image plane I'~!. Their corresponding positions in the next
frame are estimated using a robust variant of the KLT tracker
and projected back into the 3D space, resulting in the 3D fea-
ture locations {f'[l]}, predictions. The relative pose transfor-

mation (R, #~) between frame i — 1 and frame i is then

estimated from the set of paired features {(f''[1], f (1)}, by
minimizing the following cost function:

Z“’m (R i) (R84 4 € - 7)) @

+y[RTY =Ry,

where R; denotes the identity matrix and n}[l] is the normal
vector at the Ith feature on the head model. The weight w][l]
is derived from the tracking confidence of the lth feature
given by the robust KLT tracker. A regularizer for the
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rotation matrix is incorporated to favor the identity rotation
matrix estimation and comparatively encourage large trans-
lations in the solution, if required, since large and fast head
motions are often due to head translation. Finally, given the
relative pose transformation (R"",t~'7), a coarse estima-
tion of the head pose at frame i is given by:

Ri — Ri—lji 3 Ri_l,ti — Ri—l,i A ti—l 4 Ei—lji. (3)

In our implementation, we chose 70 facial landmarks and
80 random points on the head model for coarse alignment.
We expect this to achieve a good balance between covering
a wider face area (through random points) and points which
normally result in high confidence motion estimates (facial
landmarks).

3.2.3 Tracking Failure Identification

In some situations the ICP optimization may diverge. If
detected, we denote it as a tracking failure and apply the Dlib
library face detector to incoming frames until a face is
detected and the tracking is reinitialized. In this paper, a track-
ing failure is identified using the weights w[k]. Concretely, we
first select the visible points &, from the aligned model. Then
their weights are summed up as ), w[k,] which indicates
whether the registered model achieves an overall good corre-
spondence with the observation. More precisely, if

> wlko) < 0.01-) 1, ()

ko ko

is verified, then we assume that the registered model does
not align with the observations, and a tracking failure is
detected.

3.3 3D Morphable Model (3DMM) Fitting

In this section we explain our approach to retrieve m from a
3DMM. We will describe 3DMMs in detail, the fitting algo-
rithm, the regularization, and the online sample selection
strategy.

3.3.1 3D Morphable Model (3DMM)

A 3DMM is a statistical linear representation of facial shape
(and/or appearance) variations [27]. Concretely, it is a lin-
ear combination of a mean shape 1+ with a deformation basis
b,, weighted by a set of coefficients «. Vertex-wise, this can
be represented as follows:

Ny
Vm(O{) =Vu + Z )\bn n Vb, , (5)

n=1

where we omit the index notation “[k]” to avoid clutter and
b, is the eigenvalue associated to the deformation vector
b,. Here, b, models facial shape variations across different
face identities, while « allows to encode a person-specific
facial shape m.

In this work we used the Basel Face Model (BFM) [24] as
3DMM. The deformation basis were learned from the 3D
face scans of only 200 people, providing mainly global face
variations. To obtain a finer modeling of a specific person’s
face, we rely on the work of [2] which used the eigenvectors
of the Laplacian matrix of the 3DMM graph as additional
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Fig. 3. Use of symmetry regularizer.(a) Fitting samples; (b) Fitting without
symmetry regularizer; (c) Fitting with symmetry regularizer.

deformation bases. These Laplacian eigenvectors 1, corre-
sponds to the smallest K eigenvalues, as shown in the
3DMM fitting module of Fig. 2 where the red and green
region denotes positive deformation values and negative
deformation values respectively, and the brightness of the
region is proportional to the absolute deformation values.
By adding the Laplacian eigenvectors, our final 3D face
model is given, per each vertex k, by:

Ny M
V(@ B) = Vi + Y Ao, @aVo, + > A, (Bivi,, Bivi,, BV,

n=1 n=1

(6)

Note that unlike b,, the Laplacian eigenvectors are the
same across the directions x, y, z.

3.3.2 Online Model Fitting

Since pose estimation is defined as a registration task aligning
the head model to the observations, the head model itself
should gradually be deformed to be as close as possible to the
observations, and therefore adapt to the tracked person. To
achieve this, we rely on a non-rigid multiple instance fitting
method [31] minimizing the discrepancy between our 3DMM
model m(a) and a set of frames J* collected until time i. As
with pose estimation, this discrepancy is minimized itera-
tively by minimizing the non-rigid ICP cost (with (R,t) =
{(Rj>tj)7j € jl})

E(e, B, R, t)
M
= Bl BRI E) + v, Z%+Vz > > )
jeJt ae{xy,z} n=1

where the cost E; for each sample j is given by:

(e, B.R.¥)
= 3 W] (R ) (Rovin e, )1 + 0 = v I B)]))
k ®

meaning Eq. (7) represents the sum of the rigid alignment
errors with each frame of the sample set J', and a regulariza-
tion over the coefficients (¢, B). y = (y;,y,) are stiffness
parameters controlling how much m can deviate from the
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mean shape. The solution of Eq. (7) is found using the Gauss-
Newton method by gradually reducing the stiffness [30].

