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Abstract—The vulnerability of face recognition systems to-
wards evolving presentation attacks has drawn significant interest
in the last decade. In this paper, we present an empirical
study on both vulnerability analysis and presentation attack
detection for commercial face recognition systems (FRS) using
custom 3D silicone face masks corresponding to real subjects.
To this end, a new database is collected consisting of 8 custom
3D silicone masks together with bona fide presentations of the
corresponding subjects using three different devices (smart-
phones). The vulnerability of FRS for 3D face silicone face
masks is effectively evaluated using two well-known commercial-
off-the-shelf (COTS) FRS (Verilook from Neurotechnology, and
the Cognitec Face-VACS). Further, extensive experiments are
carried out to evaluate the effectiveness of five state-of-the-art
presentation attack detection (PAD) techniques for detecting such
masks. Key insights on silicone mask PAD are provided along
with a discussion on the accuracy achieved in our experiments.

I. INTRODUCTION

Face presentation attack detection (PAD) has received sig-
nificant interest from the biometrics community because of
the vulnerability of existing Face Recognition Systems (FRS)
in differentiating these attacks from bona fide presentations.
The ease of creating face Presentation Attack artefacts has
been well demonstrated in the literature and further, the use of
simple Presentation Attack Instruments (PAI) such as printed
attacks, display and wrap photo attacks has shown remarkable
attack potential on the FRS. To effectively address this prob-
lem several Presentation Attack Detection (PAD) algorithms
have been developed that are largely based on differentiating
the texture information [13]. However, creation of realistic and
textured masks have challenged existing FRS and the PAD
schemes thereby as shown in earlier works [3], [13].

Among the different types of Presentation Attack Instru-
ments (PAIs), the 3D face mask based attacks are highly
sophisticated due to close-to-real appearance[3]. Arguably,
the detection challenge increases proportionally with very
good quality 3D face masks. Early work in this direction
has addressed the detection of PAs based on 3D rigid masks
collected using the Kinect device [6]. It is demonstrated in
[12] that, the use of the depth information together with
the texture extraction methods can successfully detect 3D
rigid mask PAs. Agarwal et al. [1] have proposed a method
for detecting PAs based on generic latex face masks, using
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Fig. 1: Illustration of the example 3D face silicone mask image
from the newly collected dataset (a) Bona fide presentation (b)
Corresponding 3D silicone face mask attack presentation

texture-based approaches on the multi-spectral imagery [15].
Note that their work relies on only three bands, visible-light
(VIS), Thermal and near-infrared (NIR). More specifically, (i)
it does not establish the vulnerability of FRS to latex mask
based impersonation attacks, and (ii) it does not address the
challenges from custom masks (i.e., corresponding masks of
actual/real data subjects). Another study on detecting silicone
face masks [10] relies on data collected from different Youtube
videos. This study also does not address the vulnerability of
FRS to silicone mask attacks, as the masks used in these
videos have not been custom-made, to impersonate specific
identities. A preliminary study on the use of extended-range
imagery for detecting custom 3D-mask based attacks [2]
showed that thermal (long-wave infrared (LWIR)) imagery
could be effective in detecting custom-mask based attacks.
A recent work [9] proposes a Convolutional Neural Network
(CNN) based PAD method, to detect full head 3D mask PAs,
using bi-spectral imagery (VIS and NIR). Unlike previous
studies, this study [9] employs only a single mask, presented
by different subjects. We note again, that this work does
not include any vulnerability analysis of FRS, as bona fide
presentations of the data subject corresponding to the mask
have not been collected.

The first systematic study on the threat posed by custom
3D silicone masks using deep learning (CNN) based FRS is
presented in [3]. The work uses a dataset based on six custom



