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Abstract

Language independent query by example spoken term detection (QbE-STD) is the problem of

retrieving audio documents from an archive, which contain a spoken query provided by a user.

This is usually casted as a hypothesis testing and pattern matching problem, also referred

to as a “zero-resource task” since no specific training or lexical information is required to

represent the spoken query. Thus it enables multilingual search on unconstrained speech

without requiring a full speech recognition system. State-of-the-art solutions typically rely

on Dynamic Time Warping (DTW) based template matching using phone posteriors features

estimated by Deep Neural Networks (DNN).

In this thesis, we aim at exploiting the low-dimensional subspace structure of speech signal,

resulting from the constrained human speech production process. We exploit this subspace

structure to improve over the state-of-the-art to (1) generate better phone or phonological

posterior features, and (2) to improve the matching algorithm. To enhance phone posteriors,

we learn the underlying phonetic subspaces in an unsupervised way, and use the sub-phonetic

attributes to extract the phonological components in a supervised manner. To improve the

matching algorithm, we model the subspaces of the spoken query using its phone posterior

representation. The resulting model is used to compute distances between the subspaces of

the query and the phone posteriors of each audio document. These distances are then used

to detect occurrences of the spoken query, while also regularizing the DTW to improve the

detection scores.

In addition to optimizing different components of the state-of-the-art system, we propose a

novel DNN-based QbE-STD system to provide an end-to-end learning framework. Towards

that end, we replace the DTW based matching with a Convolutional Neural Network (CNN)

architecture. We also learn multilingual features, aimed at obtaining language independent

representation. Finally, we integrate the feature learning and CNN-based matching to jointly

train and further improve the QbE-STD performance.

We perform experiments using the challenging AMI meeting corpus (English), as well as

multilingual datasets such as Spoken Web Search 2013 and Query by Example Search on

Speech Task 2014, and show significant improvements over a very competitive state-of-the-art

system.
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Résumé

La détection de mot clés avec une requête par l’exemple (QbE-STD), indépendante de la

langue, consiste à identifier quels documents audio dans une archive contiennent une requête

prononcée par un utilisateur. Ceci est généralement formulé comme un test d’hypothèse et

un problème d’appariement de modèles, également appelé “tâche zéro ressource”, puisque

aucune donnée d’apprentissage ou information lexicale spécifique n’est nécessaire pour

représenter le signal de parole donné. Ainsi, il permet de faire une recherche dans un signal de

parole multilingue sans contrainte, sans nécessiter un système de reconnaissance vocale com-

plet. L’état de l’art se base généralement sur l’association de modèles utilisant la déformation

temporelle dynamique (DTW) et sur l’exploitation des paramètres postérieurs de phonèmes

monolingues, produits par des réseaux de neurones artificiels profonds (DNN).

Dans cette thèse, nous souhaitons exploiter le fait que les signaux de parole résident dans des

sous espaces de faible dimension, en conséquence des contraintes du processus de production

de la parole humaine. Nous exploitons la structure de ces sous espaces pour améliorer l’état de

l’art, en (1) générant de meilleurs paramètres postérieurs phonétiques ou phonologiques et (2)

en améliorant l’algorithme d’appariement. Afin d’améliorer les postérieurs phonétiques, nous

apprenons les sous espaces phonétiques sous jacents de façon non supervisée, et utilisons les

attributs subphonétiques pour extraire les composants phonologiques de façon supervisée.

Pour améliorer l’algorithme d’appariement, nous modélisons les sous espaces de la requête

prononcée en exploitant sa représentation postérieure phonétique. Le modèle résultant

est utilisé pour calculer les distances entre les sous espaces de la requête et les postérieurs

phonétiques de chaque document audio. Ces distances sont ensuites utilisées pour détecter

les occurrences de la requête prononcée, tout en régularisant la DTW pour améliorer les scores

de détection.

En plus d’optimiser les différentes composantes de l’état de l’art, nous proposons un sys-

tème QbE-STD entièrement basé sur des DNN, dans l’optique de fournir une structure

d’apprentissage de bout en bout. Pour ce faire, nous remplaçons l’appariement basé sur

la DTW par une architecture innovante basée sur les réseaux de neurones convolutifs (CNN).

Afin d’obtenir une représentation indépendante de la langue, le modèle apprend également

des paramètres multilingues. Enfin, nous intégrons l’apprentissage de caractéristiques et

l’appariement basé sur les CNN dans un apprentissage joint, qui permet d’améliorer encore

les performances de la QbE-STD.
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Nous conduisons nos expériences sur le corpus difficile AMI meeting (Anglais), ainsi que sur

de multiples bases de données multilingues, telles que Spoken Web Search 2013 et Query by

Example Search on Speech Task 2014, et démontrons des améliorations significatives sur un

système de l’état de l’art très compétitif.

Mots clefs: réseaux de neurones profonds (DNN), postérieurs phonétiques, postérieurs phonologiques,

détection des sous espaces, régularisation des sous espaces, réseaux de neurones convolutifs

(CNN), requête par l’exemple, la détection de mot clés, déformation temporelle dynamique
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1 Introduction

Internet has become an integral part of our life due to its capability to provide desired infor-

mation in a fast and reliable manner. This information is searched through huge databases by

primarily relying on text. However, the growing use of internet and social media leads to mas-

sive amount non-textual data (e.g. audio, video etc.) constantly being uploaded. The search

through this kind of data still depends on its textual description which may not be always

available or it is insufficient for representing the complete contents of data. Therefore, text

based retrieval algorithms give very limited search results. Moreover, it is desirable to search

through those contents using speech as a natural and generic medium of communication.

Spoken term detection (STD) aims at solving this problem by relying on a user generated

spoken query to search through a database and retrieve all audio documents containing the

query as shown in Figure 1.1. Traditionally, STD is performed by cascading an automatic

speech recognition (ASR) system with text based retrieval techniques (Lee and Pan, 2009; Chia

et al., 2008; Mandal et al., 2013; Shen et al., 2009). In this approach, spoken queries as well

as the test utterances are converted into a sequence of words or symbols and information

retrieval methods are applied to detect the queries. Performance of a STD system is largely

dependent on the accuracy of the underlying ASR system (Shen et al., 2009; Parada et al., 2009).

However, building a good ASR system requires large quantity of annotated data and very few

languages have such resources. Thus, STD systems are not useful for most of the languages.

This motivated us to focus on language independent spoken term detection (LI-STD), also

known as query by example spoken term detection (QbE-STD) (Rodriguez-Fuentes et al., 2014;

Szoke et al., 2015). In this scenario, no training data is provided, making it a zero-resource

task. Thus, the data can be generated in any language with no constraints on vocabulary,

pronunciation lexicon, accents etc. It is essentially a pattern matching problem in the context

of speech data where the targeted pattern is the information encoded using speech signal

and presented to the system as a spoken query. The solution can be very useful in searching

through multilingual audio archives which consists of data from the news channels, radio

broadcasts, internet, social media etc.

1



Chapter 1. Introduction

Figure 1.1: Query-by-Example Spoken Term Detection

Current approaches for QbE-STD are largely dominated by template matching techniques

for their superior performance to the statistical methods in zero-resource conditions (Hazen

et al., 2009; Mandal et al., 2013; Anguera et al., 2014; Rodriguez-Fuentes et al., 2014). These

approaches mainly consist of two steps: feature extraction and template matching. Phone

posterior features (posterior probabilities of a set of phonetic classes) estimated at the output

of a deep neural network (DNN) have been very successful (Rodriguez-Fuentes et al., 2014) for

this purpose. A Dynamic Time Warping (DTW) algorithm (Rabiner et al., 1978) is generally

used to find the degree of similarity between a query and a test utterance. Although state-of-

the-art performance is achieved with this approach, the systems are still far from being usable

in real life scenario.

In this thesis, we propose several ways to exploit the low-dimensional subspace structure of

speech for QbE-STD. We utilize this at both stages of the system to improve over the state-of-

the-art by (1) generating better phone or phonological posterior features, and (2) improving

the matching algorithm to compute better likelihood score. In addition, we introduce a neural

network based end-to-end learning framework to replace the DTW and jointly learn the

acoustic representation and matching algorithm to further improve the performance.

The rest of this chapter is organized as follows. In Section 1.1, we discuss our motivation

behind the approaches proposed in this thesis. We summarize the contributions of this thesis

in Section 1.2. Finally, the chapter-wise outline is presented in Section 1.3.

1.1 Motivation

Spoken utterances are composed of a sequence of words which in turn consist of phones and

sub-phonetic components. These linguistic components are generated using the constrained

articulatory mechanism of human speech production process which results in speech data
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lying on non-linear manifolds (Deng, 2004; King et al., 2007). These manifolds can be modeled

as a union of low-dimensional subspaces, and sparse representation is shown to be a useful

technique to model these subspaces (Sainath et al., 2011; Gemmeke et al., 2011). This property

of speech has been exploited to perform large vocabulary as well as noise robust speech

recognition (Sainath et al., 2011; Gemmeke et al., 2011). In this thesis, we aim at exploiting

this low-dimensional structure to improve the QbE-STD system.

We developed novel techniques to extract better features as well as improve the DTW based

template matching using the subspace properties of speech. This work is based on the training

of Deep Neural Networks (DNNs) on several languages to extract multiple monolingual pho-

netic features. In spite of achieving significant improvements over a strong state-of-the-art

baseline, we observed that all systems still suffer from language mismatch when testing on

a language that has not been seen during training. This motivated us to extract language

independent representations for high-performance QbE-STD even in the case of unseen lan-

guages. In this scenario, we focus on DNN-based learning due to its strong modeling capability

and success in several other problems e.g. speech recognition (Hinton et al., 2012; Graves

et al., 2013), image classification (Simonyan and Zisserman, 2014; He et al., 2016), machine

translation (Bahdanau et al., 2014; Miculicich et al., 2018) etc.

In spite of using better features, the DTW-based pattern matching algorithm suffers from its

own limitations. For instance, it is not well suited in cases of local mismatches between a test

sequence and its associated query, which can result in very low matching scores. Hence, we

developed an innovative framework, based on Convolutional Neural Networks (CNN) to be

able to properly cope with those cases.

In all of the above work, the two stages (feature extraction and pattern matching) of our QbE-

STD system are still optimized independently of each other. Hence, in the spirit of current

trends in DNN-based pattern recognition, we finally decided to investigate an “end-to-end”

neural network architecture to enable joint optimization of those two stages simultaneously.

1.2 Contributions

The goal of this thesis is to investigate novel approaches to exploit low-dimensional subspace

structure of speech signal as well as neural network based techniques to improve over the state

of the art QbE-STD system. The contributions of this thesis can be summarized as follows:

• Sparse recovery of phonetic subspaces: We propose a novel approach to obtain pho-

netic subspace features to improve QbE-STD performance. The subspaces are learned

using sparse modeling framework and exploited to enhance phone posteriors obtained

at the output of Deep Neural networks (DNN). Alternatively, we consider sub-phonetic

attributes (phonological information) to model the phonetic subspaces using DNN,

resulting in a new set of features. We demonstrate that these two sets of features provide

complementary information and a distance fusion method is proposed to integrate that
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information to further improve the performance.

• Spoken term retrieval as a subspace detection problem: We show that the subspace

structure can be used to find queries in a test utterance by casting the problem as

subspace detection instead of DTW based template matching. We also show that DTW

based template matching can benefit from the subspace detection approach. This is

achieved by (i) regularizing the distances for DTW using subspace detection score and

(ii) improving the DTW matching score using subspace matching score.

• QbE-STD based on Convolution Neural Network (CNN): We introduce an innovative

DNN-based learning framework to replace the DTW based template matching. Inspired

from the success in image classification, we use Convolution Neural Networks (CNN)

to detect spoken terms. The distance matrix previously used for DTW is considered

as an “image” which contains somewhere a good match (quasi-diagonal) pattern if a

query occurs in a test utterance, hence casting the query detection problem as a binary

classification problem.

• End-to-End CNN-based QbE-STD: We finally extend the above CNN based query match-

ing approach by integrating it with a feature extraction network and training the whole

architecture in an end-to-end manner. The feature extraction network is implemented

using multilingual bottleneck network to obtain language independent representation

which in turn improves the CNN’s ability to detect a query. We also show that CNN based

matching network can be used as a loss function to obtain better language independent

features.

• Experimental validation: State-of-the-art DTW based QbE-STD system is implemented

as a very strong baseline. All the proposed approaches are evaluated against the baseline

system on different challenging datasets, including the AMI meeting corpus (English),

as well as multilingual datasets such as Spoken Web Search 2013 and Query by Example

Search on Speech Task 2014, demonstrating in each case significant improvements.

1.3 Thesis Outline

We present the organization of this thesis by briefly describing the main goal of each of its

constituent chapters.

Chapter 2: We present the key components of a QbE-STD system along with different types

of acoustic feature representation. We also discuss different databases used for training and

evaluation, and several evaluation metric for comparison purposes. Then the state-of-the-art

QbE-STD system is described which is used as our baseline system.

Chapter 3: We aim at exploiting the low-dimensional subspace structure of speech to obtain

better representation for DTW based template matching. A data-driven and a knowledge

based approach is proposed for this purpose and a distance fusion techniques is employed to
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integrate those features.

Chapter 4: We propose to improve the matching algorithm by modeling the query subspaces

and using those models to compute subspace detection scores. These scores are then used for

subspace regularized DTW as well as subspace based re-scoring of DTW. Both approaches are

shown to provide significant improvement over the baseline.

Chapter 5: We present a multilingual bottleneck network to extract language independent fea-

tures. These features are used for DTW based template matching as well as a novel CNN based

matching for QbE-STD. The CNN matching network is integrated with the bottleneck feature

extractor into a single architecture to jointly train and optimize the network for significant

performance improvement.

Chapter 6: We discuss the conclusions of this thesis and provide some possible directions for

future work.
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2.1 Introduction

In this chapter, we provide a brief background on the task of query-by-example spoken term

detection (QbE-STD). We summarize several techniques proposed in the literature towards

solving QbE-STD in Section 2.2. The details of different acoustic feature vectors used in this

thesis to represent the speech signal is provided in Section 2.3. Then we describe different

monolingual and multilingual databases used to train and evaluate the proposed systems

in Section 2.4. Several evaluation metrics are used to thoroughly examine and compare our

system with the state-of-the-art as summarized in Section 2.5. Finally, we present a brief

description of our baseline system in Section 2.6.

2.2 Related Works

In this section, we summarize different techniques proposed for QbE-STD. The first set of

methods consists of a two step approach: feature extraction and template matching as dis-

cussed earlier. The spoken queries as well as test utterances can be represented using mel

frequency cepstral coefficient (MFCC) or perceptual linear prediction (PLP) based spectral

features. These spectral features were initially investigated for template matching task (Sakoe

and Chiba, 1978). However these features were outperformed by posterior features, which can

be estimated from models trained in both supervised and unsupervised manner (Hazen et al.,

2009; Rodriguez-Fuentes et al., 2014; Zhang and Glass, 2009). Gaussian mixture model (GMM)

based posteriors are estimated from a GMM trained in an unsupervised manner where the

feature dimensions correspond to posterior probabilities of different Gaussian components in

the model (Zhang and Glass, 2009; Park and Glass, 2008). On the other hand, a deep Boltzman

machine (DBM) trained in unsupervised as well as semi-supervised manner can be used

to extract posterior features. The unsupervised training of DBM can capture hierarchical

structural information from unlabeled data. In (Zhang et al., 2012), the authors first train

a DBM using unlabeled data and then fine tune it using small amount of labeled data. In

another approach, GMM based posteriors were used as labels for the DBM training (Zhang

et al., 2012). Posteriors from DBM in both cases perform better than GMM posteriors for

QbE-STD.

The supervised approach to extract posterior features primarily relies on training a DNN

using labeled data. In case of zero resource languages, the DNN is first trained using data

from different well resourced languages where the labels can indicate mono-phones, context

dependent phones or senones (Hazen et al., 2009; Rodriguez-Fuentes et al., 2014). The DNN

is then used to extract posterior features to perform template matching for QbE-STD. In this

approach, the posteriors are interpreted as a characterization of instantaneous content of

the speech signal, irrespective of the underlying language (Rodriguez-Fuentes et al., 2014).