3.3.3 Symmetry Regularizer

The deformation basis, especially the Laplacian basis 1, do
not generate a symmetric deformation fields over the face.
When the 3DMM fitting is based on samples where some parts
of the face are not observed, the fitting may be conducted
locally on the visible parts and the resulting deformation fields
may diverge on the not visible ones. We show some fitting
samples in Fig. 3b which are based on the profile face samples
in Fig. 3a. As can be seen, the resulting meshes are asymmetric
and distort the original face shape, especially in the second
case which is also affected by the long hair near the face. To
address this issue, we designed a symmetry regularizer to
penalize the deformation coefficients which provide asym-
metric structure on the iteratively fitted face. This extends
Eq. (7) as follows:

E(a, B, R, 1)
M

=" Ej(a, B. R, V) +V12%+V2 S S )

jeJt ac{zy,z} n=1

mZ (o, B)K] + v (ct, B)[s(k)]) ©)
wZ Vi (@, B)[K] — Vi (e, B)[s(K)])*
‘H/sz

where s(k) denotes the symmetry index of vertex k. This map-
ping is derived from the original BFM model. For a symmetric
BFM model, two symmetric points k and s(k) should have the
opposite z-axis values while the same y-axis and z-axis val-
ues. So the main idea of this regularizer is to maintain the
symmetry of the face during progressive fitting, especially in
absence of observations for some parts of the face. The fitting
results using the symmetry regularizer are depicted in Fig. 3c,
where better results are achieved than in Fig. 3b. Note that by
preventing the fitting over the asymmetric long hair, the fit-
ting in the second case is also improved.

(o, B)[K] — Viy(cr, B)[s(R)]),

3.3.4 Sample Set Online Selection

A simple scheme is used to built J online. In essence, the
goal is to collect observation samples whose estimated
poses are close to 9 predefined poses [31] (see Fig. 4), and to
guarantee that the observation samples cover the whole 3D
face. Whenever a new frame arrives, its pose is estimated
using the current head/face model and the closest of the
predefined poses is identified. If the estimation is in the
neighborhood of the closet predefined pose and no frame
had been yet added to that predefined pose, the current
frame is added to form J', and the model fitting optimizing
Eq. (7) is conducted with all samples in J'. Note that as the
number of samples increases, the value of y further
decreases to allow more flexibility for the fitting.

3.4 Head Reconstruction Modeling
To handle head tracking from any pose, our goal is to
dynamically augment the 3DMM-based mesh m with a
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Fig. 4. Set of predefined poses (yaw,pitch,roll) used to collect data
samples for online 3DMM fitting.

head reconstruction built from the observed data. To
achieve this, we rely on an adaptation of KinectFusion [12].
KinectFusion originally targets scenarios where a cameras
moves in the 3D space or around a rigid 3D object. Our case
is slightly different, as the sensor is static, and the head is
moving.

The principle is to represent the head through a 3D dense
volume, composed of regularly samples voxels v,, and to
accumulate observations using a truncated signed distance
function TSDF[g], indicating which of the points ¢ are inside
(negative value) or outside (positive value) the head surface.
We here use a 3D volume of 28(depth) x 28(height) x 19(width)
cm sampled with 128 steps per dimension.

The method comprises 4 main steps. The first one con-
sists in estimating the head pose (R’,t'). We rely on the
robust method described in Section 3.2. Interestingly, this
benefits from the availability of the 3DMM, esp. at the
beginning when only few frames have been observed. The
second step is the volumetric mapping, which consists in
rotating the vertex samples in the camera pose according to
v, = = R'v, + t'. The third step consists of computing the per-
frame TSDF [40] associated to the observed surface, denoted
as tsdf’ and defined by:

arl = PO,
in which (v} ) denotes the projection along the ray of the ver-
tex v, onto the observed 3D surface, and [-], denotes the depth
of a 3D point. In other words, tsdf records for vertex v, the
signed distance between its actual location v; and the obser-
ved surface point. The parameter t represents the thickness
around the observed surface for which such distance is com-
puted, and actually used (see Eq. (11) below).

Finally, in the fourth step, the tsdf values across frames
are aggregated using a simple averaging strategy:

(10)

foa 1 =1 < tsdff[g] < +oo
Wislel = {O otherwise (11)
wig' [g] + wis[g]
whslg] = wis'[g] + wi[g]. (13)
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(b) head reconstruction results

(a) online process

Fig. 5. 3D head reconstruction from the BIWI dataset.

Importantly, note that the fusion is only conducted on voxels
whose tsdf values are within the range [—1, +o0] (pixels in
front of the surface or close behind the observed surface). This
is to avoid self-occlusion effects for concave parts, e.g., when
seen from 45 degree, the visible nose surface hides other face
surfaces which might not necessarily lie ‘inside’ the head.

Reconstruction Model. At each time step, a reconstruction
model r' is built as a 3D mesh from wi.q. More concretely, the
marching cubes method [41] is applied to the set of voxels for
which w/ is larger than 25 (i.e., voxels having been observed
at least 25 times within the observed surface region) to find
the zero crossing surfaces and extract the vertices and their
normals. Examples of reconstruction results at the end of the
sequence from the BIWI dataset are shown in Fig. 5, and dem-
onstrate that accurate models can be recovered.