silicone masks, with presentations captured using two different
cameras: (1) Realsense SR300 for VIS and NIR images, and
(2) Seek Thermal Compact-Pro camera to capture the thermal
(LWIR) images. Using the VIS images, vulnerability analysis
is reported for three different CNN based FRS, namely, VGG-
Face [11], FaceNet [14], and LightCNN [17]. It is demon-
strated that all three FRS are vulnerable to custom 3D silicone
face mask based PAs. Further, [4] also proposes a silicone
mask PAD method using thermal images. The authors report
an a posteriori equal-error rate (D-EER) of 7.5%, using the
mean thermal intensity in the face-region as the discriminating
feature between the two classes of presentations. This method,
however, may not be very robust, because, as noted in [2], the
temperature of a silicone mask can rise significantly when it
is worn by the attacker for a substantial period of time. In
summary, we note that the work reported in [4] is limited
to discussion of the vulnerability of deep CNN FRS, which
are purely academic solutions. To the best of our knowledge,
there exists no published study on the vulnerability of widely
deployed commercial FRS to such attacks. Moreover, there
exists no baseline evaluation of the current PAD techniques
to provide the benchmark on the detection accuracy for the
custom 3D silicone face mask.

A. Contributions of our work

In this paper we present a study of the vulnerability of two
well known and widely deployed FRS, namely, Neurotechnol-
ogy Verilook 10.0 and Cognitec Face-VACS 9.1.4, to custom
3D silicone face mask based PAs. Further, we benchmark
the performance of five popular PAD techniques. The main
contributions of this work are as follows.

1) A new dataset involving custom silicone face masks for
eight data subjects. Bona fide presentations for the cor-
responding subjects, as well as PAs have been collected
using three different smartphones, iPhone X, Samsung
S7 and Samsung S8. To the best of our knowledge, this
is the largest custom silicone mask dataset (compared to
earlier works) collected so far.

2) Vulnerability analysis of two well known commercial
FRS to custom silicone face masks, using the new
dataset.

3) Benchmarks the performance of five commonly used
PAD algorithms on the newly collected dataset.

The rest of the paper is organised as follows: Section II
discusses the data collection procedure and the statistics of
the newly collected dataset. Section III presents both quan-
titative and qualitative experiments on the collected dataset,
and Section IV summarizes the conclusions drawn from the
experiments discussed here.

II. SILICONE MASK DATASET

In this work, we have created a new database of images
captured from custom 3D face silicone masks corresponding
to eight subjects and captured using three different smart-
phones. We refer this database as Custom Silicon Mask attack

database - Mobile (CSMad-Mobile) dataset 1. The masks,
each costing about USD 4000, have been manufactured by a
professional special-effects company. The process of silicone
mask generation is the same as described in [4]. For the bona
fide presentations of the same eight subjects, each data subject
is asked to pose in a manner compliant to standard portrait
capture. The data is captured indoors, with adequate artificial
lighting. Silicone mask presentations have been captured under
similar conditions, by placing the masks on their bespoke
support provided by the manufacturer, with prosthetic eyes
and silicone eye sockets.

Both bona fide presentations and mask PAs have been cap-
tured using the rear cameras of three smartphones: (1) iPhone
X, (2) Samsung S7 and (3) Samsung S8. All three cameras
have a resolution of 12 Mega-pixels. The use of smartphones
in this work is motivated by the real-life application of the
PAs in unsupervised applications such as banking applications
where such mask based attacks can be carried out easily.
Using each smartphone, we have collected 108 bona fide
samples and 155 mask PA samples, resulting in a dataset with
(108 + 155)× 3 = 789 samples. Figure 2 shows examples of
bona fide and PAs collected in this work using three different
smartphones for all eight subjects.

To evaluate PAD methods we divide the dataset into two
disjoint partitions for each smartphone. One partition is used
as the training set, and the other is used as the testing set. Table
I summarizes the statistics of training and testing partitions.

III. EXPERIMENTS AND RESULTS

In this section, we present both vulnerability analysis on
two different commercial FRS and the performance of the PAD
techniques on the newly collected custom silicone mask attack
dataset.

A. Vulnerability analysis

First we evaluate the threat posed by custom silicone masks
to two commercial FRS – Neurotechnology Verilook 10.0
and Cognitec FaceVACS 9.1.4 2. Both these FRS are already
deployed in numerous real-life face recognition applications
and are also tested by the Face Recognition Vendor Test of
the National Institute of Standards and Technology (NIST)
[7]. The objective of the vulnerability analysis is to determine
the probability of a custom silicone mask to be accepted
as the corresponding genuine subject. According to [8], the
vulnerability (or attack success rate) of the biometrics systems
under attacks can be quantified using the metric ‘Imposter
Attack Presentation Match Rate (IAPMR)’, defined as the
proportion of the impostor attack presentations using the same
Attack Instrument species in which the target reference is
matched in a full-system evaluation of a verification system
[8]. Higher values of IAPMR indicate a more vulnerable FRS.