DNNs with bottleneck layer have also been trained in a similar multilingual setting to compute

bottleneck features for QbE-STD (Szoke et al., 2014; Chen et al., 2017).
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Features extracted from the spoken query and test utterance are used to compute a frame-

level distance matrix and a DTW algorithm is used to find the degree of similarity between

them. Standard DTW algorithm performs an end-to-end comparison between two temporal

sequences, making it difficult to use for QbE-STD because the query can occur anywhere in

the test utterance as a sub-sequence. In segmental DTW (Park and Glass, 2008), the distance

matrix is segmented into overlapping diagonal bands where the width of the band indicates

temporal distortion allowed for matching. But the width of each band limits its capability to

deal with signals of widely varying speaking rate. Slope-constrained DTW (Zhang and Glass,

2009) was proposed to deal with this problem by penalizing the slope of warping path which

maps the spoken query within a test utterance. It limits the number of frames to be mapped

in the test audio corresponding to a frame in the query and vice versa. In sub-sequence

DTW (Müller, 2007), the cost of insertion is forced to be 0 in the beginning and end of a query,

which enables the warping path to begin and end at any point in the test audio and finds a

sub-sequence best matching the query.

More recent approaches are aimed at minimizing the computational cost or memory foot-

prints of the DTW based search techniques (Anguera, 2013; Anguera and Ferrarons, 2013;

Asaei et al., 2018). Information retrieval based DTW (Anguera, 2013) proposes to index the

frames of test utterance and uses hashing techniques to reduce the search space. On the

other hand, memory efficient DTW (Anguera and Ferrarons, 2013) proposed an improvement

over subsequence DTW by using a lookup table for faster backtracking and an alternative

normalization of the warping path. Alternative to DTW, subspace detection based approach

relying on frame level detection scores have been proposed to make the search faster (Ram

et al., 2015, 2016). Additionally, model based approaches have been proposed to deal with

acoustic and speaker mismatch conditions. These methods depend on unsupervised acoustic

unit discovery, followed by the use of hidden Markov models (HMM) to model those units.

These HMMs are then used to find symbolic representation of the query and test utterance,

and symbolic search techniques are used to retrieve the query.

2.3 Feature Vectors

In this section, we describe different feature vectors used in this thesis to represent speech

signal.

2.3.1 Mel Frequency Cepstral Coeffcients

In speech processing, Mel Frequency Cepstral Coeffcients, commonly known as MFCC fea-

ture (Davis and Mermelstein, 1980) is a short-term power spectrum based representation of

speech signal. These features are widely used in automatic speech recognition and speaker

recognition systems, which are extracted by windowing the speech signal into short segments.

Generally, a sliding window of 25ms with a shift of 10ms is used. The short segments are as-

sumed to be stationary and is referred to as a frame. Fast Fourier transform (FFT) is applied on
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the sequence of frames to compute the corresponding power spectrum. This step is followed

by a filter-bank analysis to obtain the energies in various frequency regions. This is achieved

by using non-linearly placed triangular filters (usually 40). The filters are linearly spread in

the mel domain which is chosen to mimic the human auditory perception. The final step

is to compute discrete cosine transform of log of the filter-bank energies. It is required to

de-correlate the filter-bank energies. Typically for speech recognition and related tasks, the

first 13 coefficients are used. These coefficients are concatenated with their delta (∆) and

double-delta (∆∆) features in order to incorporate the trajectory information of features. Let

the MFCC feature vectors for an utterance is represented by, X = [x1,x2, . . . ,xT ]. The corre-

sponding delta features are computed using linear regression over a window of W as follows:

∆t =
∑W

w=1 w(xt+w −xt−w )

2
∑W

w=1 w2
(2.1)

where, ∆t is the delta feature vector for the t-th frame of an utterance X. The double-delta

features can be obtained by successively applying to Equation (2.1).

2.3.2 Posterior Feature

Posterior feature (e.g. mono-phone, tri-phone) is a vector representation consisting of class

conditional posterior probabilities given a short window of the acoustic features (e.g. MFCC

features, filter-bank features). Deep feed-forward Neural Networks (DNN) are typically used

to estimate these features, however Convolutional Neural Network (CNN) or Long Short Term

Memory networks (LSTM) can also be used (Bourlard and Morgan, 1994; Hinton et al., 2012).

These posteriors features have been shown to be very effective for ASR systems which moti-

vated the researchers to use them for template matching tasks (Hazen et al., 2009; Rodriguez-

Fuentes et al., 2014).

Mono-phone based posterior features have been primarily used for QbE-STD (Rodriguez-

Fuentes et al., 2014; Ram et al., 2016). The setup for extracting these posterior features is

illustrated in Figure 2.1. In the first step, MFCC features are extracted from the speech signal

as described in previous section. Those MFCC features along with some acoustic context (left

and right) are used as input to train a DNN for estimating the phone posterior probabilities.

MFCC features of test data are then forward passed through the trained DNN to compute

corresponding phone posterior vectors.

2.3.3 Bottleneck Feature

Bottleneck features (Hinton and Salakhutdinov, 2006; Yu and Seltzer, 2011; Veselỳ et al., 2012)

are low-dimensional representation of data generally obtained from a hidden bottleneck layer

of a DNN. This bottleneck layer has a smaller number of hidden units compared to the size

of other layers. The smaller size layer constrains the information flow through the network

10
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Figure 2.1: Posterior feature extraction using a deep neural network. First, Mel Frequency
Cepstral Coefficient (MFCC) based features are extracted over a sliding window. These features,
together with their acoustic context, are then fed to a DNN to estimate phone conditional
posterior probabilities.

which enables the network to focus on the information that is necessary to optimize the final

objective. Bottleneck features have been commonly used in both auto-encoders (Hinton and

Salakhutdinov, 2006) as well as DNNs for classification (Yu and Seltzer, 2011). Language inde-

pendent bottleneck features can be obtained using multi-lingual objective function (Veselỳ

et al., 2012).

The bottleneck features can be extracted by following a very similar setup presented in Fig-

ure 2.1. The primary difference is that the network has a bottleneck layer and the features

come out of the bottleneck layer instead of the output layer.

2.4 Databases

We have used 4 different databases to train and evaluate different systems proposed in this

work. We present a brief description of these datasets in the following.

2.4.1 AMI meeting corpus

The AMI (Augmented Multi-party Interaction) meeting corpus (McCowan et al., 2005) was

collected to support multi-disciplinary research. The dataset was recorded in several rooms in

different locations equipped with a variety of microphones, video cameras, presentation slide

capture devices etc. The corpus contains real meeting recordings as well as scenario driven

meetings which were designed to promote a wide range of realistic behavior. The meeting

rooms were setup to record both close-talking and far-field audio. The close-talk speech was

recorded using individual headset microphone (IHM) with wireless setup, whereas the far-field

audio was recorded using four or eight miniature omni-directional microphone arrays with

wired setup. We use IHM recordings as well as single distant microphone (SDM) recordings

with mic-id 1 to evaluate the performance of our system for both types of recordings.

Both datasets are partitioned into three groups1 to train the corresponding DNN. The partition

1http://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml
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Table 2.1: Number of different types of queries available in both sets in SWS 2013, partitioned
according to the number of examples per query.

Query Set
Examples per query

1 3 10

Development 311 100 94
Evaluation 310 100 93

consists of about 81 hours of speech for training and about 9 hours for each of the development

and evaluation. Although, the meeting language was English, many participants were non-

native speakers. In addition, the recordings contain considerable amount of overlapping

speech (competing speakers).

2.4.2 Spoken Web Search (SWS) 2013

We consider the Spoken Web Search (SWS) database from MediaEval 2013 benchmarking

initiative (Anguera et al., 2013) for training and evaluation of our QbE-STD system. This

database was the result of a joint effort between several institution to provide a challenging

new dataset for QbE-STD task. It consists of 20 hours of audio recordings (10762 utterances) as

search space form 9 different low-resourced languages: Albanian, Basque, Czech, non-native

English, Isixhosa, Isizulu, Romanian, Sepedi and Setswana. The data was collected in varying

acoustic conditions and in different amounts from each language. Some recordings were

obtained from in-room microphones while others were obtained through street recordings

with cellphones. The recordings also had variable sampling rate. Thus, all data has been

converted to 8KHz/ 16bit WAV files.

The dataset also contains two sets queries for use in the development and evaluation. There

are 505 queries in the development set and 503 queries in the evaluation set. Each set consists

of 3 types of queries depending on the number of examples available per query: 1, 3 and

10 examples. The number of queries available in each category is shown in Table 2.1. We

also present the number of queries per language in both development and evaluation set in

Table 2.2

2.4.3 Query by Example Search on Speech Task (QUESST) 2014

Query by Example Search on Speech Task (QUESST) database (Anguera et al., 2014) is part

of the MediaEval 2014 challenge similar to SWS 2013 database from previous year. The

search corpus consists of ∼23 hours of audio recordings (12492 utterances) in 6 different

low-resourced languages: Albanian, Basque, Czech, non-native English, Romanian and Slovak.

Similar to SWS 2013, this dataset was also recorded in varying acoustic conditions with variable

sampling rate. The dataset consists of 560 development queries and 555 evaluation queries

which were separately recorded than the search corpus. Unlike SWS 2013 datatset, all queries
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Table 2.2: Database content (number of queries, utterances in search space, type of speech)
disaggregated per language in SWS 2013

Language
Search Space Number of queries Type of

(minutes / utterances) Development Evaluation speech

Albanian 127 / 968 50 50 read
Basque 192 / 1,841 100 100 broadcast / read
Czech 252 / 3,667 94 93 conversational

Isixhosa 65 / 395 25 25 read
Isizulu 59 / 395 25 25 read

NNEnglish 141 / 434 61 60 lecture
Romanian 244 / 2,272 100 100 read

Sepedi 69 / 395 25 25 read
Setswana 51 / 395 25 25 read

Total 1,196 / 10,762 505 503 mixed

have only one example available. We present the number of queries per language in both

development and evaluation set in Table 2.3

The primary difference from SWS 2013 task is that, QUESST 2014 considers two types of

‘approximate matching’ along with the ‘exact matching’. These 3 types of matching are defined

as follows:

• Type 1 (Exact): The occurrences which exactly match the lexical representation of the

query are considered as detections. E.g. the query ‘brown bear’ would match the

utterance ‘I see a brown bear’.

• Type 2 (Variant): In this case, query occurrences that has slight lexical variations at the

start or end of a query are considered as detections. Only queries having more than

5 phoneme (250 ms) are used for this task, and the matching part was required to be

much greater than the non-matching part. E.g. the query ‘researcher’ would match an

utterance containing ‘research’ and vice-versa.

• Type 3 (Reordering/Filler): In case of a multi-word query, a detection is required to

contain all words in the query, however the words may appear in different order, possibly

with some filler content between those words. E.g. the query ‘white snow’ would match

an utterance containing either ‘snow is white’, ‘whitest snow’ or ‘whiter than snow’.

Note, the queries in this case are spoken continuously and the detections are allowed to

contain a large number of filler content between words.

2.4.4 GlobalPhone Corpus

GlobalPhone is a multilingual speech database developed by the Karlsruhe Institute of Tech-

nology (KIT) (Schultz et al., 2013). It consists of high quality recordings of read speech with

13



Chapter 2. Background on Query-by-Example Spoken Term Detection

Table 2.3: Database content (number of queries, utterances in search space, type of speech)
disaggregated per language in QUESST 2014

Language
Search Space Number and subset of queries Type of
(mins./# utt) Dev (T1/T2/T3) Eval (T1/T2/T3) speech

Albanian 127 / 968 50 (20/13/16) 50 (18/13/17) read
Basque 192 / 1,841 70 (16/33/21) 70 (30/19/21) broadcast
Czech 237 / 2,653 100 (77/24/27) 100 (73/27/32) conversational

NNEnglish 273 / 2,438 138 (46/46/46) 138 (46/46/46) lecture
Romanian 244 / 2,272 100 (46/21/31) 100 (43/27/30) TEDx

Slovak 312 / 2,320 102 (102/53/14) 97 (97/47/10) parliamentary
Total 1,385 / 12,492 560 (307/190/155) 555 (307/179/156) mixed

Table 2.4: Partition (in hours) of the GlobalPhone languages used in this work

Language Train Dev Eval # Phones

French (FR) 22.8 2.1 2.0 38
German (GE) 14.9 2.0 1.5 41

Portuguese (PT) 22.8 1.6 1.8 45
Spanish (ES) 17.6 2.1 1.7 40
Russian (RU) 19.8 2.5 2.4 48

corresponding transcription and pronunciation dictionaries in 20 different languages. It

was designed to be uniform across languages in terms of audio quality (type of microphone,

noise condition, channel), the collection scenario (task, setup, speaking style), phone set

conventions (IPA-based naming of phone) etc. In this work, we use 5 languages to train and

estimate multilingual bottleneck features for QbE-STD experiments. The partition for training,

development and evaluation set of these language and the corresponding number of phones

are shown in Table 2.4.

2.5 Evaluation Metrics

The performance of a QbE-STD system is evaluated using statistical classification theory (Bishop,

2006). We use three different metrics to evaluate our systems: (i) detection error trade-off

curve (DET), (ii) maximum term weighted value (MT W V ) and (iii) minimum normalized

cross entropy (C mi n
nxe ). First two are based on system hard decision whereas the third one is an

information theoretic measure as we will discuss in the following sections.

2.5.1 Detection Error Trade-off (DET) curve

Detection error trade-off curve was proposed to represent the performance of a detection task

(e.g. speaker verification, language recognition etc.) that involves a trade-off between error

14
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types: missed detections and false alarms (Martin et al., 1997). These errors for our problem

are defined as follows:

• Missed detection rate: The missed detection rate (Pmi ss(q,θ)) for a query, q and a

threshold, θ is defined as:

Pmi ss(q,θ) = Nmi ss(q,θ)

Nact (q)
(2.2)

where, Nmi ss(q,θ) is the number of occurrences of a query, q not detected by a system

for a given threshold, θ and Nact (q) is the total number of occurrences of the query, q in

the whole search space.

• False alarm rate: The false alarm rate (P f a(q,θ)) for a query, q and a threshold, θ is

defined as:

P f a(q,θ) = N f a(q,θ)

N −Nact (q)
(2.3)

where, N f a(q,θ) is the number of false detections of a query, q by a system for a given

threshold, θ and N is the total number audio documents in the search space.

Then, we can compute the average error rate for all the queries q ∈ Q (assuming, all the queries

are equally likely) as follows:

Pmi ss(θ) = 1

|Q|
∑

∀q∈Q
Pmi ss(q,θ) (2.4)

P f a(θ) = 1

|Q|
∑

∀q∈Q
P f a(q,θ) (2.5)

These two errors are plotted against each other for various thresholds to obtain a DET curve.

The Y-axis represents the missed detection rate (Pmi ss(θ)) while the X-axis represents the false

alarm rate (P f a(θ)). Also the axes are non-linear in order to have better comparison among

multiple system. Figure 2.2 shows a typical a DET curve comparing two QbE-STD systems.