3.5 Head Model

As described in Section 3.2, what we need for pose estimation
is a set of vertices and normals, i.e., {(v} [k],n} [k]),k = 1... NF}.
To combine the 3DMM-fitted mesh m and the reconstruction
model, we simply sample a fixed ratio of vertices from each of
the model. That is, if N represents the number of vertices in
m, we randomly sample N} = 1 x N* from r, and hence we
have NM = NT 4+ N™,

3.6 Pose Bias Correction

The 3D head reconstruction is a process which fuses the depth
observations into a grid. To register the observations of differ-
ent poses into a unified model, the grid is transformed with
the estimated pose at every frame. Therefore, the estimated
head pose is essential to the quality of reconstruction and
needs to be consistent across frames.

However, in the initial frames, the pose estimation relies on
the 3DMM-based representation m, which is progressively fit-
ted to the person’s face. If this fit is good (which is usually the
case when starting the sequence from a near frontal pose),
the estimated pose will be very close to the real one, and the
reconstruction will then implicitly be built and aligned with
m. However, if this fit is not yet fine, and/or if the initial esti-
mated poses are biased, the reconstruction will be performed
in a pose coordinate system slightly different than that of m,
and this difference may remain over time. In other words, the
two head representations (m and reconstruction) are not fully
aligned, the same facial feature may appear on two different
positions, and this can confuse the registration.
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Fig. 6. Dataset samples. a) BIWI. b) UbiPose.

A pose correction module aligning the reconstruction
with m is necessary. It mainly requires to estimate the pose
bias between the two representations and then use this bias
to align in the same pose space the vertices sampled from
them when building the common head representation.

To estimate the bias we simply rely on ICP registration.
However, to achieve a fast correspondence search [36], we
do not attempt at performing ICP directly between m and
the 3D mesh of the reconstruction r. Instead, we simply ren-
der a synthetic depth image s by projecting the vertices v,
from the reconstruction into the depth image plane (.e.,
along the ray of the depth camera). Thanks to the depth
averaging during reconstruction, most temporal occlusions
and large depth noise are removed and the resulting images
are usually of high quality. Then ICP is performed to regis-
ter the 3DMM model to this map and obtain the resulting
pose correspondence bias (R, t°).

Finally, to account for this bias, two modifications need to

be done. First, when building the head model (Section 3.5),
the vertices (vi[k],ni[k]) sampled from the reconstruction

need to be mapped back into the semantic pose space of the
3DMM, according to

T Cyyt C
vr.[k] ~R Vr.[k'] +t (14)
n, [k] — R°n.[k].

Second, in order to keep the consistency with the previous
tsdf in the head reconstruction (Section 3.4), the volumetric
mapping needs to be the composition of the estimated pose
(R?, ) and the inverse correction (R, t°).

Importantly, note that since the reconstruction and 3DMM-
fitted model evolve slowly after the initial frames, the pose
correction (R, t°) is only computed every 100 frame in our
implementation (but it is used at all frames).

4 EXPERIMENTAL PROTOCOL

In this section, we present the design of our experiments,
including the datasets and ground truth, the performance
measures, the considered models along with parameter
settings.

4.1 Dataset
In our experiments, two datasets are used.

4.1.1 The BIWI Dataset

It is a public dataset collected by Fanelli et al. [42]. It consists
of 24 videos (15K frames in total) recorded with a Kinect 1
sensor, and where seated people keep moving their heads
in an artificial fashion. Some samples are shown in Fig. 6a.
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Fig. 7. Proportion of frames with a given pose GT (or IGT for UbiPose)
for (a) the BIWI dataset (b) UbiPose dataset.

4.1.2 The UbiPose Dataset

This dataset relies on videos from the UBImpressed dataset,
which has been captured to study the performance of stu-
dents from the hospitality industry at their workplace [13].
The role play happens at a reception desk, where a student
has to handle a difficult client. Students and clients are
recorded using a Kinect 2 sensor (one per person). In this
free and natural setting, large head poses and sudden head
motions are frequent as people are observed from a rela-
tively large distance, and people are mainly seen from the
side (see Fig. 6b for samples).

Out of the 160 interactions recorded in the UBImpressed
dataset, we selected 22 videos (with 22 different persons) as
evaluation data to build the UbiPose dataset. In 10 of these
videos, 30-50 second clips were cut from the original videos
and all frames were annotated (see Section 4.2.2). The other 12
videos were fully annotated at one frame per second. This
allowed to gather a large diversity of situations. In total, this
amounts to 14.4K frames. The UbiPose dataset with annota-
tions and evaluation code can be found at www.idiap.ch/
dataset/ubipose.

4.2 Ground Truth
4.2.1 BIWI Data

This dataset provides the ground truth of head pose (R,t)
for every single frame, which was estimated using a super-
vised 3D face fitting and registration process. Fig. 7a indi-
cates the distribution of the number of frames over pose
ranges for this dataset

4.2.2 UbiPose Data: Inferred Pose Ground Truth (IGT)

To avoid interfering with the role play, no wearable sensors,
e.g., motion capture, were used to obtain a head pose ground
truth. So we inferred the ground truth indirectly from facial
landmarks. Concretely, we first annotated 6 landmarks on the
extracted RGB frames whenever they were visible: left and
right corner of the left eye (I-l and -1), left and right corner of
the right eye (I-r and r-r), nose tip (n-t) and nasal root(n-r).
Generally speaking, these landmarks are rigid and seldom
affected by facial expressions.