While evaluating the commercial face SDKs (software de-
velopment kits), we enrol one image corresponding to the bona

1The dataset can be availed www.idiap.ch/dataset/csmad-mobile
2The experiments are conducted on Cognitec FaceVACS SDK directly and

our results does not necessarily constitute Cognitec’s best effort results.
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Fig. 2: Illustration of the sample data from the eight subjects used in this work. (a) Bona fide presentations. Corresponding
3D silicone face mask attack presentations captured using (b) iPhone X, (c) Samsung S8, and (d) Samsung S7.

TABLE I: Statistics of the collected dataset and protocol to evaluate PAD techniques.

Devices
Training images Testing images

No. of Bona fide No. of PAs No. of Bona fide No. of artefact

iPhone 50 50 58 105

Samsung S7 50 50 58 105

Samsung S8 50 50 58 105

fide to obtain the comparison scores. The data is captured from
three different smartphones in separate sessions. Under this
setting, we have obtained 99 genuine scores, 749 zero-effort
impostor (ZEI) scores and 247 scores for silicone mask PAs
for iPhone X. In the case of the Samsung S7 dataset, there are
88 genuine scores, 679 ZEI scores and 181 mask PA scores.
For the Samsung S8 dataset, there are 100 genuine scores,
756 ZEI scores and 195 PA scores.

Figure 3 shows the verification score distributions pro-
duced by the Neurotechnology Verilook FRS corresponding
to iPhone X (Fig. 3a), Samsung S8 (Fig. 3b) and Samsung
S7 (Fig. 3c). For each device, the threshold corresponding to
(false-accept rate) FAR = 0.1% is also indicated in the corre-
sponding plot in Figure 3 by a red vertical straight-line. Note
that, for all three devices, (1) the scores for genuine and ZEI
classes are well separated, (2) the mask PA score-distribution
(magenta) significantly overlaps the ZEI score distribution
(depicted in blue). Table II summarizes the vulnerability of
the two commercial FRS in quantitative terms (IAPMR) for
two different thresholds, set at FAR = 0.1% and FAR = 0.01%

3. These score-threshold values have been selected based on
the recommendations from the respective manufacturers of the
two commercial FRS. The main observations from Table II
are:

• In general, commercial FRS are vulnerable to 3D silicone
mask PAs.

• The vulnerability is noted only at the higher FAR thresh-
olds. By setting the threshold with lower values of FAR,
for example, at FAR = 0.01% the FRS is not vulnerable
to the 3D silicone mask PAs.

• Comparing the two commercial FRS, the Neurotechnol-
ogy Verilook 10.0 FRS indicates higher IAPMR values,
that is, it is more vulnerable than Cognitec’s Face-VACS
9.1.4.

• The highest vulnerability is noted for data from the
Samsung S8 phone with Neurotechnology Verilook FRS
resulting in IAPMR = 28.20 @ FAR = 0.1%, while the
lowest vulnerability is indicated by the Cognitec Face-
VACS 9.1.4 on Samsung S7 images, with IAPMR =

3Threshold obtained from respective vendors without fine-tuning on
CSMad-Mobile dataset.



(a) iPhone X dataset (b) Samsung S8 dataset (c) Samsung S7 dataset

Fig. 3: Verfication-score distributions from Neurotechnology Verilook 10.0 FRS (comparison scores on x-axis)

TABLE II: Quantitative results of vulnerability analysis for two commercial face recognition systems (FRS).

Commercial FRS Devices
Threshold @ FAR = 0.1% Threshold @ FAR = 0.01%

FRR (%) IAPMR(%) FRR (%) IAPMR(%)

Neurotech

iPhone 0 10.12 0 0

Samsung S7 0 12.21 0 0

Samsung S8 0 28.20 0 0

Cognitec

iPhone 0 19.02 0 0

Samsung S7 0 3.31 0 0

Samsung S8 0 20.51 0 0

3.31% @ FAR = 0.1%.
• Despite the moderate number of attack sample size (593

attempts from different subjects), we note that FRS are
quite vulnerable to such PAs.