System-2 gives lower miss probability for any false alarm probability in the given range. Clearly

System-2 is a better system

2.5.2 Term Weighted Value

The Term-Weighted Value (T W V ) (Rodriguez-Fuentes and Penagarikano, 2013) is defined as

a weighted combination of the miss and false alarm error rates, averaged over the set of all

15



Chapter 2. Background on Query-by-Example Spoken Term Detection

5

10

20

40

60

80

0.1 0.2 0.5 1 2 5 10 20 40

M
is

s
 p

ro
b

a
b

il
it

y
 (

in
 %

)

False Alarm probability (in %)

System1
System2

Figure 2.2: DET curves comparing two QbE-STD systems.

queries, as follows:

T W V (θ) = 1− 1

|Q|
∑

∀q∈Q
(Pmi ss(q,θ)+β.P f a(q,θ)) (2.6)

= 1− (Pmi ss(θ)+β.P f a(θ)) (2.7)

The weight factor β> 0 is defined as:

β= C f a .(1−Pt ar g et )

Cmi ss .Pt ar g et
(2.8)

where, Cmi ss > 0 and C f a > 0 are the costs of miss and false alarm errors respectively. Pt ar g et ∈
[0,1] is the prior probability of a target being present in a search utterance. It is assumed to be

constant for all queries. The value of T W V (θ) ranges from −β to 1. T W V (θ) = 1 indicates a

perfect system, T W V (θ) = 0 indicates a simple system which always makes the decision ‘No’

(i.e. rejects all the trials), whereas T W V (θ) =−β indicates the worst possible system. We use

Maximum Term Weighted Value (MT W V ) to evaluate our QbE-STD systems which is defined

as follows:

MT W V = max
θ∈Θ

T W V (θ) (2.9)

The MT W V can be achieved using a well calibrated system.
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2.5.3 Normalized Cross Entropy

The output scores of a QbE-STD system for query-search utterance pairs (also called trials)

can be viewed as more informative if they represent log-likelihood ratios between the two

hypothesis: query is present or absent. Assuming a system S computes log-likelihood ratios

l l rt for a set of trials t = (q, x) ∈ T (S) corresponding to a query q and a search utterance x, the

goodness of those scores can be measured by logarithmic cost function (Rodríguez-Fuentes

et al., 2012):

Clog(l l rt ) =− logP (Gt |l l rt ) (2.10)

where, Gt ∈ {tr ue, f al se} is the ground-truth of a trial t . When the system favors the ground-

truth, P (Gt |l l rt ) ≈ 1 so the cost Clog(l l rt ) ≈ 0. In the opposite scenario P (Gt |l l rt ) ≈ 1, thus

Clog(l l rt ) À 0. Now, we can average the cost over all the trials and divide it by log2 to obtain

the empirical cross entropy (in information bits) (Rodriguez-Fuentes and Penagarikano, 2013):

Cxe = 1

log2

(
Pt ar

|Ttr ue (S)|
∑

t∈Ttr ue (S)
Clog(l l rt )+ 1−Pt ar

|T f al se (S)|
∑

t∈T f al se (S)
Clog(l l rt )

)
(2.11)

The empirical cross entropy can be normalized by comparing it with a trivial system which

outputs non-informative scores (i.e. l l rt = 0). The empirical cross entropy of such a system if

often called the prior entropy and is computed as:

C pr i or
xe = 1

log2

(
Pt ar . log

1

Pt ar
+ (1−Pt ar ). log

1

(1−Pt ar )

)
(2.12)

Finally, the normalized cross entropy is defined as follows:

Cnxe = Cxe

C pr i or
xe

(2.13)

Normalized cross entropy provides the knowledge that a QbE-STD system has on the ground

truth. To be more precise, it computes the information which is not provided by the detection

scores generated by a given system. A perfect system produces Cnxe ≈ 0, whereas a non-

informative system gives Cnxe = 1.

The system scores can be calibrated using the following reversible transform:

ˆl l rt =α.l l rt +β (2.14)

where, α and β are the calibration parameters, which can be used to minimize the normalized

cross entropy:

C mi n
nxe = min

α,β

(
Ĉnxe

)
(2.15)
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Chapter 2. Background on Query-by-Example Spoken Term Detection

We use C mi n
nxe to evaluate the proposed systems and compare them with the baseline system.

2.5.4 Test of Statistical Significance

We perform Student’s t-test to measure statistical significance of the improvements obtained

in both MT W V and C mi n
nxe scores by our proposed systems. To perform this test, we compute

the scores (MT W V or C mi n
nxe whichever applicable) per query and these scores are considered

as samples for a paired-samples t-test. In order to indicate improvement by our systems, the

test is one-tailed t-test and the corresponding p-values are indicated with the results.

2.6 Baseline System

The posterior-based QbE-STD system proposed in (Rodriguez-Fuentes et al., 2014) is used as

our baseline system. It was the best system in MediaEval challenge 2013 (Anguera et al., 2013)

for the task of Spoken Web Search (SWS). The basic framework of the system is presented

in this section. It consists of four main modules: (1) posterior feature extraction, (2) speech

activity detection, (3) query template construction and (4) DTW based template matching

2.6.1 Posterior Feature Extraction

Phone posterior features are used to detect queries in test utterances. These phone posteriors

are estimated by forward passing the corresponding MFCC features through pre-trained

neural networks as discussed in Section 2.3.2. These posterior features can be considered as a

characterization of instantaneous content of the speech signal independent of the underlying

language (Rodriguez-Fuentes et al., 2014). The posteriors are filtered using a speech activity

detector before performing QbE-STD experiments as discussed in the following.

2.6.2 Speech Activity Detection

We perform speech activity detection (SAD) to remove the silence and noisy frames from

test utterances as well as queries. The SAD relies on the output of the phone recognizers

to perform this task. It calculates the probability of no voice activity by summing up the

probabilities corresponding to silence and non-speech units in the posterior vector. If for

any frame, this probability is highest, the frame is considered silence/noisy and rejected

from the corresponding audio. Also, if there are less than 10 frames in an audio file, it is not

considered for the experiments to reduce the false alarm rate and computational complexity.

Finally, the dimensions corresponding to silence and non-speech units are removed from the

posterior vectors as these are unlikely to help in the query matching task (Rodriguez-Fuentes

and Penagarikano, 2013).
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Figure 2.3: Block diagram of the baseline system. After extracting phone posterior features to
calculate the normalized distance matrix between query and test utterance, we apply DTW to
obtain a sub-sequence matching the query. If the length of the hypothesis is smaller than half
the query length, it is discarded to reduce false alarm rate. Otherwise, its score is compared to
a threshold to yield a final decision.

2.6.3 Query Template Construction

The posterior features of a query are used to construct a template for DTW based matching.

If there is only one example provided for a query, the corresponding posteriors are used as

the reference template for performing DTW. If multiple examples are provided for a query, we

compute an average template from posteriors of those examples using DTW. In that case, we

first select the example with highest number of posteriors (i.e. the longest one) as reference.

We then use traditional DTW algorithm (Sakoe and Chiba, 1978) to obtain posteriors-level

alignment of the rest of the examples with the reference. The mapped posteriors are averaged

together to generate the posteriors of the reference template (Rodriguez-Fuentes et al., 2014;

Chen et al., 2015). Finally, this template is used to find the query in test utterances as discussed

in the following section.

2.6.4 Template Matching

The template matching algorithm presented in (Rodriguez-Fuentes et al., 2014) is similar to

the slope-constrained DTW (Hazen et al., 2009) with some important differences. First, a

distance matrix is calculated between each pair of frames of the query and test utterance using

logarithm of the cosine distance. We denote the matrix of all posterior feature vectors corre-

sponding to a spoken query and a test utterance by Q = [
q1,q2, . . . ,qm

]
and T = [ t1,t2, . . . ,tn ]

respectively, where m and n are the corresponding temporal lengths. The distance between

each pair of vectors is calculated as follows,

d(qi ,t j ) =− log
qi · t j∥∥qi
∥∥ · ‖ti‖

(2.16)
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Chapter 2. Background on Query-by-Example Spoken Term Detection

The distances are further normalized with respect to the test utterance, T using the following

test normalization technique.

dnor m(qi ,t j ) = d(qi ,t j )−dmi n(i )

dmax (i )−dmi n(i )
(2.17)

where, dmi n(i ) = min j=1,...,n d(qi ,t j ) and dmax (i ) = max j=1,...,n d(qi ,t j )

This results in a distance matrix comprising values between 0 and 1. Note that, this is a kind

of test normalization technique corresponding to each feature vector of the query and was

found to be very useful for achieving good performance in SWS 2013.

The query Q is detected in the test utterance T by minimizing the average distance in a crossing

path of the matrix dnor m . This crossing path can start at any frame k1 ∈ [1,n] of T, traverse a

continuous segment that is optimally aligned to Q (with L vector alignments), and ends at any

frame k2 ∈ [k1,n]. The average distance in this crossing path is:

dav g (Q,T) = 1

L

L∑
l=1

dnor m(qil ,t jl ) (2.18)

where il and jl are indices of the vectors of Q and T in the alignment, for l = 1,2, . . . ,L, i1 = 1,

iL = m, j1 = k1 and jL = k2. To find the optimal crossing path, two matrices are defined:

A(i , j ) for storing accumulated distance of the partial crossing path ending at (i , j ) andΛ(i , j )

indicating the length of that path, so that A(i , j )/Λ(i , j ) is the average distance. These matrices

are initialized as follows:

A(i ,1) =
i∑

k=1
dnor m(qk ,t1)

Λ(i ,1) = i

(2.19)

for i = 1, ...,m. The minimization operation runs from j = 2 to j = n, and for each j , from i = 1

to i = m by utilizing a dynamic programming algorithm, as follows:

i = 1:

A(1, j ) = dnor m(q1,t j )

Λ(1, j ) = 1
(2.20)

i > 1:

Θ= {(i , j −1), (i −1, j ), (i −1, j −1)}

(xopt , yopt ) = arg min
(x,y)∈Θ

A(x, y)+δ(x 6= m).dnor m(qi ,t j )

Λ(x, y)+δ(x 6= m)
(2.21)

A(i , j ) = A(xopt , yopt )+δ(xopt 6= m).dnor m(qi ,t j )

Λ(i , j ) =Λ(xopt , yopt )+δ(xopt 6= m)
(2.22)
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where,

δ(c) =
1, i f c = Tr ue

0, i f c = F al se
(2.23)

The function δ(xopt 6= m) is introduced to account for the special case: i = m. It occurs when

the best path to (m, j ) comes from (m, j −1). It implies that the crossing path has already

ended at previous j -th frame of the test utterance and no more distance accumulation is

required. Note that i = 1 (as shown in (2.20)) is taken as the starting point with no accumulated

distances from past. It only considers the distance for the current frames: dnor m(q1,t j ). The

detection score is computed as 1−dav g (Q,T) which ranges from 0 to 1. Here, 1 indicates a

perfect match and 0 indicates no match. The frames k1 and k2 in the test utterance T refer

to the start and end of the detection hypothesis that matches best with the query Q. If the

length of a hypothesis is less than half of the query length, it is discarded since small portions

of the test utterance can match well with query segments and produce a high likelihood score.

Finally, the score of a hypothesis is compared with a pre-defined threshold to decide the

occurrence of the query. A block diagram of this system is presented in Figure 2.3 to find a

spoken query in a test utterance.
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This chapter is based on the following paper:

Dhananjay Ram, Afsaneh Asaei, and Hervé Bourlard. Phonetic subspace features

for improved query by example spoken term detection. Speech Communication,

103:27–36, 2018a
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3.1. Introduction

3.1 Introduction

In the last chapter, we presented the state-of-the-art QbE-STD system consisting of two main

stages: (1) extraction of feature vectors from the spoken query and the test utterance, and

(2) alignment of the query and test features using DTW. Here we propose to exploit the low-

dimensional subspace structure of speech in the first stage to obtain better features before

using DTW based template matching. In this way, we develop a framework to utilize the

subspace information (in the first stage) as well as temporal information of speech signal

(in the second stage using DTW) for query detection. To achieve this goal, we propose a

data-driven and a knowledge-based approach to obtain better representation of speech and a

fusion technique to combine information from different kinds of representations as discussed

below.

(i) Phone Posteriors (Section 3.2): We propose to use sparse modeling as an unsupervised

data-driven method to characterize the low-dimensional structures of sub-phonetic

components (Elhamifar and Vidal, 2013; Rish and Grabarnik, 2014). To that end, we

model the underlying phonetic subspaces using dictionary learning for sparse coding.

The dictionaries are used to obtain sparse representation of the phone posteriors and

we project them onto the phonetic subspaces through reconstruction. This approach

leads to subspace enhanced phone posteriors such that the query and test posteriors

are represented on a common subspace and reduces the effect of unstructured phonetic

variations.

(ii) Phonological Posteriors (Section 3.3): Alternative to the data-driven sparse modeling

approach, we utilize linguistic knowledge for identifying the sub-phonetic attributes

or phonological features (Chomsky and Halle, 1968). The phonological features are

recognized as the atomic components of phone construction. The linguists define a

binary mapping between the phone and phonological categories. We exploit DNN in

probabilistic characterization of the phonological features, referred to as the phonological

posteriors (Cernak et al., 2017). Due to the sub-phonetic nature of these features, they

are less language dependent (Lee and Siniscalchi, 2013; Sahraeian et al., 2015) and can

be helpful for a zero resource task like QbE-STD.

(iii) Distance fusion (Section 3.4): The proposed representations are exploited for QbE-STD

using the DTW method presented in (Rodriguez-Fuentes et al., 2014) (see Section 2.6

for details). To integrate the information from multiple feature representations, we

propose to update the distance matrix for DTW by fusing the distances between the

query and test utterance obtained from different kinds of feature representations. In

contrast to (Wang et al., 2013), we use non-uniform weights which are optimized using

development queries.

The proposed methods are evaluated on two subsets of AMI database (IHM and SDM) with

challenging conditions as presented in Section 3.6. The improvements obtained by our
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approach over the baseline system indicate the significance of subspace structure of speech

for QbE-STD.

3.2 Phone Posteriors

In this section, we present a data-driven approach for modeling the underlying low-dimensional

subspaces which constitute different phonetic units in a language. These models are then

used to enhance the phone posterior features by reducing the effect of unstructured noise

present in the data.

3.2.1 Sparse Subspace Modeling

We consider sparse coding as a data-driven unsupervised technique to characterize the sub-

space structure of phone posteriors. Earlier studies have shown that the phone posterior

vectors belong to a union of low-dimensional subspaces (Ram et al., 2015, 2016, 2018b; Dighe

et al., 2016a). Any data point in these subspaces can be efficiently reconstructed using a

sparse linear combination of other points in that space. This property is referred to as the

self-expressiveness (Elhamifar and Vidal, 2013) of data. In practice, an over-complete set

of basis vectors, called dictionary is learned from the training data to model the underlying

subspaces. It is learned in a manner such that each training vector can be reconstructed as a

sparse linear combination of its columns. The columns of a dictionary are known as the atoms

forming the molecular structure of the phone posteriors.

Formally speaking, any data point yt belonging to the space of phone k can be expressed as a

sparse linear combination of the atoms present in the corresponding dictionary as yt = Dkαt

where Dk ∈ RK×Mk consists of the over-complete basis vectors (atoms) used to model the

subspaces of phone k andαt is the sparse weight vector indicating the significance of each

atom to construct the posterior vector. Here, Mk is the number of atoms in the k-th dictionary

and K is the dimension of each atom as well as the number of phone classes.

In order to obtain a sparse representation of a posterior vector, we require dictionaries model-

ing the underlying subspaces. For this purpose, we learn phone-specific dictionaries using the

training posteriors. The data used to train the DNN for phone posterior estimation are used

here (after forward passing through the DNN) to train these dictionaries. Let us consider a set

of Tk training posterior vectors, Yk = {y1, y2, . . . , yTk } belonging to phone class k. Their sparse

representations are denoted by Ak = {α1, α2, . . . , αTk }. The objective function for dictionary

learning is expressed as

Dk = argmin
D,Ak

1

Tk

Tk∑
t=1

(
1

2

∥∥yt −Dαt
∥∥2

2 +λ‖αt‖1

)
(3.1)

where λ is the regularization parameter. The first term in this expression represents the

reconstruction error. The second term denotes the `1-norm of α defined as ‖α‖1 =
∑

i |αi |
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Algorithm 1 Dictionary Learning for Sparse Modeling of Phone k

Require: : Y = {y1, y2, . . . , yTk },λ,D(0) (initialization)
1: for t = 1 to Tk do
2: Sparse representation of yt to determineαt :

αt = argminα
{

1
2

∥∥yt −D(t−1)α
∥∥2

2 +λ‖α‖1

}
3: Updating D(t ) with D(t−1) as warm restart:

D(t ) = argminD

{
1
t

∑t
i=1( 1

2

∥∥yi −Dαi
∥∥2

2 +λ‖αi‖1)
}

4: end for
5: return Dk = D(Tk )

which quantifies the level of sparsity ofαt . The joint optimization of this objective function

with respect to both D and Ak simultaneously is non-convex, however it can be solved as a

convex objective by optimizing for one while keeping the other fixed (Mairal et al., 2010).

In this work, we have used the fast online algorithm proposed in (Mairal et al., 2010) which was

found to be effective for sparse modeling of the phone posterior (Dighe et al., 2016a; Ram et al.,

2016). This algorithm is based on stochastic gradient descent optimization and is summarized

in Algorithm 1; it alternates between a step of sparse representation for the current training

feature yt and then optimizes the previous estimate of dictionary D(t−1) to determine the new

estimate D(t ) using stochastic gradient descent.

To learn the phone-specific subspaces, individual dictionaries are learned for each phonetic

class separately using the corresponding training data. These phone-specific dictionaries are

then used to construct the subspace enhanced posteriors based on the procedure explained

in the following section.