These 2D landmark annotations were projected into the 3D
space using the depth image, and further paired with the cor-
responding landmarks in the 3DMM. Note that to foster pre-
cise head pose ground truth, the 3DMM had been previously
fitted to the person’s face using auxiliary data from a record-
ing session made another day (with an interview scenario).
The ground truth was then inferred from the available point
pairs [39]. We denote the inferred ground truth as IGT.


www.idiap.ch/dataset/ubipose
www.idiap.ch/dataset/ubipose
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TABLE 1
Average Error of IGT
yaw pitch roll mean =+ std ACChy
IGT 3.26 3.79 2.48 3.18 £ 1.61 100.0%

Since for near profile poses the IGT might become noisy
(see Section 4.4 for an evaluation of the annotation accuracy),
we resorted to visual inspection to validate the IGT. More pre-
cisely, we examined the IGT frame by frame by projecting
the IGT posed 3DMM model on the 2D image and compared
it with the actual pose of the person in the image. If they
were perceived as not matching, a new annotation was
attempted. If the difference remained unacceptable after revi-
sion, the frame was definitely abandoned. After inspection,
we obtained a dataset of 10.5K frames in total for experiment.
The distribution of frames with respect to the head pose is
illustrated in Fig. 7b. As can be seen, due to the scenario, most
frames fall within a [20°,40°] interval. Compared with the
BIWI dataset, we observe that there are much less frontal faces,
whereas the percentage of frames above 80 degree is higher.

4.3 Performance Measures

Head pose estimation performance can be evaluated by two
aspects, accuracy and robustness. Below we describe how we
measure them on the two datasets.

4.3.1 Accuracy

Since we have head pose ground truth, we first report accu-
racy using on one hand the average error of the estimated
rotation angles. On the other hand, since we have annotated
up to six landmarks per frame on the UbiPose dataset, we
also measure the accuracy of landmark localization. Note that
the landmark location estimates are obtained by projecting
the semantic 3DMM-fitted model set with the estimated pose,
and the accuracy of landmarks is measured as the 2D distance
between the estimated and annotated landmark locations.

4.3.2 Robustness

Robustness can be defined by several aspects. One of them
is to evaluate whether the error can be kept in an accepted
range even when extreme head pose occurs. This can be
measured with the cumulative distribution function of
errors (error CDF) showing the proportion of frames whose
errors are below a given value. We further use this curve to
report as in [10] accuracy measures ACC| as the percentage
of frames with L2 norm of angular errors below 10 degrees.
We can also analyse the robustness by measuring the accu-
racy across different head poses. We take the maximum of the
three ground truth rotation angles (yaw/pitch/roll) as pose
indicator per frame and quantize them in bins of size 10
degree. Then the average error is computed within each bin.
The robustness also usually means continuous and suc-
cessful tracking. Therefore, we define the lost frame ratio
(LR) to indicate the percentage of frames in which the
tracker is in a failure state, because a tracking failure has
occurred and that the tracker could not successfully reiniti-
alize itself. In addition, to better analyze the robustness to
occlusion, we annotated video segments where at least half
of the face is occluded and computed the ratio O-LR of
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Fig. 8. IGT quality evaluation based on BIWI data. a) distribution of the
yaw, pitch and roll errors between IGT and GT. b) distribution of IGT
absolute pose errors.

tracking failure which have occurred in such segments.
Note that O-LR is an event based measurement which com-
plements the frame-based measure LR.

Finally, we also measure the impact of facial expressions
on pose estimation. As a proxy for this, with the help of micro-
phone array data (recorded as part of the UbiPose database),
we extracted frames where the participants are speaking since
facial deformations are expected to be important in these
frames due to mouth motion, but also because people are usu-
ally more expressive when speaking. The results on these
frames are reported in the column “S-mean” (mean on speak-
ing frames) of the result tables.

4.3.3 Significance Test

To evaluate whether the results of two methods are statistially
significant (esp. with respect to the proposed model), and
given the large number of samples available, we rely on a
paired z-test and report the significance of the test for different
p-values.

4.4 IGT Evaluation

Compared with the supervised dense ICP registration of
BIWI, the inferred ground-truth (IGT) is only based on limited
facial landmarks. Even if we used a visual inspection to vali-
date them, we have no clear idea about its accuracy. To evalu-
ate this, we conducted a small scale experiment in which we
annotated a subset of the BIWI dataset with landmarks, and
following the same procedure than with the UbiPose data,
inferred the IGT. In practice, we used a subset of 450 random
frames, and 381 remained after visual validation.

Table 1 and Fig. 8 provide the results of the IGT evaluation.
As can be observed, the mean error is around 3 degree, with a
small standard deviation. Fig. 8a shows that errors follow a
zero mean Gaussian distribution, indicating that no bias is
observed. In addition, as was to be expected (less available
landmarks, higher inference sensitivity to location accuracy),
Fig. 8b shows the limited increase of error in function of the
observed pose, but even for large pose, the average error
remains below 6 degree. In general, around 85 percent of the
errors are below 5 degree, and all errors are below 10 degree.