B. Evaluation of baseline PAD techniques

In this section, we present the performance of five state-of-
the-art PAD algorithms on the 3D silicone face mask dataset.
Each PAD technique involves feature-extraction followed by
classification based on a supervised two-class classifier. Here,
we have used the two-class support-vector machine (SVM)
classifier for all our experiments. The state-of-the-art feature-
extraction algorithms evaluated in this study, all characterize
image-texture information using: Local Binary Patterns (LBP)
[6], Binarized Statistical Image features (BSIF) [13], Local
Phase Quantization (LPQ) [13], Image Distortion Analysis
(IDA) [16] and Colour texture [5].

The performance of the PAD techniques are presented
following the IS0/IEC 30107-3 [8] metrics with Bona fide
Presentation Classification Error Rate (BPCER) and Attack
Presentation Classification Error Rate (APCER). BPCER is
defined as the proportion of bona fide presentations incorrectly
classified as PAs whereas APCER is defined as the proportion
of PAs incorrectly classified as bona fide presentations. In
particular, for each method, we report the BPCER while fixing
the APCER at 5%, and at 10%, following the IS0/IEC 30107-3
[8] recommendations. In addition, we also present the results
in terms of Detection-Equal Error Rate (D-EER) (%) obtained
on the testing set.

In this work we perform two different experiments to eval-
uate the effectiveness of the chosen PAD techniques. The first
experiment (Experiment-I) measures the performance of the
PAD techniques when data from the same device is used for
both training and testing. The second experiment (Experiment-
II) evaluates the performance of the PAD methods in cross-

device scenarios, where a PAD technique is trained using the
data from one device and tested with data from the remaining
two devices.

1) Experiment I: Table III shows the quantitative results of
the five different state-of-the-art methods. The key observa-
tions are:

• State-of-the-art features like LBP, IDA and color textures
perform well, showing lower values of D-EER.

• Among the five techniques, the LBP-SVM configuration
shows the best results with D-EER = 0% and BPCER =
0 @APCER = 5% & 10% respectively across all three
devices.

• In general, the five PAD techniques all lead to similar
PAD rates across the three devices. However, closer
observation reveals that attacks in the iPhone X images
are more difficult to detect than attacks on Samsung S8
and Samsung S7 phones.

• It is also interesting to observe that the use of color tex-
ture based PAD techniques [5] has indicated the second
best performance on both iPhone X and Samsung S8
images. However, for data from the Samsung S7 device,
the performance is the same as that of LBP-SVM PAD
technique.

• We attribute the deviations in IAPMR obtained for differ-
ent devices mainly to variations in data-capture conditions
and in the optics of the smartphones.

Based on the limited analysis provided above, it can be
asserted that the 3D silicone mask attacks with artificial eyes
and mounted on bespoke support can be effectively detected
using LBP-SVM method.

2) Experiment-II: In this section we discuss the perfor-
mance of the state-of-the-art PAD techniques in cross-device
tests. Here, the PAD techniques are trained using images
captured from one device and tested using images captured



TABLE III: Experiment I: Quantitative performance of the PAD techniques.

Devices Algorithms
D-EER(%) BPCER @ APCER

=
Testing data 5% 10%

LBP-SVM 0 0 0
LPQ-SVM 20.34 24.13 22.41

iPhoneX BSIF-SVM 13.56 17.24 15.51

IDA-SVM 6.78 12.06 3.44

Color Textures-SVM 3.62 3.44 1.72

LBP-SVM 0 0 0
Samsung-S8 LPQ-SVM 12.22 12.06 12.06

BSIF-SVM 12.22 13.79 12.06

IDA-SVM 6.78 29.31 0

Color Textures-SVM 6.78 77.58 0

LBP-SVM 0 0 0
LPQ-SVM 13.56 13.79 13.79

Samsung-S7 BSIF-SVM 13.56 13.79 13.79

IDA-SVM 0 0 0
Color Textures-SVM 4.96 5.17 5.17

using remaining two devices. This experiment evaluates the
generalization of the PAD techniques across different capture
devices.

Table IV shows the quantitative performance of the five PAD
techniques. From the obtained results, following observations
can be made:

• In general, the performance of the five PAD techniques
degrades in the cross-device scenario, compared to pro-
tocol of Experiment-I (See Section III-B1). The drop in
performance can be attributed to the variations in image
statistics among the three different devices.