3.2.2 Subspace Enhanced Phone Posteriors

The dictionaries learned for sparse modeling characterize the phonetic subspaces using a

large amount of training posteriors. Sparse representation of posterior vectors obtained using

those dictionaries enables projection of the posteriors to the space of training data. This pro-

jection enhances the posterior vectors by better matching the structure of phonetic subspaces

modeled using training data and has been successfully used in speech recognition (Sainath

et al., 2011; Dighe et al., 2016c). In this work, we use a similar approach to enhance phone

posterior and use it for the task of QbE-STD.

To enhance the phone posteriors, we first compute sparse representation of a posterior vector

using the dictionaries. This sparse representation is then used to obtain the enhanced poste-

rior by multiplying it with the corresponding dictionary. The process of obtaining the sparse

representation is different for training and test posteriors because the phonetic class is known

for training posteriors, whereas it is unknown for test posteriors.
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Figure 3.1: Block diagram to obtain subspace enhanced phone posteriors using sparse repre-
sentation based reconstruction: Phone posterior features are extracted from speech signal.
Sparse representations for these feature vectors are obtained using phone dictionaries. These
sparse representations are then multiplied to the corresponding dictionary matrix in order to
compute the enhanced phone posteriors.

1. Enhancement of Training Posteriors: Given a training posterior vector xt from phone

class k and a dictionary Dk , we can obtain its sparse representation by solving the

following optimization problem (Tibshirani, 1996),

αt = argmin
α

{
1

2
‖xt −Dkα‖2

2 +λ‖α‖1

}
(3.2)

The enhanced posterior vector is computed by multiplying the sparse representation

with the corresponding dictionary matrix as Dkαt .

2. Enhancement of Test Posteriors: In case of test posteriors, the underlying phonetic class

k is unknown. Thus, a global dictionary is constructed by concatenating the individual

phone dictionaries as D= [D1 D2 . . . DK ]. Due to the partitioning in construction

of D, there is an inherent block structure underlying the space of D. This structure is

exploited using group sparse recovery algorithm where block sparsity is encouraged

during the optimization (Sprechmann et al., 2011). Sparse representation of a test

posterior xt is then obtained by solving the following optimization problem,

βt = argmin
β

{
1

2

∥∥xt −Dβ
∥∥2

2 +λ fD(β)

}
(3.3)

where fD is the Group-Lasso regularizer (Sprechmann et al., 2011) defined as: fD =∑K
i=1

∥∥β{Di }
∥∥

2 and β{Di } indicates the sparse representation coefficients corresponding

to a sub-dictionary Di inside D. The function fD can be interpreted as a generalization

of the `1 regularization used in (3.1) and (3.2), where each atom of the dictionary is

considered to be a sub-dictionary. The group sparsity regularizer, fD forces the atoms

of the dictionary to be activated in groups.

The quantity Dβt yields a projection of the test posterior onto the phonetic subspace

using sparse representation. The posterior vectors thus share common subspaces,

which mitigates the effect of unstructured noise (Dighe et al., 2016c). The posteriors of
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test utterances used as search space for QbE-STD experiments are enhanced using the

technique discussed above. A block diagram to obtain the subspace enhanced phone

posteriors is depicted in Figure 3.1. We study the effectiveness of this approach for

QbE-STD in Section 3.6.

3.3 Phonological Posteriors

In this section, we describe a linguistic knowledge-based approach to identify the sub-phonetic

attributes composing different phonetic units. We further present a setup to exploit this

knowledge for extracting new feature vectors (other than phone posteriors) to be used for

QbE-STD.

3.3.1 Phonological Subspaces

The linguistic theory states that the elements of phonological structures can be represented

as a vector of sub-phonetic, binary-valued attributes (Chomsky and Halle, 1968; Clements,

1985). Each phone attribute represents the minimal distinction between groups of phonemes

that share some set of articulatory, perceptual, and/or acoustic properties. The attributes thus

cover both articulator-free and articulator-bound distinctions.

Articulator-free attributes describe the high-level properties that can be used to specify the

broad classes of speech sounds. These attributes determine the details of the sub-phonetic

variations, including whether a periodic source is used and whether nasal effect is occurred.

For instance, the articulator-free attribute [son] distinguishes sonorant sounds ([+son]), pro-

duced with a largely open vocal tract (e.g. vowels), from obstruent sounds such as fricatives,

produced with a tract constriction.

Articulator-bound attributes describe the articulatory configurations of the vocal tract. For

instance, the feature [high] distinguishes between those vowels produced with the tongue

close to the roof of the mouth (e.g., the /t/ in beat) from those that are not.

The articulator-bound and articulator-free sub-phonetic attributes possess a natural hierar-

chical structure (McCarthy, 1988). Articulator-free distinctions are more perceptually salient

and their acoustic correlates are less context dependent whereas the articulator-bound fea-

tures make finer distinctions between individual or small groups of phonemes (Jansen and

Niyogi, 2013). Every component of the phonological features characterizes a subspace such

that the phonemes are formed through the composition of the underlying phonological

components (Cernak et al., 2016, 2017; Asaei et al., 2017). Here, we use DNNs to generate a

probabilistic representation of the phonological features, as described in the following section.
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Figure 3.2: Phonological posterior estimation using a bank of deep neural networks (DNN):
First, MFCC based spectral features are extracted from windowed speech. These features
are then fed with some acoustic context (left and right) to each DNN modeling a specific
phonological class to estimate the corresponding class conditional posterior probabilities.
These probabilities are concatenated to form posterior feature vector.

3.3.2 Phonological Posterior Estimation

A vector representing the class conditional posterior probabilities of all phonological classes is

referred to as phonological posteriors. They are considered to be capable of providing a lan-

guage independent representation of speech, and any sound can be decomposed into a subset

of phonological classes. In contrast, for sparse modeling approach, there is no linguistic knowl-

edge guiding the discovery of the underlying subspaces. Hence, both representations may

bear complimentary information on the sub-phonetic structure of the speech representation.

The setup to extract phonological posteriors (Cernak et al., 2016, 2017) from speech signal is

depicted in Figure 3.2, which is similar to the phone posterior estimation method as described

in Section 2.3.2. In contrast to the system presented in Figure 2.1, one DNN is trained per

phonological class (see Section 3.5.3 for more details). This is due to the fact that multiple

phonological classes can be active per speech frame, unlike the case of phone posteriors where

only one class is active per frame. Once the DNNs are trained, MFCC features are forward

passed through each of them to estimate the corresponding phonological class probability.

These probabilities are then concatenated to obtain the phonological posterior vectors.

So, we have presented two different approaches to capture the subspace information of speech

data in Sections 3.2 and 3.3 respectively. Our first approach is aimed at enhancing the phone

posteriors using the subspace information from a data-driven method. In a similar manner,

we need a method to integrate the information obtained from speech data using phonological

posteriors with that of the phone posteriors. Hence, we propose a new approach to fuse

information from different feature representations of same speech signal as described in the

following section.

3.4 Distance Fusion

In this section, our goal is to develop a mechanism to integrate information from multiple

feature representations of speech data for spoken query detection which we use to fuse

the phone and phonological posteriors. Different types of feature vectors have different
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Figure 3.3: Block diagram of distance fusion for DTW system using phone and phonological
posteriors: Both phone and phonological posterior based representations are obtained for
spoken query and test utterance to compute corresponding normalized distance matrices.
We fuse these distance matrices by taking a weighted combination of each element from
corresponding distance matrices. DTW algorithm (Rodriguez-Fuentes et al., 2014) is then
used to obtain a hypothesized sub-sequence matching the query. A hypothesis of length less
than half the length of the query is discarded to reduce false alarm. Finally, the score of a valid
hypothesis is compared to a threshold to yield a decision.

dimensions and represent different characteristics of speech, making it difficult to fuse them

in the domain of feature vectors. Instead, we use the features independently to construct a

distance matrix for DTW and fuse these matrices into a single distance matrix which can be

used for query detection using the DTW algorithm as explained in Section 2.6.4.

More formally, let Us = [
us

1,us
2, . . . ,us

m

]
denote the feature vectors extracted from a spoken

query and Vs = [
vs

1,vs
2, . . . ,vs

n

]
the feature vectors of a test utterance; m and n represents

the number of frames in the spoken query and test utterance respectively, and s = 1,2, . . . ,S

indicates the source of feature vector where S is the number of different types of features

extracted from the same speech. The pairwise distances of any two feature vectors can be

calculated using a distance measure:

δs
(
i , j

)= distance
(
us

i ,vs
j

)
∀ s = 1,2, . . . ,S; i = 1,2, . . . ,m and j = 1,2, . . . ,n

(3.4)

The distance function can be chosen to best match the properties of corresponding feature

vectors. In this paper, we consider logarithm of cosine distance as the distance function for

its superior performance in posterior-based query detection (Rodriguez-Fuentes et al., 2014).

A simple range normalization technique (as shown in (2.17)) is used to have the distance
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values between 0 and 1. We fuse the distance matrices (δs) for S different sources of feature

representations by taking a weighted combination as follows:

∆
(
i , j

)= S∑
s=1

ws ×δs
(
i , j

)
s.t.

S∑
s=1

ws = 1

∀ i = 1,2, . . . ,m and j = 1,2, . . . ,n

(3.5)

where the weight parameters ws are optimized over an independent development set. The

weight associated to a feature representation indicates its importance in conjunction with

the rest of feature vectors being fused for a particular task (see Section 3.6.3 for our experi-

mental analysis on the choice of ws). After fusion, we simply follow the process described in

Section 2.6.4 to generate QbE-STD hypotheses.

In this work we consider two types of features, namely phone posterior and phonological pos-

terior and show that the fusion technique discussed here improves the detection performance

(see Table 3.4 and, Figures 3.4 and 3.5). The block diagram of the system integrating these

features (phone and phonological posteriors) is presented in Figure 3.3. Note that the distance

fusion method is independent of the type of features and distance measure being used, and it

is applicable to other DTW based pattern matching.

3.5 Experimental Setup

We use two subsets of AMI meeting corpus: IHM and SDM (as described in Section 2.4) to

perform QbE-STD experiments. In this section, we present a brief description of the query

selection process, the setup used for extracting phone and phonological posteriors and the

pre-processing steps involved to perform the experiments. Finally, we describe the score

normalization and evaluation metrics used to compare different systems proposed in this

work.

3.5.1 Query Selection

We select different words from the database to construct the query set for our QbE-STD

experiments. We use two different strategies to extract queries for experiments on IHM and

SDM set. For experiments on IHM, we extract 200 more frequent words (excluding functional

words) including very short words such as ‘BUY’ to long words such as ‘TELEVISION’. In case

of SDM queries, we compute term frequency-inverse document frequency (TF-IDF) statistic

for all words in the dataset, which indicates the importance of a word to a document in a

collection of documents. We consider each meeting recording as a document for computing

TF-IDF statistic. We arrange these words with decreasing TF-IDF values and choose top 200

words giving us important, content bearing words. The spoken examples corresponding

to these words are extracted from randomly chosen utterances in the training data. These

queries are divided into two sets of 100 queries each. These sets become our development and
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evaluation query set. The development queries are used to optimize parameters for different

systems. The test set of each dataset is used as the search space for queries from corresponding

dataset.

3.5.2 Phone Posterior Estimation

We train two different DNNs for IHM and SDM datasets to estimate the corresponding phone

posterior vectors. The phone posterior features are estimated from a DNN with MFCC based

spectral features as input. These MFCC features are extracted form speech data by following

the steps described in Section 2.3.1. To add contextual information, 4 frames of left and right

acoustic contexts are appended (total 9 frames) to have a 351 dimensional input vector to the

DNN. The DNN consists of 3 hidden layers of 1024 neurons each, to estimate 43 dimensional

phone posteriors at the output. There are 39 phones obtained from CMU pronunciation

dictionary1 for lexical modeling. The remaining 4 phones are used to model silence and

non-speech sounds. The training labels for the DNN are generated using a GMM-HMM based

speech recognizer (Hinton et al., 2012). The recognizer is used to force align the training data

to obtain the corresponding phonetic transcription. This whole setup is implemented using

the Kaldi toolkit (Povey et al., 2011).

3.5.3 Phonological Posterior Estimation

We have used the open-source phonological vocoding platform presented in (Cernak et al.,

2017) to obtain the phonological posteriors. It uses the phonological system of extended

Sound Pattern of English (eSPE) for phonological representation. The phonological classes in

eSPE are: vowel, fricative, nasal, stop, approximant, coronal, high, dental, glottal, labial, low,

mid, retroflex, velar, anterior, back, continuant, round, tense, voiced, silence. The vocoding

platform has 21 DNNs corresponding to each phonological class including one class for silence.

Each DNN consists of 3 hidden layers of 1024 neurons each. These DNNs were trained on

Wall Street Journal (WSJ0 and WSJ1) continuous speech recognition database (Paul and Baker,

1992). The input to the DNNs are MFCC features with a context of 4 frames (both left and right)

giving us a 351 dimensional input vector. The output consists of 2 labels indicating whether

the phonological class occurs for the segment or not. In other words, each DNN performs

binary classification of the target class vs the rest. All the DNNs were randomly initialized and

were trained by minimizing cross-entropy loss. The output probabilities from all DNNs are

concatenated to form the phonological posterior feature used for QbE-STD.

3.5.4 Speech Activity Detection (SAD)

We have implemented the speech activity detection setup presented in Section 2.6.2 to remove

the noisy frames from test utterances as well as queries to perform detection experiments.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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The frame-level posterior probabilities of silence and non-speech sounds from IHM dataset

are used to perform SAD for all the experiments with both datasets.

3.5.5 Score Normalization

We use the posterior features to perform query detection experiment and obtain a likelihood

score for each pair of spoken query and test utterance. Following the score normalization

technique used in (Rodriguez-Fuentes and Penagarikano, 2013), we normalize the scores to

have zero-mean and unit-variance per query. This reduces the variability in scores across

different queries and makes them comparable for final evaluation. We have also tried sum-to-1

(STO) normalization and keyword-specific thresholds (KST) (Karakos et al., 2013; Wang and

Metze, 2014). However they did not perform better than the mean-variance normalization.

Thus the results presented in this work utilize the mean-variance normalization.

3.5.6 Evaluation Metric

We use MT W V , C mi n
nxe and DET curves (as described in Section 2.5) to evaluate and compare

the performance of different systems. MT W V takes into account the prior probability of

query occurrence in the test set as well as the costs of missed detection and false alarm. We

consider the cost of missed detection (Cmi ss) to be 100 and the cost of false alarm (C f a) to be 1

for our experiments. We also perform statistical significance test to measure the improvements

in MT W V and C mi n
nxe and the corresponding p-values are indicated with the results.

3.6 Experimental Analysis

This section describes different QbE-STD experiments conducted to analyze and evaluate

the performance of the proposed approaches exploiting information from various phonetic

subspace representations. In all experiments, only one spoken instance of each query is

provided, and the test utterances are conversational speech produced by competing speakers.

3.6.1 Phone and Phonological Posteriors

We have used the QbE-STD system discussed in Section 2.6 as our baseline system. We use

both phone posteriors and phonological posteriors as feature representation for template

matching. This work is the first attempt at using phonological posteriors for QbE-STD. The

detection performance using development queries of IHM and SDM dataset is presented in

Table 3.1. Clearly, the phonological posteriors perform worse than the phone posteriors for

both datasets in a stand-alone system. This can be attributed to the shared sub-phonetic

properties of different phonemes. However, we expect that they bear complementary sub-

phonetic information guided by the knowledge of linguistics. Hence, we study the performance

of the detection system where both features are integrated using the distance fusion technique
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Table 3.1: Performance of the DTW based QbE-STD system using phone and phonological
posteriors as feature vectors evaluated on the development queries of IHM and SDM dataset
from AMI corpus.

Feature Representation
IHM SDM

MT W V ↑ C mi n
nxe ↓ MT W V ↑ C mi n

nxe ↓
Phone Posterior 0.4646 0.6558 0.1976 0.8083

Phonological Posterior 0.3105 0.8118 0.0276 0.9118

presented in Section 3.4.