Altogether, although not perfect, we believe that the IGT
can be used as GT for UbiPose. While the reported error may
not reflect the actual accuracy of methods, given the large
number of samples (above 10000), which are dominantly inde-
pendent and uncorrelated and with unbiased approximation,
we expect the evaluation to provide a fair indication of which
method performs best. This is particularly true for
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performance measures like ACC}, which are indicative of
robustness, and somehow already account for some uncer-
tainty in the ground truth. In any case, although of a different
nature, the raw annotated landmarks will also be used for
evaluation.

4.5 Systems and Parameter Settings
We compared several models as listed below:

e  Mean shape: the tracking is conducted with ICP using
the mean shape of the Basel Face Model (BFM).

e 3DMM: An online model fitting is conducted using the
BFM and Laplacian basis function and the symmetric
constraint. This differs from most previous works
which only fit the BFM model [10], [31], [43]. Also, fol-
lowing [2], the 3DMM and Mean shape models rely on
a sample subset of the vertices of the full BEM model,
with a denser sampling on rigid face regions (fore-
head, eye regions) [2], [31].

e FWH-ID and FWH-EXP: FaceWarehouse [26] is a 3D
facial expression database providing aligned 3D head
models of 47 expressions from 150 participants. We
derived the deformation bases of both identity and
expressions from these 3D scans and built two models,
namely FWH-ID and FWH-EXP. For the FWH-ID
model, only the identity deformation bases are used
and the online model fitting is conducted as with the
BFM model. This allows to evaluate the impact of
the used 3DMM mesh model (BFM versus FWH) on
the tracking results. In the FWH-EXP model, the
expression bases are added to the identity bases of the
FWH-ID model, allowing to test the performance of
using a richer (and in principle more relevant) model
to fit the data.

e FHM: the tracking is only based on the reconstructed
head model, except in the first 25 frames where the
3DMM is still used to build an initial 3D model.

e  HeadFusion: this is the proposed model. It includes
both the online model fitting with Laplacian basis
function and symmetric constraint, the KLT tracking
intialization, head reconstruction with pose correction.

The default value for 5 (proportions n = ]]G—,L of points

coming from the reconstructed r and 3DMM models,
see Section 3.5) is set to 1.5.

o  State-of-the-art: we compared our work with three
methods. The 3DMM fitting based approach [10] using
Particle Swarm Optimization (PSO) for tracking,
which achieves the best results on BIWI; the OpenFace
system [44] which relies on both image and depth data
and has been primarily optimized for landmark locali-
zation; and our previous work [43], which combines
3DMM and reconstruction but without several key
elements like KLT, pose correction, symmetric fitting
constraint.

Parameter Settings. All model parameters were kept the
same for all experiments (except for reporting explicit
changes, eg. the impact of 1) and the two datasets. When-
ever relevant, we used Ny, = 50 deformation bases from the
BFM model and the same number for the Laplacian model.
For all models involving head reconstruction, the size of the
3D volume is 128 x 128 x 128.
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5 RESULTS

To analyse our results, we first present qualitative results in
Section 5.1. We then detail numerically our results in Section
5.2, comparing the different head representation approaches,
including against state-of-the-art methods. Finally, in
Section 5.3, we evaluate the benefits of the different compo-
nents of our method.

5.1 Qualitative Results

Fig. 9 illustrates the obtained results. As can be seen, robust
and accurate tracking can be achieved, in both typical and
more adverse conditions, like leaning, looking towards the
back while calling on the phone, or putting the hand in front
of the mouth. The impact and requirement for a full head
representation is clearly visible, and our method allows to
handle it, even when the head (eg the right three pictures in
Fig. 9¢) is only partially visible and could easily lead to uncer-
tainty in pose estimation and tracking failure. In addition to
the head representation, KLT tracking proved to be particu-
larly useful, e.g., in handling people looking for objects in the
registration desks, where non-frontal faces with fast motion
and pose changes could be observed (Fig. 9c).

5.2 Quantitative Analysis

The tracking and head pose results of all methods are listed
in Table 2 (BIWI) and Table 3 (UbiPose), whereas Table 4
display the results for the landmark localization task on
UbiPose data. For further analysis of the models” properties,
error CDF, error distribution on poses and LR distribution
are also provided in Fig. 10. In the sequel, we will first ana-
lyze the performance of the different head pose modeling
methods before comparing to the state-of-the-art.

5.2.1 Overall Result

We first compare the FaceWarehouse models with the BEM
model. We first note that the FWH-ID model performs worse
than the (BFM) 3DMM model. This might be explained by the
fact that the BFM model was built from high resolution scans,
compared to lower quality data for the FWH model (for which
vertex subsampling was not necessary because of the lower
resolution). Furthermore, we find that the performances (both
for pose and landmark estimation) of the FWH-EXP expres-
sion model are worse than those of its ID only counterpart
FWH-ID. This is not so surprising, as in presence of noise or
non frontal head pose, the additional fitting capacity may
lead to expression basis fitting pose or identity information
rather than only the facial deformation, resulting in a dis-
torted face model whose fitting reduces the accuracy of head
pose estimation. In practice, as noted in [2], to handle facial
deformation, it is more efficient (and better) to first fit the
head pose, and then estimate the facial deformation. In con-
trast, the expression independent BFM model achieves better
performance in head pose estimation.