• Among the three different evaluation scenarios summa-
rized in the Table IV, the scenario where data from
Samsung S7 is used for training, and the test data
comes from the remaining two devices produces the worst
performance.

• In general, the poor performance in cross-device tests
indicates a challenge in detecting silicone mask based
PAs with state-of-the-art PAD methods when the sources
of training and probe images are different.

We note that there is a necessity for generalizability studies
of such LBP-SVM method for detecting the attacks in cross-
database scenario.

3) Discussion and future work: The threat of PAs using
high quality silicone masks is demonstrated in this work with
the vulnerability analysis of two commercial FRS. The FRS
included in this study appear to be less vulnerable to PAs based
on custom silicone masks than the academic FRS discussed in
a previous work [4]. The commercial off-the-shelf FRS even
exhibit stronger resistance to attacks at lower thresholds of
FAR. Although the experiments present in this work indicate
that these two FRS have moderate vulnerability to silicone
mask PAs, a more detailed analysis on varying conditions for

presentations, such as attack by wearing the masks, attacks
by concealing the discontinuities around eye region and so
on, need to be evaluated to establish the true robustness of
the FRS against mask based PAs. Further, the experiments
with the dataset collected indicate high PAD accuracy in the
intra-device scenario (where training and testing data come
from the same device). The performance degrades when the
training and testing data varies or corresponds to different
capture devices. Although our preliminary conjecture is that
the reliance on image-texture information plays a role in
lowering the performance in cross-device experiments, more
detailed investigation in this direction needs to carried out.

IV. CONCLUSION

The vulnerability analysis of two different commercial FRS
towards custom 3D silicone face masks is presented in this
work. For this purpose we have collected a new dataset based
on eight subjects. For each subject a custom silicone mask
has been created. Data for mask-presentations as well as bona
fide presentations of the eight subjects has been captured using
three different smartphones. Our experiments indicate that the
two commercial FRS are vulnerable to PAs based on custom
3D silicone face masks, especially when operating threshold
corresponds to higher values of FAR. When the threshold is
set at the lower values of FAR (e.g., FAR = 0.01%), both
commercial FRS are not vulnerable to the custom silicone
mask PAs.

We have also presented an extensive evaluation of five
different state-of-the-art techniques to benchmark the silicone
face mask presentation attack detection. Our experiments
indicate outstanding detection accuracy of the LBP-SVM
method with D-EER = 0%, BPCER = 0% @ APCER =
10% and 5%, when training and testing images come from



TABLE IV: Experiment II: Quantitative performance of the PAD techniques

Train data Development and testing data Algorithms
D-EER(%) BPCER @ APCER =

Testing Data 5% 10%

LBP-SVM 24.66 51.71 43.34

LPQ-SVM 28.68 53.23 45.62

iPhoneX Samsung S8 &
Samsung S4

BSIF-SVM 25.43 53.99 45.24

IDA-SVM 45.89 61.21 59.31

Color Textures-SVM 26.01 50.92 43.51

LBP-SVM 28.1 39.16 36.88

LPQ-SVM 29.63 39.54 37.26

Samsung S8 iPhone X &
Samsung S4

BSIF-SVM 35.75 49.8 49.04

IDA-SVM 23.51 41.44 28.13

Color Textures-SVM 28.31 91.66 74.53

LBP-SVM 40.68 94.29 81.36

LPQ-SVM 38.47 75.66 61.97

Samsung S7 iPhone X &
Samsung S8

BSIF-SVM 42.39 77.94 66.53

IDA-SVM 32.69 76.42 64.25

Color Textures-SVM 40.85 95.37 93.51

the same device (same smartphone). However, when the
PAD systems are trained with the images from one device
and subsequently tested with the images captured with other
devices, the experimental results have indicated a significant
drop in detection performance for all five state-of-the-art PAD
techniques studied in this work. This highlights the challenge
in detecting PAs based on 3D silicone face masks when the
source of image capture is not known to the PAD system.
Future work in this direction will focus on developing new
PAD algorithms, especially for the cross-dataset (or cross-
device) scenarios. A dataset with larger set of PAs needs to
be created for further validation of initial observations made
in this work.
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