3.6.2 Subspace Enhanced Phone Posteriors

We evaluate the data-driven approach to enhance phone posteriors using the subspace struc-

ture of speech as discussed in Section 3.2. The phonetic subspaces are characterized via

dictionary learning for sparse representation. We use Algorithm 1 to learn phone-specific

subspaces (dictionaries) from corresponding training phone posteriors. For this purpose,

we collect all posterior vectors corresponding to a phonetic class, and randomly choose 50

posteriors to initialize the dictionary. Rest of the posteriors are used to train the dictionary.

The posteriors from training data are enhanced using the sparse representation obtained

from (3.2). The enhancement is achieved by multiplying the sparse representation coefficients

with the corresponding dictionary. On the other hand, to enhance the test posteriors, all the

dictionaries are concatenated to form a single dictionary of all phones. This dictionary is then

used to obtain sparse representation of test posteriors using (3.3). The enhanced posterior

is obtained by multiplying the sparse representation with the corresponding dictionary as

discussed in Section 3.2.2.

To evaluate this approach, the regularization parameter λ is tuned on the development set. It

controls the number of dictionary atoms (sub-phonetic components) in subspace reconstruc-

tion, and its optimal value depends on the size of the dictionary. To evaluate the sensitivity

of the QbE-STD system to λ, we compare the MT W V and C mi n
nxe scores corresponding to

different values measured on the development queries. The results for IHM and SDM datasets

are presented in Table 3.2. We can see that λ= 0.2 and λ= 0.1 yields the best performance for

IHM and SDM set respectively, so these values are chosen for the corresponding experiments

using evaluation queries.

3.6.3 Distance Fusion Performance

We analyze the effectiveness of different feature vectors for QbE-STD using the distance fusion

technique presented in Section 3.4. We performed two different experiments for both IHM
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Table 3.2: Variation of MT W V and C mi n
nxe for Subspce Enhanced Phone Posterior features with

varying regularizarion, λ evaluated on development queries of IHM and SDM dataset from
AMI corpus

λ
IHM SDM

MT W V ↑ C mi n
nxe ↓ MT W V ↑ C mi n

nxe ↓
0.05 0.4399 0.6827 0.1923 0.8035
0.1 0.4633 0.6712 0.2497 0.7726
0.2 0.4705 0.6653 0.2439 0.7910
0.3 0.4563 0.6812 0.2054 0.8094

and SDM datasets to integrate subspace information of speech data presented in the form of

phonological posteriors. The first one (Phone + Phonological) integrates phone posteriors with

phonological posteriors whereas the second one (Enhanced Phone + Phonological) combines

enhanced phone posteriors (data-driven) with phonological posteriors (knowledge-based).

In both cases, we construct distance matrices between the query and test utterance using

corresponding feature representation. The two matrices are then fused to form a single

distance matrix following (3.5), and is used to perform DTW to detect queries.

In both experiments we merge two matrices, resulting in weights w and (1−w) corresponding

to (enhanced) phone and phonological posterior respectively. These weights indicate the

significance of the corresponding feature vectors for the detection stage. The results using

the development queries of the IHM dataset for different weights are shown in Table 4.4 as an

example. The optimal value of w = 0.6 for ‘Phone + Phonological’ indicates a contribution of

0.6 and 0.4 for phone and phonological posteriors respectively to attain the best performance.

In ‘Enhanced Phone + Phonological’, the optimal value of w = 0.5 shows equal contribution of

enhanced phone and phonological posteriors for best performance. The optimized weight for

SDM set is w = 0.8 for both ‘Phone + Phonological’ and ‘Enhanced Phone + Phonological’ cases.

The higher weight indicates smaller contribution from phonological posteriors compared to

IHM set. It can be attributed to the worse performance of the phonological posteriors in a stand

alone system for SDM set compared to IHM set as indicated in Table 3.1. These optimized

weights are used for final assessment on evaluation queries as presented in the following

section. As part of our experiments, we have also tried a score fusion technique (Brümmer

and De Villiers, 2013) as used in (Rodriguez-Fuentes et al., 2014). However, this resulted in

worse QbE-STD performance compared to the baseline system using phone posteriors.

3.6.4 Performance Comparison

In this section, we present the performance of different systems (optimized using development

queries) on evaluation queries. The MT W V and C mi n
nxe scores are presented in Table 3.4 for

both IHM and SDM datasets, whereas the corresponding DET curves are shown in Figures 3.4
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Figure 3.4: DET curves comparing the performance of different posterior features (phone and
phonological) for QbE-STD, evaluated on IHM set of AMI corpus.
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Figure 3.5: DET curves comparing the performance of different posterior features (phone and
phonological) for QbE-STD, evaluated on SDM set of AMI corpus.
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Table 3.3: Variation of MT W V and C mi n
nxe for fusion of two sets of feature representations

(Phone+Phonological and Enhanced Phone+Phonological) evaluated on development queries
of the IHM set from AMI corpus. The optimal weight indicates the contribution of correspond-
ing feature representation to attain the best performance.

Fusion
Weights

Phone + Phonological Enhanced Phone + Phonological
MT W V ↑ C mi n

nxe ↓ MT W V ↑ C mi n
nxe ↓

0.4 0.4343 0.6896 0.5197 0.6322
0.5 0.4916 0.6358 0.5270 0.6217
0.6 0.4988 0.6307 0.5225 0.6232
0.7 0.4982 0.6323 0.5243 0.6280
0.8 0.4880 0.6359 0.5135 0.6357

Table 3.4: Performance comparison of the DTW based QbE-STD system using different pos-
teriors as feature representations computed on the evaluation queries. Enhanced phone
posteriors improve the QbE-STD performance. Also, distance fusion technique is effective in
integration of the multiple sources of information through different set of features

Feature Representation
IHM SDM

MT W V ↑ C mi n
nxe ↓ MT W V ↑ C mi n

nxe ↓
Phone Posterior 0.4758 0.6526 0.2319 0.8398
Phonological Posterior 0.3044 0.7780 0.0459 0.8924
Enhanced Phone Posterior 0.5052∗ 0.6136∗ 0.2774∗ 0.8202∗

Phone + Phonological Posterior 0.4969∗ 0.6287∗ 0.2555∗ 0.8288∗

Enhanced Phone + Phonological Posterior 0.5414∗ 0.6051∗ 0.2944∗ 0.8102∗

∗ significant at p < 0.001

and 3.5 respectively to indicate the miss probabilities for a given range of false alarm probabil-

ities. The performance using phone posteriors is our baseline system and it gets increasingly

better using the subspace enhanced posteriors and distance fusion techniques. It can be

observed that the performance of both phone posteriors and enhanced phone posteriors im-

proves while a distance fusion is performed with phonological posteriors. This indicates that,

both phone posteriors and enhanced phone posteriors are not able to capture all information

present in the speech signal and phonological posteriors are one way of capturing finer details

of sub-phonetic components.

3.7 Conclusions

QbE-STD benefits from the advanced features capturing the subspace structure of the speech

signal. We exploit the low-dimensional subspace structures of speech through a data-driven

and a knowledge-based approach. The data-driven approach relies on sparse modeling of
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phonetic posteriors to characterize the sub-phonetic components in an unsupervised manner

and we use these models to enhance the phone posteriors. The knowledge-based approach

utilizes linguistic information to identify the sub-phonetic units and represent them using

phonological posteriors. To integrate information from multiple representations of speech, a

distance fusion technique is proposed. We show that the phone posteriors and phonological

posteriors represent complementary information to improve the performance of the QbE-

STD system. The QbE-STD solution developed in this paper makes no assumption on the

underlying language, thus it is applicable to multilingual scenarios involving low-resource or

zero-resource languages.
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4.1. Introduction

4.1 Introduction

In the last chapter, we exploited the low-dimensional subspace structure of the speech signal

to obtain better representation of the query and test utterances for QbE-STD. Here we focus

on utilizing the same properties in the matching algorithm to improve the likelihood scores.

The present work is motivated by the success of exemplar-based sparse representation in

detection and classification tasks (Wright et al., 2009; Chen et al., 2011). Previously, (Ram

et al., 2016) cast the query detection problem as subspace detection between query and non-

query speech where the corresponding subspaces are modeled through dictionary learning

for sparse representation. Given these dictionaries, detection of each frame is performed

based on the ratio of the two corresponding sparse representation reconstruction errors, and

the frame-level decisions are accumulated by counting the continuous number of frames

detected as the query. Although this approach shows a promising direction, it lacks a proper

framework to capture the temporal information inherent to speech signal. Also, it relies on

the background dictionaries to model non-query speech which is usually not available for

QbE-STD.

Building upon the above discussion, this work explores new systems designed to take advan-

tage of both temporal information and subspace structure of speech. The primary contribution

of this chapter is to show the effectiveness of subspace structure of speech data for finding a

spoken query in a test utterance. In this context, a query is modeled through dictionary which

can be built from single as well as multiple query examples. We present three different ways to

achieve our goal, as discussed in the following:

1. Sparse Subspace Detection (Section 4.3): This approach relies on modeling the low-

dimensional structure of sub-phonetic components of the query. These subspaces are

modeled using dictionaries for sparse coding. The dictionaries are used to obtain a

frame level sparse representation which quantifies the errors to reconstruct those frames.

We propose to use a dynamic programming technique to obtain possible regions of

occurrence of the query in test utterances. This reduces the effect of errors made by the

sparse coding algorithm on frame level and captures the sequential information present

in the data. It is a much faster technique compared to DTW based methods.

2. Subspace Regularized DTW (Section 4.4.1): In this approach, we use both sparsity and

DTW to make a better system, instead of relying solely on either of them to perform the

same task. The idea is to consider the frame-level reconstruction errors as subspace

based distances. We propose to regularize the distance matrix for DTW using this

subspace based distance and perform DTW to detect the query. This regularization

helps to take into account the temporal information as well as the subspace structure of

speech signal.

3. Subspace-Based Rescoring of DTW (Section 4.4.2): In another approach, we propose to

rescore the hypothesized regions obtained from the DTW system using sparsity based
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system. This method aims at improving the likelihood score for a hypothesized region

using the subspace structure of speech signal.

In all three cases discussed above, we rely on the low-dimensional subspace structure of

speech signal for the task of QbE-STD. The systems proposed in this chapter indicate different

ways of utilizing this information. These systems are evaluated on two different databases with

challenging conditions as we will see in Sections 4.6 and 4.7. The performance improvements

provided by the combination of DTW and sparsity based systems show the importance of

subspace structure of speech to perform QbE-STD.

4.2 Subspace Modeling

In this section, we describe the modeling of subspaces of query exemplars for sparse repre-

sentation. We start by describing the sparse representation of posterior feature vectors (as

a sparse linear combination of an over-complete dictionary posteriors) before discussing

different methods to construct dictionaries for query modeling.

4.2.1 Sparse Representation

When speech is represented in terms of posterior probabilities, the subspace corresponding

to each sub-word class is a low-dimensional space (Dighe et al., 2016b; Luyet et al., 2016).

Accordingly, a speech utterance comprised of sub-word classes, can be modeled as a union

of low-dimensional subspaces. Any data point in a union of low-dimensional subspaces can

be efficiently reconstructed by a sparse combination of other points in that space, a property

referred to as the self-expressiveness (Elhamifar and Vidal, 2013) of data.

Let yt be a posterior feature vector for a speech frame at time t . Each posterior vector yt is a K

dimensional feature vector where each dimension corresponds to a speech unit. These speech

units (associated with DNN outputs) can be phones (context dependent or independent),

senones, or any other sub-word unit. Following the self-expressiveness property of data, the

feature vector yt can be represented as a sparse linear combination of other feature vectors

present in the training set, {di }N
i=1 corresponding to the query subspace, i.e.:

yt ≈α1d1 +α2d2 + . . .+αN dN

= [d1 d2 . . . dN ]︸ ︷︷ ︸
D

× [α1 α2 . . . αN ]>︸ ︷︷ ︸
αt

= Dαt

(4.1)

where N is the number of training samples (basis vectors) used to model the query subspace,

D is a matrix of size K ×N which consists of basis vectors di of the query subspace, and αt

is the weight vector indicating the significance of each basis vector in construction of a test

posterior. The matrix D is called a dictionary matrix and the columns of this matrix are called
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atoms. The weight vector αt is sparse, i.e., having very few non-zero entries. The non-zero

entries correspond to the underlying low-dimensional subspaces which the test posterior

belongs to.

The framework of sparse representation introduced above in (4.1) relies on construction of

the dictionary matrix D. Given this dictionary for characterizing the underlying subspaces,

the independent subspaces are guaranteed to be identified correctly using sparse representa-

tion (Elhamifar and Vidal, 2013). In the following section, we explain how these subspaces can

be modeled using dictionary for sparse representation.

4.2.2 Dictionaries for Subspace Modeling

Dictionaries for sparse representation are constructed using an over-complete set of basis

vectors obtained from the training examples of corresponding classes. These dictionaries can

be modeled primarily in the following two ways:

1. Concatenation of training examples: In this method, we take the features of all avail-

able training examples for a desired class and concatenate them to build the dictio-

nary (Sainath et al., 2011; Gemmeke et al., 2011). This method is more suitable in a

scenario when very few training examples are available for a class. On the other hand,

with huge number of training examples, the size of the dictionary can grow very large.

This, in turn, can increase the computational complexity of the sparse coding algorithm.

A method to extract all the information present in the training data without increasing

the size of the dictionary to an undesirable magnitude is thus required.

2. Learning from training examples: Dictionary learning refers to the task of learning an

over-complete set of basis vectors from the training exemplars such that each training

exemplar can be reconstructed as a sparse linear combination of the dictionary vectors

(atoms). These dictionaries can be learned by solving an optimization problem which

gives the best approximation of training vectors while keeping the degree of sparsity on

desirable level as discussed in the following.

Let us have a set of T training vectors with Y = {y1, y2, ..., yT }, and their sparse represen-

tations using dictionary D ∈RK×M with A = {α1, α2, ..., αT }, where K is the dimension

of exemplar vectors, and M is the number of dictionary atoms, the objective function

for dictionary learning is defined as

argmin
D,A

1

T

T∑
t=1

(
1

2

∥∥yt −Dαt
∥∥2

2 +λ‖αt‖1

)
(4.2)

where λ is the regularization parameter. The first term in this expression, quantifies

the reconstruction error. The second term denotes the `1-norm ofα defined as ‖α‖1 =∑
i |αi | which quantifies the sparsity of αt . The joint optimization of this objective

function with respect to both D andαt simultaneously is non-convex, it can be solved

45



Chapter 4. Sparse Subspace Modeling for QbE-STD

as a convex objective by optimizing for one while keeping the other fixed (Mairal et al.,

2010).

In case of QbE-STD, we represent each query as a class to be modeled using dictionary. The

training data for these dictionaries is obtained by extracting posterior features from the spoken

instances of corresponding query as discussed in Section 2.3.2. These are the same posterior

features used to construct the query templates for DTW in the baseline system. We consider

two cases to construct a dictionary depending on the number of examples available for a

given query. If there is only one example available per query, the corresponding posterior

feature vectors constitute the dictionary. Whereas with multiple examples per query, we

either concatenate the posteriors of these examples to construct a dictionary or use these

posteriors to learn a dictionary. In case of learning a dictionary, we initialize the dictionary

with posteriors of the example having the highest number of frames. Posteriors from rest of

the examples are used to learn the dictionary according to (4.2).

4.3 Sparse Subspace Detection (SSD)

Once the query subspaces are modeled, the QbE-STD problem is cast as a subspace detection

problem where the reconstruction errors of the respective sparse representations are used

to detect the underlying subspaces. Given a test posterior feature vector yt and the query

dictionary D, the test vector can be represented as a sparse linear combination of dictionary

atoms characterizing the query. The sparse representation is obtained by solving the following

optimization problem:

αt = argmin
α

{
1

2

∥∥yt −Dα
∥∥2

2 +λ‖α‖1

}
(4.3)

where λ is the regularization parameter. The first term in this expression quantifies the

reconstruction error. The second term denotes the `1-norm of α defined as: ‖α‖1 =
∑

i |αi |
which quantifies the level of sparsity in the co-efficient vector, αt . In order to exploit the

temporal information inherent to speech signal, a sequence of 2c +1 posterior feature vectors

are concatenated to form a contextually rich vector for dictionary construction as well as

sparse representation as follows,

ỹt = [y>t−c . . .y>t . . .y>t+c ]> (4.4)

This mechanism is referred to as context appending which is a typical approach to incorporate

the dynamics of exemplars (Gemmeke et al., 2011; Dighe et al., 2016a). This context is a system

parameter to be optimized using development queries.