We then compare the BFM Mean Shape, 3DMM, FHM and
our HeadFusion models. As can be seen, our proposed model
HeadFusion has the best accuracy and robustness for most
performance measures: it has the lowest head pose error on
both BIWI and UbiPose, the lowest landmark localization
error on UbiPose, and the best robustness indicators (least
error variance, lowest S-mean, LR and O-LR), indicating that it
has a more stable tracking and suffers from much less tracking
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Fig. 9. 3D head reconstruction and tracking samples. a) BIWI dataset. b) Typical frames of UbiPose dataset. c) Extreme head pose cases and
occlusion cases. Note that for better visualization, displayed image were cropped from original images.

TABLE 2
BIWI: Average Head Pose Error and Accuracy’

Approach yaw  pitch  roll mean(std) ACC
FWH-ID 247 301 215 254(35)  947%
FWH-EXP 246 387 215 283(3.6) 924%
Mean shape 520 272 423 405(9.2) 887%
3DMM 296 158 265 240 (48)  947%
FHM 330  1.82 245 252(32)  945%
HeadFusion 254 145 210 2.03 (3.0) 96.4%
OpenFace [44] 777 799 461 679 (6.8)' 52.3%
Yu et al. [43] 2.49 1.53 2.18 2.07 (5.2) 96.6%
PSO [10] 2.1 2.1 24 2.2 94.6%
ip<0.01.

failures. In particular, the tracking failure in occlusion cases of
our method is much less than the approaches without recon-
struction. This is understandable since our model can rely on
more points from the full head for model registration. The
robustness is also reflected in Fig. 10d where for large poses,
LR is much lower for our approach.

Notice that the accuracy gap between the proposed mod-
els and the others is larger on UbiPose than on BIWI, proba-
bly because the former dataset involves more natural
behaviors and comprises much more diverse and adverse
situations. Note as well that for UbiPose dataset average
errors and curves in Fig. 10 are reported on frames without
failures, thus results from our approach are computed from
more frames. This explains why the ACC,, on UbiPose is
better for the 3DMM than for our approach, since the
3DMM errors are gathered from less frames and in

1. T indicates that the result is significantly lower than our method
with p < 0.01. The test with PSO [10] is not possible.

particular exclude those which often correspond to difficult
situations and higher pose errors in general.

Looking at the S-mean results (speech frames with facial
expressions) in Table 3 and in Fig. 10h, we can notice that
almost all methods keep a stable performance compared
with the overall results (mean), including under difficult
poses. For the BFM based methods, this can be attributed to
two main factors: first, our robust weighting strategy of ICP
(see section 3.2.1) which can filter out bad correspondences
caused by expression deformations; second, the selection of
mesh samples in face regions less affected by facial defor-
mations. On their side, by averaging faces over time, recon-
struction models (FHM or HeadFusion) result in a neutral
model which combined with the previous factors, avoids
the addition of specific facial expression biases.

All in all, these results demonstrate that our method has
the potential for continuous and uninterruptive tracking
which is necessary for tracking in natural interaction setting.
This is due to the good exploitation of the joint benefit of the
3DMM model and of the FHM approach.

Indeed, on one hand, compared to FHM, the 3DMM
achieves higher accuracy, as demonstrated by a much higher
ACCH of 70.9 percent compared to 56.0 percent on UbiPose,
but this is at the cost of less robustness: a much higher vari-
ance and difficulty to detect tracking failure (thus reporting
larger errors, as can be noticed from the fact that the CDF of
the 3DMM does not reach 100 percent in Fig. 10e), in particu-
lar for large head pose (see Fig. 10b for instance).

On the other hand, the FHM model is less accurate (see
the worse CDF curves at small angles on BIWI and more
importantly on UbiPose, Fig. 10e), but is more robust as
shown by the much smaller pose error standard deviation
on UbiPose, or the lower tracking failure LR and O-LR com-
pared to the 3DMM. However, it is clear from the results
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TABLE 3
UbiPose: Average Head Pose Error and Accuracy
Approach yaw  pitch  roll mean(std)  S-mean(std) ACC LR O-LR
FWH-ID 8.45 4.87 4.94 6.09 (9.7)T 6.22 (10.7)T 70.3% 4.1% 30.8%
FWH-EXP 11.55 6.65 716 845 (15.1)T 8.64 (15_5)j 64.7% 5.7% 46.2%
Mean shape 677 503 512  5.64(7.5) 5.75 (8.0)' 642%  35%  38.5%
3DMM 5.63 505 457  5.08(6.9) 5.10 (6.9)' 709%  41%  385%
FHM 533 496 461 497 (2.8) 5.06 (3.3) 56.0%  3.6%  15.4%
HeadFusion 4.63 437  3.83 4.28(2.7) 4.25 (3.0 70.0%  0.6% 15.4%
OpenFace [44] 9.49 4.45 4.89 6.27 (4.0)T 6.94 (4.7)i 44.3% 8.7%  100.0%
Yu et al. [43] 5.09 5.14 3.90 4.71 (4.5)T 4.60 (4.8)" 67.2% 3.3% 23.1%

fp<o0.01.

that the FHM model alone is not sufficient to achieve good
tracking, and that it is the combination of the 3DMM and
FHM which performs best.