The reconstructed vectors using the corresponding sparse representations will be: ŷt = Dαt .

The subspace which can best represent a test vector yt corresponds to the least reconstruction

error (Chen et al., 2011; Ram et al., 2015). Hence, we use the Euclidean-norm based recon-
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Figure 4.1: Frame-level probability and different thresholds for an utterance containing “SO
THAT CONCLUDES MY PRESENTATION". The query speech contains “PRESENTATION"

struction error to perform QbE-STD at a later stage. The reconstruction errors are calculated

as follows:

e(yt ) = 1

2

∥∥yt − ŷt
∥∥

2 =
1

2

∥∥yt −Dαt
∥∥

2 (4.5)

We use these reconstruction errors to calculate frame-level empirical probabilities of the query

occurring in a test utterance as: p(yt ) = 1 − e(yt ). These frame-level probabilities constitute

a probability curve indicating the possibility of the query occurring in a test utterance. We

perform a non-linear smoothing to compensate for the potential errors made by the sparse

coding system. The probability curve for an example utterance is shown in Figure 4.1. In

order to identify a hypothesized region of occurrence from this curve, we use Kadane’s al-

gorithm (Bentley, 1984), a very simple dynamic programming technique with linear time

complexity to obtain a contiguous sub-array within an one-dimensional array of numbers

which has the largest sum. In our case, we subtract a threshold value from the probability curve

to get an array of numbers. This threshold provides a trade-off between the missed detection

and false alarm rate. Subsequently, we apply Kadane’s algorithm to obtain a sub-array with the

largest sum, which essentially indicates the hypothesized region. The area under this segment

of the curve represents the likelihood score. We normalize this score with the length of the

hypothesized region. Later, we compare the length of the hypothesized region with half the

length of the query and reject the ones having a smaller length in order to reduce false alarms.

A comprehensive block diagram for the proposed system is presented in Figure 4.2. The steps

to implement the system is summarized in Algorithm 2.
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Figure 4.2: Block diagram of the sparse subspace detection system. We first extract posterior
features from the query and use it to construct a dictionary. We employ this dictionary to
compute the sparse representation and corresponding reconstruction error for each frame of
test audio. Exploiting these reconstruction errors, we use Kadane’s algorithm (Bentley, 1984)
to hypothesize the region of occurrence of the query and calculate the likelihood score. If
the length of the hypothesis is smaller than half the query length, it is discarded to reduce
false alarm rate. Otherwise, the hypothesis score is compared to a threshold to yield a final
decision.

Algorithm 2 Sparse Subspace Detection (SSD) (Fig. 4.2)

Input: Spoken query and posteriors of a test utterance
Output: Decision if the query occurs in the test utterance

1: Extract the posterior features from spoken query
2: Perform context appending according to (4.4) for both query and test posteriors
3: Construct a dictionary by concatenating the posteriors from different examples or learn a

dictionary using (4.2)
4: Compute sparse representation of test posteriors using the dictionary according to (4.3)
5: Compute reconstruction error using (4.5)
6: Use Kadane’s algorithm to find out a hypothesized region and corresponding score
7: Use query length and score threshold to make a final decision

The QbE-STD system developed in this section does not use DTW to find a query speech in a

test utterance. However, the proposed system is not able to capture the temporal information

so well as compared to a DTW based system as we will see in Section 4.6. Thus, we propose

new approaches to build hybrid systems in the following section which will be able to combine

the positive aspects of both systems.

4.4 Sparse-DTW Hybrid Systems

In this section we propose two different ways to incorporate information coming from a

DTW system and the sparsity based system discussed above. The first method implements

a system-level fusion, whereas the second method performs a re-scoring of the hypotheses

from the DTW system using sparsity. We describe these systems in the following.

48
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Figure 4.3: Block diagram of the Subspace Regularized DTW system. We first extract posterior
features from the query and use it to construct a dictionary and a template. The dictionary is
used to calculate reconstruction errors for each frame of test audio to generate the subspace
based distance vector. The distance matrix for DTW is computed using the query template and
test posteriors. Each column of the distance matrix is then regularized using the errors from
sparse recovery. DTW is finally applied to obtain a hypothesis. If the length of the hypothesis
is smaller than half the query length, it is discarded to reduce false alarm. Otherwise, the
hypothesis score is compared to a threshold to yield a final decision.

4.4.1 Subspace Regularized DTW (SR-DTW)

The system presented here relies on the notion that the reconstruction error for a test frame can

be considered as distance between the query subspace and the corresponding test frame (Ram

et al., 2017). In this method, we propose to use the subspace based distance to regularize the

distance matrix for DTW as shown in Figure 4.3. Let us consider, X = [ x1,x2, . . . ,xm ] represent

the posterior feature vectors corresponding to the query speech and Y = [
y1,y2, . . . ,yn

]
cor-

responding to a test utterance. Here, m and n represent the number of frames in the query

speech and test utterance respectively. The distance matrix (∆) used for DTW can then be

calculated as follows:

∆(i , j ) = d(xi ,y j ) ∀ i = 1,2, . . . ,m

and j = 1,2, . . . ,n
(4.6)

where d(., .) is a standard distance measure such as Euclidean, cosine, etc.

On the other hand, the subspace based distance (reconstruction error e( j )) for a test frame

y j can be calculated using (4.3) and (4.5). We observe that each column of this distance

matrix corresponds to the frame-level distance between a test frame and all frames of the

query whereas we only have one number representing the distance from a test frame to the

query subspace as a whole. The DTW distance matrix is then regularized by replacing each of

its columns by a weighted average of each element in this column and the subspace based
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Figure 4.4: Block diagram of the system for subspace based re-scoring of DTW. We first extract
posterior features from the query and use it to construct a dictionary and a template. The
template is used in the baseline DTW system to hypothesize the region of occurrence of the
query and obtain a likelihood score. We obtain sparse representation of the hypothesized
region and compute subspace score using corresponding reconstruction errors. The final
score is then calculated by taking a convex combination these two scores. If the length of
the hypothesis is smaller than half the query length, it is discarded to reduce false alarm.
Otherwise, the hypothesis score is compared to a threshold to yield the final decision.

distance obtained using the same test frame:

∆r eg (i , j ) = wd ×∆(i , j )+ (1−wd )×e( j )

∀i = 1,2, . . . ,m and j = 1,2, . . . ,n
(4.7)

where∆r eg is the regularized distance matrix and wd is a fixed regularization weight parameter,

which will be optimized on an independent query development set. We then perform dynamic

programming on this regularized distance matrix of ∆r eg (i , j ) in a similar manner as the

baseline system (Rodriguez-Fuentes et al., 2014) to obtain a region of occurrence of the query

and calculate the likelihood of its occurrence. The whole procedure to implement this system

is presented in Algorithm 3.

The key idea behind the proposed method is that the frame-level DTW exploits local simi-

larities and properly models the temporal information, while the subspace-based distance

captures the similarity at the subspace-level, which considers all frames present in the query

for each test frame. A combination of these two distances is then shown to provide better

decision likelihoods, resulting in performance improvement.

In principle, this approach is applicable to any variant of DTW by regularizing the correspond-

ing distance matrix. However, in this work, and to provide us with strong reference points,

we implemented the system presented in (Rodriguez-Fuentes et al., 2014) and perform the

proposed regularization over the distance matrix followed by dynamic programming to obtain

the detection regions along with their likelihood scores.
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4.4. Sparse-DTW Hybrid Systems

Algorithm 3 Subspace Regularized DTW (SR-DTW) (Fig. 4.3)

Input: Spoken query and posteriors of a test utterance
Output: Decision if the query occurs in the test utterance

1: Extract the posterior features from spoken query
2: Perform context appending according to (4.4) for both query and test posteriors
3: Construct a dictionary by concatenating the posteriors from different examples or learn a

dictionary using (4.2)
4: Construct a template for DTW as discussed in Section 2.6.3
5: Compute sparse representation of test posteriors using (4.3) and corresponding recon-

struction errors using (4.5)
6: Construct a distance matrix by computing a normalized cosine distance between each

pair of posteriors from query and test utterance as discussed in Section 2.6.4.
7: Regularize the distance matrix using the reconstruction error according to (4.7)
8: Perform DTW to make a decision as described in Section 2.6.4.

4.4.2 Subspace Based Rescoring of DTW (SRS-DTW)

In this section, we investigate another approach to integrate information from sparsity into

DTW based systems. Instead of regularizing the distance matrix, we propose to re-score the

hypothesized region obtained from DTW using sparse coding.

Considering the spoken query X and the test audio Y, we apply the modified DTW algo-

rithm (as explained in Section 2.6.4) to obtain a hypothesized region denoted as Yhy p =[
ya ,ya+1, . . . ,yb−1,yb

]
and the corresponding normalized similarity score is SDT W . Then we

construct a dictionary for the query using one of the methods discussed in Section 4.2.2.

We use this dictionary in (4.3) to generate sparse representation for each frame of the query

and employ those representations in (4.5) to calculate the reconstruction errors for each

frame yi of the hypothesized region. The resulting error sequence is represented as ea,b =
[ ea ,ea+1, . . . ,eb−1,eb ], which is used to calculate another score for the hypothesized region,

Yhy p as follows,

SSubspace = 1− 1

b −a +1

b∑
i=a

ei (4.8)

We call it subspace based score which represents average similarity between the hypothesized

region and the spoken query using subspace structure of speech. Once we have scores from

both systems, we take a weighted average as follows:

S = ws ×SDT W + (1−ws)×SSubspace (4.9)

where S is the final similarity score between the hypothesized region and the spoken query, and

ws represents the associated weight. A block diagram of this proposed re-scoring mechanism

is presented in Figure 4.4. Also, a step-by-step summary for implementing the system is

described in Algorithm 4.
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Algorithm 4 Subspace Based DTW Rescoring (SRS-DTW) (Fig. 4.4)

Input: Spoken query and posteriors of a test utterance
Output: Decision if the query occurs in the test utterance

1: Extract the posterior features from spoken query
2: Perform context appending according to (4.4) for both query and test posteriors
3: Construct a dictionary by concatenating the posteriors from different examples or learn a

dictionary using (4.2)
4: Construct a template for DTW as discussed in Section 2.6.3
5: Perform DTW using the template to obtain a hypothesized region and corresponding score,

SDT W as described in Section 2.6.4
6: Compute sparse representation of test posteriors of the hypothesized region using (4.3)
7: Compute corresponding reconstruction errors according to (4.5) and use it to obtain the

subspace based score, SSubspace according to (4.8)
8: Compute the final score using SDT W and SSubspace according to (4.9)
9: Use query length and score threshold to make a final decision

4.5 Experimental Set-up

We use two different databases to evaluate and analyze the proposed approaches: the AMI

meeting corpus (IHM set) and the SWS 2013 corpus. The details of these datasets are described

in Section 2.4. In this section, we present different pre-processing steps and evaluation metrics

used for our experiments.

4.5.1 Query Selection

In AMI meeting corpus, there are approximately 12k words in the training, out of which we

extracted 200 more frequent words (excluding functional words) for our detection experiments

including very short words such as ‘ADD’ to long words such as ‘TECHNOLOGY’ (as described

in Section 3.5.1). Later, these queries are divided into two groups in a random manner to

obtain sets of 100 queries each. One set is used as development queries to optimize the

parameters of different systems whereas the other set is used to evaluate the performance

of corresponding system. We use the test set of AMI as the search database for QbE-STD

evaluation which contains 12612 utterances.

4.5.2 Feature Extraction

We have used the setup presented in Section 2.3.2 to extract phone posterior features for

our detection experiments. The setup corresponding to different databases is implemented

separately as described below.

• AMI Phone Recognizer: The phone posterior features are estimated from a DNN with

MFCC based spectral features as input. These MFCC features are extracted form speech
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data by following the steps described in Section 2.3.1. To add contextual information, 4

frames of left and right acoustic contexts are appended (total 9 frames) to have a 351

dimensional input vector to the DNN. The DNN consists of 3 hidden layers of 1024

neurons each, to estimate 43 dimensional phone posteriors at the output. There are

39 phones obtained from CMU pronunciation dictionary1 for lexical modeling. The

remaining 4 phones are used to model silence and non-speech sounds. The training

labels for the DNN are generated using a GMM-HMM based speech recognizer (Hinton

et al., 2012). The recognizer is used to force align the training data to obtain the cor-

responding phonetic transcription. This whole setup is implemented using the Kaldi

toolkit (Povey et al., 2011).

• BUT Phone Recognizer: There is no data available for training a phone posterior ex-

tractor for the SWS 2013 database. Thus, we use the same phone recognizers as used

in (Rodriguez-Fuentes and Penagarikano, 2013) to estimate phone posteriors. The

phone recognizers were developed at Brno University of Technology (BUT) for three

different languages: Czech, Hungarian and Russian (Schwarz, 2008). These recognizers

were trained using SpeechDAT(E) (Pollák et al., 2000) database which contains 12, 10

and 18 hours of speech for the respective languages. There are 43, 59 and 50 phones

for the respective languages. In all cases, 3 additional units were considered to model

silence and non-speech sounds.

4.5.3 Speech Activity Detection

We perform speech activity detection (SAD) to remove the noisy frames from test utterances

as well as queries as discussed in Section 2.6.2. In case of AMI dataset, we have one set of

phone posteriors that we use to perform SAD. However, we have 3 sets of phone posteriors

(Czech, Hungarian and Russian) in case of SWS 2013 dataset. We average the probability of

non-speech units from all 3 phone posteriors to perform SAD.

4.5.4 Score Normalization

We obtain a likelihood score corresponding to each pair of spoken query and test utterance

using QbE-STD. These scores are normalized to have zero-mean and unit-variance per query

to reduces the variability in scores across different queries (Section 3.5.5).

4.5.5 Evaluation Metric

We use MT W V , C mi n
nxe and DET curves (as described in Section 2.5) to evaluate and compare

the performance of different systems. The MT W V considers prior probability of occurrence

(Pt ar g et ) of a query in the test utterances which is 4×10−3 and 8×10−4 for AMI and SWS 2013

respectively. For our experiments, we consider cost of false alarm (C f a) to be 1, cost of missed

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Table 4.1: Performance comparison of the three proposed systems for query detection with
baseline system using only 1 example per query.

System MT W V ↑ C mi n
nxe ↓ SSF ↓

Baseline 0.4758 0.6526 0.1778
SSD 0.3030 0.7874 0.0367

SR-DTW 0.4914∗∗ 0.6376∗∗ 0.1889
SRS-DTW 0.4875∗∗ 0.6399∗ 0.1831

∗ significant at p < 0.05; ∗∗ significant at p < 0.001

detection (Cm) to be 100 resulting in the weight factor (β) of 2.49 and 12.49 for AMI and SWS

2013 respectively. We also perform statistical significance test to measure the improvements

in MT W V and C mi n
nxe and the corresponding p-values are indicated with the results.

In order to compare the computational efficiency of different approaches, we also report the

Searching Speed Factor (SSF ) (Rodriguez-Fuentes and Penagarikano, 2013), which indicates

the amount of CPU effort required to search a query in an audio document. Let the duration

of a query and a test audio be tq and ta units of time, respectively. If an algorithm takes t units

of time to search the query, the SSF is defined as: t
tq×ta

. The total CPU time is reported as if it

was computed on a single CPU. If multiple examples are used to search a given query, we use

average duration of those examples as the query duration. Lower value of SSF corresponds to

a faster system.

4.6 Experimental Analysis

We conducted extensive experiments on AMI meeting corpus to analyze the performance of

different systems proposed in this paper. The experiments are performed in two challenging

scenarios when very few examples (10 examples) or just one query example is provided for

QbE-STD, and the test utterances are conversational spontaneous speech with competitive

speakers.

4.6.1 Baseline System

The DTW based QbE-STD system discussed in Section 2.6 is used as a highly competitive

baseline system (Anguera et al., 2014). The performance of this system using evaluation

queries are shown in Tables 4.1 and 4.2 corresponding to single and multiple examples per

query respectively. We observe that the performance with multiple examples per query is

significantly better than its one example counterpart. This indicates that template averaging

is able to incorporate variations from multiple examples of the same query which is similar to

the observations presented in (Rodriguez-Fuentes et al., 2014).
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Table 4.2: Performance comparison of the three proposed systems for query detection with
baseline system using 10 examples per query.

System
10 Examples (Concatenation) 10 Examples (Learning)

MT W V ↑ C mi n
nxe ↓ SSF ↓ MT W V ↑ C mi n

nxe ↓ SSF ↓
Baseline† 0.6028 0.5014 0.2070 0.6028 0.5014 0.2070

SSD 0.4117 0.6613 0.1109 0.3992 0.6897 0.0406
SR-DTW 0.6332∗∗∗ 0.4797∗∗ 0.2415 0.6231∗∗∗ 0.4847∗∗ 0.2220

SRS-DTW 0.6374∗∗∗ 0.4610∗∗∗ 0.2242 0.6323∗∗∗ 0.4674∗∗∗ 0.2123

†the baseline system uses template averaging in case of 10-examples
∗ significant at p < 0.05; ∗∗ significant at p < 0.001; ∗∗∗ significant at p < 0.00001;

4.6.2 Sparse Subspace Detection (SSD)

In this section, we evaluate the sparse subspace detection system presented in Section 4.3.

This is a sparsity based system which completely relies on the subspace structure of speech

data. The purpose of developing this system is to quantify the contribution of subspace

structure of speech for the task of QbE-STD. We follow the steps presented in Algorithm 2

to implement this system. As discussed in Section 4.3, in case of one example per query

context appended posterior features of the example constitute the dictionary. On the other

hand, with multiple examples for each query, we construct the dictionary in two ways: (i)

concatenation of context appended posteriors and, (ii) learning from the context appended

posteriors of different examples of the query. The size of these dictionaries vary depending

on the length of query examples, context size and the dictionary construction method being

used (concatenation or learning). The number of rows equals the length of context appended

posteriors whereas the number of columns (atoms) depend on the number of frames in the

query examples and the dictionary construction method. Dictionary construction is followed

by the rest of the steps in Algorithm 2 to find the region of occurrence and likelihood score of

the query in the test utterance. Context size (c), the level of sparsity (λ) and a single threshold

parameter used in Kadane’s algorithm are optimized using development queries to have

the best detection performance. The parameters are optimized for all development queries,

and these are not dependent on individual queries. The results using evaluation queries are

presented in Tables 4.1 and 4.2 corresponding to single and multiple examples per query

respectively. The performance of this system is not as good as the baseline system in both

cases. However, this is a much faster technique compared to the baseline system as indicated

by the lower value of SSF . Also, it shows the subspace structure of speech can be used to

perform QbE-STD with reasonable accuracy. The performance degradation can be attributed

to the absence of a framework to incorporate temporal information.
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4.6.3 Subspace Regularized DTW (SR-DTW)

The subspace regularized DTW system is proposed to incorporate the temporal information

from the spoken utterance, as discussed in Section 4.4.1. To evaluate this system, we construct

a dictionary for each query as discussed in previous section and follow the steps shown in

Algorithm 3 to obtain the likelihood score for a query occurring in a test utterance. The

parameters (Context, λ and wd ) are optimized using the development queries and the results

on evaluation queries are shown in Tables 4.1 and 4.2 respectively. The optimization is done

by varying all the parameters in their respective ranges and maximizing the MT W V . Clearly,

this system gives improvement over the baseline system in both cases of single and multiple

examples per query which shows the importance of exploiting the subspace structure of

speech while developing a QbE-STD system.

4.6.4 Subspace Based Rescoring of DTW (SRS-DTW)

Another approach to take advantage of both DTW and sparsity based system, is to combine

their respective scores as discussed in Section 4.4.2. In this case also, we construct different

dictionaries depending on the number of examples provided for each query and perform

corresponding detection experiment. We follow the procedure described in Algorithm 4 to

obtain the likelihood score for a query occurring in a test utterance. For this system, the

Context and λ parameter are optimized by keeping ws equal to 0. This essentially means that

we are trying to obtain the best set of scores using only the sparsity based errors, irrespective of

the scores generated by the baseline system. Once the context and λ have been so optimized ,

we vary ws in a given range to obtain the best value.

The resulting performances are summarized in Tables 4.1 and 4.2 corresponding to single

and multiple examples per query respectively. Similar to the SR-DTW system, this system

also gives improvement over the baseline system in both cases, once again indicating the

importance of subspace structure of speech for the problem at hand. The performance of

these systems are also shown using DET curves in Figures 4.5 and 4.6 corresponding to single

and multiple examples case respectively. The curves show that the performance improvement

is consistent over all operating points in the DET curve.

4.6.5 Concatenated vs Learned Dictionary

We have performed two sets of experiments for all systems proposed in this work when multi-

ple examples per query are provided. They differ in the way corresponding query dictionaries

are constructed. When we compare the performance in these cases for all three systems (as

presented in Table 4.2), we can see that the performance is worse when the dictionary is

learned from the given examples compared to concatenating them to form the dictionary.

This indicates that the dictionary learning algorithm has not been able to capture all the

information from the query examples provided. However, the performance difference is small,
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Figure 4.5: DET curves showing the performance of the Sparse-DTW hybrid systems compared
to the baseline DTW system using 1 example per query.
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Figure 4.6: DET curves showing the performance of the Sparse-DTW hybrid systems compared
to the baseline DTW system using 10 examples per query.
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Table 4.3: Optimized Values of Context and λ giving the highest MTWV score on development
queries for different systems

Systems
1 Example 10 Examples

Concatenation Learning
Context λ Context λ Context λ

SSD 4 0.01 9 0.6 8 0.1
SR-DTW 1 0.1 2 0.3 2 0.2

SRS-DTW 4 0.01 7 0.5 8 0.1

indicating the validity of dictionary learning approach when concatenating the examples of a

query increases the computational cost significantly.

4.6.6 Effect of Context and λ

In this section, we discuss the effect of acoustic context (as indicated in (4.4)) andλ on different

systems. The optimal value of these parameters to obtain best MT W V using development

queries is presented in Table 4.3. The context size depends on the average query length to

capture longer temporal dependency. As we add more examples to generate query templates,

the optimal context size increases. On the other hand, the value of λ indicates the desired

level of sparsity. It is dependent on the number of atoms present in the dictionary for sparse

representation. Bigger dictionaries require higher λ to achieve good reconstruction of the

test frames. Thus we need higher λ for the 10-examples case compared to the 1-example

case. However, the number of atoms in case of 10-examples (Learning) is higher than 1-

example case, but lower than 10-examples (Concatenation) case. This leads to the optimal

value of λ for 10-examples (Learning) case being higher than 1-example case but lower than

10-examples (Concatenation) case. We also observe that optimal context size in case of SR-

DTW is smaller compared to other two systems. The reason is, in SR-DTW system, we are

not only trying to obtain better reconstruction of test frames, but also want to hypothesize

the regions representing queries. Broader context produces better reconstruction for smaller

regions, effectively reducing the length of the hypothesized regions. Thus the system makes a

trade-off between quality of reconstruction and length of the detected region and the optimal

context size is smaller than other systems. As an example of this optimization, we present in

Figure 4.7 the variation of MT W V score with respect to context size and different values of λ

for 10-examples (Concatenation) case. The scores are generated using SRS-DTW system on

development queries while keeping the weight parameter, ws = 0. Clearly, Context = 7 and

λ= 0.5 give the best performance, which is later used to optimize the value of ws .
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Figure 4.7: Variation of MT W V with changing context for different values of λ. The exper-
iments are performed using SRS-DTW system on development queries with 10 examples
(Concatenation) per query, while keeping ws = 0. It corresponds to the scenario when we
obtain the scores from sparse reconstruction errors by using boundaries from the baseline
system

4.6.7 Effect of Fusion Weight

We have proposed two ways of fusing the baseline DTW and sparsity based system as discussed

in Section 4.4. Parameters wd and ws indicate the fusion weights for SR-DTW and SRS-

DTW system, respectively. In both cases, (1−w) represent the contribution of information

obtained by relying on the subspace structure of speech. Thus, higher w corresponds to lower

contribution from sparsity. We have optimized these fusion weights on development queries

for both systems. As an example, we show the performance variation of SRS-DTW system with

corresponding weight, ws in Table 4.4, while keeping the other parameters (Context and λ)

fixed. We also present the corresponding baseline performance for comparison. We observe

that, ws = 0.7,0.8,0.9 gives very similar results for 1-example case and ws = 0.6,0.7,0.8 for

10-examples (Concatenation) case. This indicates a range of values of ws to obtain similar

results which are better than the baseline. The optimal values of ws (to obtain best MT W V )

are 0.8 and 0.7 corresponding to the cases of 1-example and 10-examples (Concatenation).

So, the effective weights for sparsity based scores are 0.2 and 0.3 respectively. It shows that

the sparsity based scores provide better discrimination with more examples for each query.

This is in conformity with the idea of subspace modeling where many examples are needed

for better modeling of a class (Mairal et al., 2010).
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Table 4.4: Variation of MT W V and C mi n
nxe for different values of fusion weight (ws). The

experiments are performed using SRS-DTW system on development queries.

weight (ws)
1 Example 10 Examples (Concat.)

MT W V ↑ C mi n
nxe ↓ MT W V ↑ C mi n

nxe ↓
0.6 0.4638 0.6394 0.6043 0.4757
0.7 0.4761 0.6345 0.6051 0.4765
0.8 0.4795 0.6355 0.6015 0.4828
0.9 0.4767 0.6414 0.5890 0.4965

Baseline 0.4646 0.6558 0.5684 0.5192

4.6.8 Computational Efficiency

The computational efficiency of different systems is shown in Tables 4.1 and 4.2 using SSF

metric. It can be observed that sparse subspace detection (SSD) is the most efficient system

among all in both cases of using different number of examples. The price for this efficiency

is paid by degradation in detection performance. On the other hand, the hybrid approaches

need more computation than the baseline system, because in both systems, we perform DTW

as in the baseline system while performing additional computation for obtaining the sparse

representation to complete the hybridization. Also, SRS-DTW system is computationally more

efficient than the SR-DTW system because in the case of SRS-DTW system, we perform sparse

coding only for a sub-sequence (hypothesized region from baseline) of the test utterance,

whereas for SR-DTW system, we need the sparse representation for the whole utterance to

obtain the regularized distance matrix for DTW. We further observe that, dictionary learning

approach is faster than the concatenation of examples of a query. This difference in speed is

due to the smaller size of dictionary used for sparse coding when we have learned a dictionary

from different examples of a query. Thus in all cases, there is a trade-off between performance

enhancement and computational efficiency of the systems and we can choose a system to

perform QbE-STD depending on our requirements.

4.7 Experiments on SWS 2013

We conducted another set of experiments on SWS 2013 database to show the validity of

proposed approach in real life scenarios. As discussed in Section 4.5.2, we use 3 different BUT

phone recognizers to extract the posterior features. In Rodriguez-Fuentes et al. (2014), the

authors concatenate the feature vectors obtained from different phone recognizers to perform

query detection, which was their best individual system. Thus, we implemented it as our

baseline system.

Out of the three proposed systems, we use the SRS-DTW system due to its ease of parameter

optimization and superior performance compared to other systems. We perform separate
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Table 4.5: Performance comparison of the baseline system and subspace based re-scoring of
DTW system on SWS 2013. Each system is evaluated for three different cases where different
number of examples per query is available.

Examples
per query

Baseline System Proposed System
MT W V ↑ C mi n

nxe ↓ MT W V ↑ C mi n
nxe ↓

1 0.4287 0.6183 0.4362∗ 0.6071∗∗

3 0.3007 0.6682 0.3204∗∗∗ 0.6571∗∗

10 0.2740 0.6893 0.3020∗∗∗ 0.6703∗∗∗

∗ significant at p < 0.05; ∗∗ significant at p < 0.001; ∗∗∗ significant at p < 0.00001;

Figure 4.8: Comparison of improvements in MT W V score with additional examples per
query for baseline DTW and proposed SRS-DTW system. The performance gain is higher with
the proposed system.
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experiments for queries with different number of examples available per query. In case of

multiple examples per query, we concatenate them to construct the corresponding dictionary

as it gives better performance compared to dictionary learning experiments on AMI corpus.

The parameters of our system are optimized using development queries and the results

using evaluation queries are presented in Table 4.5. The difference in performance in three

sets of queries can be attributed to the corresponding quality of recordings. Clearly, our

system performs better than the baseline system in all three cases. We observe that the

performance gain increases with increasing number of examples per query. This is similar to

the results obtained on AMI database. To analyze the effect of additional examples per query

(for queries with 3 or 10 examples), we conduct another set of experiments where we add one

example at a time to each query and obtain the corresponding detection performance. The

resulting MT W V values are presented as a function of the number of examples per query

in Figure 4.8. Clearly, the performance improvement is higher with additional examples for

SRS-DTW system compared to the baseline. The overall performance gain indicates that the

proposed methods are generalizable to real-world scenario and shows the importance of

low-dimensional subspace structure of speech for the task of QbE-STD.

4.8 Conclusion

In this chapter, we have proposed three different systems exploiting the low-dimensional

subspace structure of speech. The performance of these systems indicate the usefulness of

this structure for QbE-STD. The sparse subspace detection system is shown to be faster than

the baseline template matching system with reasonable accuracy. On the other hand, the

hybrid systems relying on sparse representation as well as template matching approach yield

better performance. The improvement is higher in case of multiple examples per query, which

indicates the capability of the proposed approaches to exploit the information from multiple

examples better than the baseline system. The performance gain in MediaEval challenge

database validates our approach in challenging real-world scenarios. It has also been shown

that the proposed systems benefit from multiple examples of a query.
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5.1 Introduction

In the last two chapters, we investigated several sparsity based approaches to (1) generate

better phone or phonological posterior features, and (2) improve the DTW based matching

algorithm. In spite of the significant improvements over the baseline, those systems still

suffer from the language mismatch problem during DNN based feature extraction. To deal

with this problem, we train multilingual networks aimed at obtaining language independent

representation.

We also observe that DTW based template matching is not well suited in case of local mis-

matches between the test utterances and its associated query, resulting in low matching score.

Thus,we propose a novel approach using Convolutional Neural Network (CNN) architecture

to match a query and a test utterance instead of DTW based matching. Finally, we integrate

the representation learning and CNN-based matching to jointly train and further improve

the QbE-STD performance. Different components of this system are implemented sepa-

rately to analyze their performance before building the end-to-end system as discussed in the

following.

(i) Representation Learning (Section 5.2): In contrast to using several language dependent

posterior features (as discussed in Section 4.5.2) for QbE-STD, here we propose to train

multilingual bottleneck networks to estimate language independent representation of the

query and test utterances. This is achieved by using multitask learning principle (Caru-

ana, 1997) to jointly classify phones from multiple languages and the shared network is

able to learn language independent representation. These representations are used to

perform both DTW based template matching (Section 5.3) and CNN based Matching.

(ii) CNN based Matching (Section 5.4): The DTW based template matching is applied on a

frame-level similarity matrix computed from the feature vectors of the query and the

test utterance to compute the likelihood score of occurrence. Unlike DTW, we view the

similarity matrix as an image and propose to approach the QbE-STD problem as an

image classification task. We observe that the similarity matrix contains a quasi-diagonal

pattern if the query occurs in the test utterance. Otherwise, no such pattern is observed.

Thus for each spoken query, a test utterance can be categorized as an example of positive

or negative class depending on whether the query occurs in it or not.

(iii) End to End QbE-STD System (Section 5.5): The proposed neural network based end-to-

end system takes spectral features (MFCC) corresponding to a query and a test utterance

as input, and the output indicates whether the query occurs in the test utterance. It has

three components: (i) Feature extraction, (ii) Similarity matrix computation and (iii) CNN

based matching, combined into one architecture for end-to-end training. The feature

extractor aims at obtaining language independent representation to produce better score

for similarity matrix which in turn improves the CNN based matching.
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The proposed end-to-end QbE-STD system has the following advantages over the baseline

DTW based approach: (i) the CNN based matching provides a learning framework to the

problem (ii) the CNN considers the whole similarity matrix at once to find a pattern, whereas

the DTW algorithm takes localized decisions on the similarity matrix to find a warping path,

(iii) the CNN based matching introduces a discrimination capability in the system and (iv)

the end-to-end training enables joint optimization of the representation learning and the

matching network.

The proposed methods are evaluated on SWS 2013 database and their generaliaztion ability is

analyzed on QUESST 2014 database as described in Section 5.6. The significant improvements

obtained using these approaches show the importance of a learning framework for QbE-STD.