Finally, regarding the Mean Shape model, one can notice
that its results on BIWI and UbiPose (Tables 2 and 3) are
lower than other models including the 3DMM model. In
fact, the error of the Mean shape model is relatively large
for almost every pose bin according to Fig. 10b and f*, which
reflects the importance of online model adaptation in model
registration.

5.2.2 Comparison with State-of-the-Art Methods

Three state-of-the-art methods were used, as described in
Section 4.5: PSO [10], the CMU OpenFace [44], and our pre-
vious work [43].

BIWI Dataset. Our HeadFusion model obtains the best
results. It exceeds the performance of PSO [10] which relies
on the combination of ICP and Particle Swarm Optimization
(PSO), which shows that when combining a 3DMM with
head reconstruction, ICP alone can achieve equal or even
better accuracy. In particular, the estimation of the pitch
angle is much improved compared to [10]. OpenFace pro-
vides by far the worst error, which is understandable since
it does not attempt at building a 3D face model. This shows
the limitations of such approach for head pose estimation.
Finally, on BIWI, we do not notice much improvement from
our method compared to our previous work [43].

UbiPose Dataset. Table 3 demonstrates that our method per-
forms much better than OpenFace for pose estimation, both in
terms of accuracy and importantly robustness (much better
ACC\p, LR and O-LR values). This claim is further supported
by Fig. 10f, which shows that the error of OpenFace becomes
much larger beyond 45 degree. Note that the O-LR value is
100 percent, which shows that the OpenFace has difficulty in
handling cases where at least half of the face is occluded.
However, its performance for landmark localization is usually
better, as shown in Table 4, as it was specifically trained for
that.® This is not contradictory: since localization accuracy is
computed only for visible landmarks, the localization errors

2. Note that in Fig. 10f, the error of the Mean shape in the first bin
(<5 degree) is abnormally high. This is due to the fact that there are
only 8 frames in that bin (see Fig. 6b), and for that method, the tracking
results are bad for 6 contiguous frames due to the impact of an errone-
nous tracking right before these frames.

3. Remember however that due to the difference in tracking failures
(LR) the average error of OpenFace is computed on 8.1 percent less
frames than our method, frames in which the pose is usually large.

can still remain small even if the pose estimate is bad, esp. for
adverse situations where only a limited set of landmarks is
visible. This contrast is illustrated in Fig. 11 and such situa-
tions are relatively frequent for OpenFace.

Compared to our previous work, the difference of the
mean error is not that large (but is still statistically signifi-
cant). However, the robustness is much higher with our
new method, as shown by the higher LR and O-LR values of
[43], which, without the coarse temporal alignment module,
can not handle most fast motions of our data.

5.3 Model Components Analysis

In this section, we study the contribution of the different
modeling components to the success of the method. We
present and contrast the results of 7 experiments in Table 5
(BIWI) and Table 6 (UbiPose) by changing system parame-
ters or removing some components.

Our approach samples points from the 3DMM and the
3D reconstruction to build the head model, with a ratio n.
The default value in HeadFusion is n = 1.5, meaning that
more points are sampled from the reconstruction. As can be
seen, when using smaller values, the model is slightly less
accurate, and less robust (higher error and standard devia-
tion), in particular for UbiPose dataset.

Head Pose Correction. Results show the requirement for this
correction module. Without it, the error becomes larger and
more variable, especially for the UbiPose dataset. This can be
explained by the fact that sequences start with a semi-profile
face, which usually result in a small but non negligeable initial
bias between the 3DMM model and the head reconstruction.
Interestingly, the removal of the component does not seem to
result in much more additional tracking failures.

Temporal Alignment. When removing the coarse temporal
alignment relying on the KLT tracker, we can notice that the

TABLE 4
UbiPose: Landmark Position Errors
Approach {1 rl1 lr rr nr nt mean
FWH-ID 96 9.1 102 95 133 139 11.3 (19.7)T
FWH-EXP 11.5 11.7 14.0 151 169 182 14.7 (27.8)T
Mean shape 7.7 10.8 10.7 11.1 9.3 10.1 9.7 (15.8)_T
3DMM 75 109 10.1 11.5 89 105 96 (16.5)r
HeadFusion 54 79 71 93 6.0 65 6.7 (6.0)
OpenFace [44] 51 58 56 66 60 6.0 5.8 (4.1)
Yuetal.[43] 60 93 92 114 74 86 8.1 (12.1)

fp<0.01.
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Fig. 10. Robustness curves for BIWI (a, b, c) and UbiPose data (d, e, f, g, h). (a, e) Pose error CDF. (b, f) Mean error per pose. (c, g) Impact of regular-
ization coefficients. (d) Tracking lost ratio per pose (UbiPose). (h) Mean error on speaking frames, per pose (UbiPose).

performance does not decline too much in accuracy mea-
surement. Rather, as shown by the results in Table 6, there
is a higher number of tracking failures due to dynamical
head motions that the tracker can not handle anymore.

Head Model Fitting. The end of Section 5.2.1 highlighted
the complementarity and mutual benefit of using the
3DMM and FHM head models. Here we further study the
impact of the 3DMM modeling on results by removing
some deformation bases in Eq. (9) (8 = 0), or by varying the
weights of the regularizing terms (y;, y,, v3) by a factor ¢
(¢ =0.001,0.01,0.1,10,100,1000) with respect to their
default value. Results are reported in Tables 5 and 6, and
Fig. 10c and Fig. 10g. We first remove both the symmetry
regularizer and the Laplacian bases (green curve) and vary
the weight y,. We observe that enforcing more ID shape
bases regularization usually lead to better results. However,
when y; becomes too large, results quickly degrades in both
datasets, and in practice, the fitted head models remain
very close to the mean shape model. This is corroborated by
results in Tables 5 and 6 (‘'without Fitting’), which show that
simply using only the 3DMM mean shape actually achieves
worse results than methods with online model adaptation.
When adding Laplacian bases and adjusting the weight y,
(y3 = 0), we note that the performances are relatively stable
for different values of y,. This is understandable, since the
Laplacian bases mainly compensate the original deforma-
tion bases for a finer 3DMM modeling. However, the per-
formances with Laplacian bases are inferior to the model

TABLE 5
BIWI Contrastive Experiments
Approach yaw pitch roll mean (std) ACC
HeadFusion 254 145 210 2.033.00 96.4%
n=20.5 248 141 219 203@3.1) 96.4%
n=1.0 256 146 215 2.06(3.3) 96.5%
Without Correction 324 1.66 235 242(5.8) 95.7%
Without KLT 298 1.78 234 237(6.00 96.0%
Without Sym 267 1.68 231 222(44) 96.0%
Without Fitting 293 197 236 242(3.6) 94.6%
Without KLT, Lap, Sym 2.75 1.74 237 229(4.7) 95.8%

with a suitable value of y,. Indeed, with fitting samples
seen from semi-profile, a poor 3DMM fitting can be
obtained (as already illustrated in Fig. 3) with asymmetric
variations coming from Laplacian bases, for which a sym-
metry constraint is a must. Finally, we observe an improve-
ment of performance (0.18 degrees on BIWI, 0.53 degrees on
UbiPose) when using a suitable symmetric regularization.
We also note from Fig. 10c and Fig. 10g that emphasizing
too much on symmetry regularizer can make the 3DMM
fitting too constrained and lead to worse performances.
Altogether, results in Fig. 10c and Fig. 10g show that our
model with selected weights achieves the best compromise
between robustness, accuracy, and quality of face fitting.
Finally, when removing the regularization and the KLT
tracking, the negative effects are cumulated, resulting in a
performance decrease in both accuracy and robustness.

5.4 Computational Cost

We implement our system in Python/C++ based on CPU.
Generally speaking, the coarse temporal alignment based
on KLT tracker takes ~60ms and the following ICP based
alignment costs ~9ms. The 3DMM fitting executed in a sep-
arate thread usually costs ~5s. The reconstruction module
which also includes the 3D meshing takes ~0.25s per frame.
This module is applied at every frame within the first 300
frames and every 5 frames afterwards. The whole system
can be much faster by implementing some modules (espe-
cially reconstruction) on GPU.

TABLE 6
UbiPose Contrastive Experiments
Approach yaw pitch roll mean (std) ACC,y LR O-LR
HeadFusion 4.63 437 3.83 428(27) 70.0% 0.6% 15.4%
=05 551 4.62 456 49049 695% 0.6% 7.7%
n=10 4.88 5.02 4.12 4.68(52) 69.5% 0.6% 15.4%
Without Correction 757 496 451 5.68(10.5) 704% 0.7% 23.1%
Without KLT 472 437 388 43332 70.0% 33% 23.1%
Without Sym 475 538 431 481(5.1) 657% 0.7% 23.1%
Without Fitting 948 521 574 6.81(9.8) 61.2% 0.6% 15.4%
Without KLT, Lap, Sym 9.39 599 549 6.96(8.8) 58.3% 3.2% 23.1%
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Fig. 11. CMU OpenFace common failures. Although the error distance
with respect to the visible landmarks is small, the head pose is very
badly estimated. Note that OpenFace is using depth information as well.

6 CONCLUSIONS AND FUTURE WORKS

We presented an accurate and robust 3D head pose esti-
mation method effective even for challenging natural
settings. The main idea is to build a full head model pro-
viding more support when dealing with arbitrary track-
ing situations. To achieve this, we simultaneously
conduct a 3DMM online fitting and and online 3D head
reconstruction using a KinectFusion methodology. In
addition, we also proposed a coarse temporal alignment
module to handle fast head motions and a symmetry reg-
ularizer for finer model adaptation. Results demonstrate
that our method achieves state-of-the-art performance
and is also accurate and very robust when dealing with
challenging natural interaction sequences where adverse
situations are frequent.

Recovering the semantic segmentation of the head model
(eg which region is face or hair) is an interesting perspective
to the work. Indeed, the semantic information could help
the landmark localization estimation to be more accurate;
and second, as our method is still challenged by long hairs
moving around, the knowledge of the semantic information
could help in obtaining even more robust results. Our work
can also be expanded to other tasks, by serving as a prepro-
cessing step for head gesture recognition, eye gaze tracking,
or facial expression estimation and analysis as shown by
our experiments on this topic.
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