Finally, we present the conclusions in Section 5.7.

5.2 Representation Learning

DNNs have been traditionally used to obtain bottleneck feature based representation for

speech related tasks (Yu and Seltzer, 2011; Veselỳ et al., 2012; Szoke et al., 2015) as discussed in

Section 2.3.3. In this section, we present different DNN architectures to obtain monolingual as

well as multilingual bottleneck features.

5.2.1 Monolingual Neural Network

We train DNNs for phone classification using five languages to estimate five distinct monolin-

gual bottleneck features. Our monolingual DNN architecture, consists of 3 fully connected

layers of 1024 neurons each, followed by a linear bottleneck layer of 32 neurons, and a fully

connected layer of 1024 neurons. The final layer feeds to the output layer of size ci correspond-

ing to number of classes (e.g. phones) of the i -th language. The architecture is presented in

Figure 5.1.

The monolingual bottleneck features have previously been shown to provide good perfor-

mance for this task (Szoke et al., 2015). Here, we analyze their performance and propose to

train multilingual networks to estimate better features for QbE-STD.

5.2.2 Multilingual Neural Network

Multilingual neural network have been studied in the context of ASR in order to obtain lan-

guage independent representation of speech signal (Veselỳ et al., 2012). Those networks are

trained using multitask learning (Caruana, 1997) which aims at exploiting similarities across

tasks resulting in an improved learning efficiency when compared to training each task sepa-

rately. Generally, the network architecture consists of a shared part and several task-dependent

parts. In order to obtain multilingual bottleneck features we model phone classification for

each language as different tasks, thus we have a language independent part and a language
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Figure 5.1: Monolingual and multilingual DNN architectures for extracting bottleneck features
using multiple languages. ci is the number of classes for the i -th language and n is the size of
input vector.

dependent part. The language independent part is composed of the first layers of the network

which are shared by all languages forcing the network to learn common characteristics. The

language dependent part is modeled by the output layers (marked in red in Figure 5.1), and

enables the network to learn particular characteristics of each language.

In this work, we train two different multilingual networks using 3 languages and 5 languages re-

spectively in order to analyze the effect of training with additional languages. The architecture

of these networks are presented in Figure 5.1 and described in the following.

• Multilingual (3 languages): this architecture consists of 4 fully connected layers having

1024 neurons each, followed by a linear bottleneck layer of 32 neurons. Then, a fully

connected layer of 1024 neurons feeds to 3 output layers corresponding to the different

training languages. The 3 output layers are language dependent while the rest of the

layers are shared among the languages.

• Multilingual (5 languages): this architecture is similar to the previous one except it

uses an additional fully connected layer of 1024 neurons, and two extra output layers

corresponding to the 2 new languages. The increased number of layers is intended at

modeling the extra training data gained by adding languages.

All neural networks discussed in this section have rectifier linear unit (ReLU) as non-linearity

used after each linear transform except in the bottleneck layer and the output layer. The

output layer has multiple softmax layers corresponding to each language.
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5.3 DTW based Template Matching

We use different types of bottleneck features (monolingual and multilingual) discussed in

previous section to perform DTW based template matching for QbE-STD. We follow the

system described in Section 2.6 for this purpose. To construct the distance matrix for DTW

with bottleneck features, cosine distance has been shown to yield better performance (Szoke

et al., 2015) than the logarithm of cosine distance used for posterior features. Our preliminary

experiments show similar trend, thus we use cosine distance for our experiments. The query

matching can also be performed using CNN as discussed in the following section.

5.4 CNN based Matching

In this section, we present a novel CNN based query matching technique to perform QbE-STD.

We cast the problem as a binary classification of images. We discuss how to construct these

images and use a CNN for classification in the following.

5.4.1 Image Construction

We describe the procedure to construct a similarity matrix from a spoken query and a test

utterance which is used as an image for binary classification. We extract bottleneck features (as

discussed in Section 5.2) from both spoken queries and test utterances using MFCC features as

input. Let us consider, Q = [
q1,q2, . . . ,qm

]
representing the bottleneck features corresponding

to a spoken query and T = [ t1,t2, . . . ,tn ] corresponding to a test utterance. Here, m and n

represent the number of frames in the query and test utterance respectively. Given any two

bottleneck feature vectors qi and t j , we compute cosine similarity (Szoke et al., 2015) as

follows:

s(qi ,t j ) = qi · t j∥∥qi
∥∥ · ‖ti‖

(5.1)

Higher values of s indicate higher similarity between the vectors. We further apply a range

normalization such that all values in the similarity matrix will be between -1 to 1. This helps in

dealing with variations in similarity scores for different pairs of query and search utterances.

snor m(qi ,t j ) =−1+2.
(s(qi ,t j )− smi n)

(smax − smi n)
(5.2)

where smi n = mini , j (s(qi ,t j )) and smax = maxi , j (s(qi ,t j )).

The similarity matrix is categorized in two class of images: (i) if a query occurs in a test

utterance (positive class) and (ii) if a query does not occur in a test utterance (negative class).

We present one example for each of this type of images in Figures 5.2 and 5.3 respectively. The

vertical and horizontal axes represent the frames of query and test utterance respectively. The

colors indicate strength of values in the matrix, higher values correspond to red and lower
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Figure 5.2: Positive case: the query occurs in the test utterance

Figure 5.3: Negative case: the query does not occur in the test utterance

values to blue. The quasi-diagonal pattern observed in the positive class helps to discriminate

between the two classes. We present our methodology in the following section to achieve this

goal.

5.4.2 Methodology

In this section, we present a CNN based classifier for QbE-STD. Our CNN architecture is similar

to the VGG network (Simonyan and Zisserman, 2014) which has been shown to perform well

in image recognition task. It consists of a series of convolution and max-pooling layers with

a fixed setting of hyper-parameters for all layers, which simplifies the selection of hyper-

parameters.

Contrary to the standard image classification task, the input of our CNN is a similarity matrix.

Therefore, we use only one channel instead of three corresponding to the RGB color model

for images. The architecture consists of four sets of two convolution layers and one max-

pooling layer; followed by two fully-connected layers with a soft-max on top. The details are

described in Table 5.1. All convolution layers use ReLU (Krizhevsky et al., 2012) as activation

function. The number of channels and dropout were optimized to 30, and 0.2 respectively

with a development set. Our architecture has eight convolution layers in total. We expected

that a simpler network will be able to perform reasonably well given the simplicity of the task.

However, preliminary experiments with less layers were not able to outperform the baseline

system. It should be noted that, our system is a language independent system which can be
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Table 5.1: CNN Architecture

Layer Description
Input 100×800×1

Maxpool Channel: in=1, out=1, Filter: 2x2, Stride: 2
Conv Channel: in=1, out=30, Filter: 3x3, Stride: 1
Conv Channel: in=30, out=30, Filter: 3x3, Stride: 1

Maxpool Channel: in=30, out=30, Filter: 2x2, Stride: 2
Conv Channel: in=30, out=30, Filter: 3x3, Stride: 1
Conv Channel: in=30, out=30, Filter: 3x3, Stride: 1

Maxpool Channel: in=30, out=30, Filter: 2x2, Stride: 2
Conv Channel: in=30, out=30, Filter: 3x3, Stride: 1
Conv Channel: in=30, out=30, Filter: 3x3, Stride: 1

Maxpool Channel: in=30, out=30, Filter: 2x2, Stride: 2
Conv Channel: in=30, out=30, Filter: 3x3, Stride: 1
Conv Channel: in=30, out=15, Filter: 3x3, Stride: 1

Maxpool Channel: in=15, out=15, Filter: 2x2, Stride: 2
FC Input:1×23×15, Output=60
FC Input:60, Output=2
SM Input:2, Output=2

Conv: Convolution; FC: Fully connected; SM: Softmax

trained using query and test utterance pairs from any language with minimal supervision

(without corresponding transcriptions) because it only requires the information whether the

query occurs in the test utterance.

We faced two main challenges to train the CNN for our task which are described as follows:

• Variable size input: The similarity matrices have variable widths and lengths corre-

sponding to the number of frames of spoken queries and test utterances respectively.

We deal with this issue by fixing the size for all input matrices to an average width and

length of the training samples (in our training set, it is 100×800). In case the similarity

matrix has length or width larger than the defined input, we down-sample it by deleting

its rows and/or columns in regular intervals. On the other hand, if the length or width is

smaller, we simply fill the gap with the lowest similarity value from the corresponding

distance matrix. Down sampling does not affect the quasi-diagonal pattern severely as

the rows and columns being deleted are spread throughout the distance matrix. Also,

we did not apply segmentation of test utterances in fixed size intervals because it will

require the region of occurrence of the query in a test utterance which is not available

for QbE-STD.

• Unbalanced data: Typically, the frequency of occurrence of a particular query in the

search space is very small. As a consequence, the number of positive and negative

samples is highly unbalanced (in our training data is 0.1% to 99.9% respectively). To

deal with this problem, we balance the training set with equal number of positive and
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Figure 5.4: Neural network based end-to-end architecture for QbE-STD. The two feature
extraction blocks share the same set of parameters.

negative examples. The negative examples were randomly sampled from the corre-

sponding set at each iteration. Preliminary experiments showed that this strategy has

better performance than using weighted loss function for training.

5.5 End to End QbE-STD System

In this section, we propose a novel neural network based end-to-end architecture to perform

QbE-STD. We combine the representation learning network with the CNN based matching net-

work in one architecture such that the input to the network are MFCC features corresponding

to a query and a test utterance, and the output indicates whether the query occurs in the test

utterance. We discuss the architecture and the training procedure in the following sections.

5.5.1 Architecture

The end-to-end architecture for QbE-STD has 3 components as shown in Figure 5.4: (i)

Feature extraction, (ii) Similarity matrix computation and (iii) CNN based matching. The

feature extraction block is used to obtain a frame-level representation using MFCC features

as input for both the query and test utterance. The goal of this block is to obtain a language

independent representation which produces better frame-level similarity score to construct

the similarity matrix. This block can be implemented using DNN, CNN or LSTM network. In

this work we use DNN for this purpose.

We can use any of the 3 architectures presented in Section 5.2 as our feature extraction block.

However, we will see in Section 5.6 that the multi-lingual network trained using 5 languages
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generates the best bottleneck features for QbE-STD. Thus we use this network as feature

extraction block for our end-to-end architecture. We use the the language independent part

(first 5 layers of the network, until bottleneck layer) of the network to extract features from

both the query and test utterance which feeds to the 2nd block of our architecture.

The 2nd block of our architecture computes a frame-level similarity matrix between the query

and the test utterance using the corresponding feature vectors as discussed in Section 5.4.1.

This similarity matrix is then fed to the CNN to produce a matching score as discussed in

Section 5.4.2. This whole network is jointly optimized by training it in an end-to-end manner

as discussed in the following section.

5.5.2 Training Challenges

The end-to-end network faces same challenges as the CNN based matching network due to

the nature of the problem: (i) variable size input, (ii) unbalanced data. We fix the size of input

similarity matrix by either down-sampling or zero-padding whereas we randomly sample from

the negative example set to balance the data from positive and negative classes as discussed

in Section 5.4.2.

In addition, we do not have sufficient data to train this network from scratch. Thus, we use the

principle of transfer learning (Pratt et al., 1991) to initialize different blocks of this network

using previously trained network instead of random initialization. The CNN based matching

block is initialized with the trained network from Section 5.4 and the feature extraction block

is initialized with the first 5 layers of the 5 language neural network presented in Section 5.2.2.

The weight matrices corresponding to CNN based matching block can be frozen during

training to enable the system to only train the feature extraction block. In this setting, the

CNN based matching block can be viewed as a loss function to extract better features. These

feature vectors should be able to produce more discriminative quasi-diagonal patterns (as

discussed in Section 5.4.1) required to classify the positive examples from the negative ones.

5.6 Experimental Analysis

In this section, we describe the databases used to train and evaluate the three systems pro-

posed in this chapter: (i) DTW based Matching of bottleneck features, (ii) CNN based Matching

of bottleneck features and (iii) End-to-End neural network model. Then, we present the

training details corresponding to each system and analyze their QbE-STD performance.

5.6.1 Databases and Evaluation Metrics

We use the GlobalPhone database (see Section 2.4.4) to train the monolingual as well as

multilingual models presented in Section 5.2. The QbE-STD experiments are performed on

both SWS 2013 (see Section 2.4.2) and QUESST 2014 (see Section 2.4.3). In addition, we use
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the SWS 2013 dataset to train the CNN based Matching network as well as the End-to-End

network and evaluate the corresponding models. We use the QUESST 2014 dataset to show

the generalization ability of those models.

Similar to previous chapters, we use C min
nxe and MT W V scores as well as DET curves (as

described in Section 2.5) in order to evaluate and compare the three systems presented in

this chapter. C min
nxe is used as the primary metric to choose models for evaluation. For both

SWS 2013 and QUESST 2014 databases, We consider the cost of false alarm (C f a) to be 1 and

cost of missed detection (Cm) to be 100 for computing MT W V . We also performed statistical

significance test to measure the improvements in C min
nxe and MT W V scores.

5.6.2 DTW based Template Matching

We perform DTW based template matching using the bottleneck features extracted from

several mono-lingual as well as multilingual networks. In the following, we discuss the training

details for those networks to extract the corresponding bottleneck features and present their

QbE-STD performance on SWS 2013 and QUESST 2014 databases.

Bottleneck Feature Extraction

We use Kaldi toolkit (Povey et al., 2011) to extract MFCC features and generate the target

labels for training different neural networks presented in Section 5.2. MFCC features with a

context of 6 frames (both left and right) constitutes the input vector of size 507. The context

value is optimized using the development queries on SWS 2013. The outputs are monophone

based tied states (also known as pdfs in Kaldi) corresponding to each language as presented

in Table 2.4. The training labels for these networks are generated using a GMM-HMM based

speech recognizer (Hinton et al., 2012). The number of classes corresponding to French,

German, Portuguese, Spanish and Russian are 124, 133, 145, 130, 151 respectively. Note that,

we also trained these networks using senone classes, however they perform worse than the

mono phone based training.

The architectures presented in Section 5.2 are implemented using Pytorch (Paszke et al., 2017).

We apply layer normalization (Ba et al., 2016) before the linear transforms and use rectifier

linear unit (ReLU) as non-linearity after each linear transform except in the bottleneck layer

for both mono and multilingual networks. We train those networks with batch size of 255

samples and dropout of 0.1. In case of multilingual training, we use equal number of samples

from each language under consideration. Adam optimization algorithm (Kingma and Ba,

2014) is used with an initial learning rate of 10−3 to train all networks by optimizing cross

entropy loss. The learning rate is halved every time the development loss increases compared

to the previous epoch until a value of 10−4. All the networks were trained for 50 epochs. We

extract bottleneck features from these trained networks and apply speech activity detection

(SAD) before using them for DTW as well as CNN based matching.
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Table 5.2: Performance of the DTW based template matching approach in SWS 2013 us-
ing monolingual bottleneck features for single and multiple examples per query using all
evaluation queries.

Training Language
Single Example Multiple Examples

C min
nxe ↓ MT W V ↑ C min

nxe ↓ MT W V ↑
Portuguese (PT) 0.6771 0.3786 0.6478 0.3963

Spanish (ES) 0.6776 0.3754 0.6501 0.3967
Russian (RU) 0.7035 0.3184 0.6767 0.3383
French (FR) 0.7021 0.333 0.6757 0.3511

German (GE) 0.7503 0.2643 0.7257 0.2919

Table 5.3: Performance of the DTW based template matching approach in SWS 2013 using mul-
tilingual bottleneck features for single and multiple examples per query using all evaluation
queries.

Multilingual Network
Single Example Multiple Examples

C min
nxe ↓ MT W V ↑ C min

nxe ↓ MT W V ↑
PT-ES-RU 0.6330 0.4305 0.6023 0.4478

PT-ES-RU-FR-GE 0.6204 0.4358 0.5866 0.4580

We used the setup presented in Section 4.5.3 to perform SAD utilizing the phone posteri-

ors computed from Czech, Hungarian and Russian phone recognizers trained on Speech-

DAT(E) (Pollák et al., 2000) database. The 3 sets of phone posteriors are estimated for both

SWS 2013 and QUESST 2014 databases and the corresponding non-speech probabilities are

used to eliminate the noisy frames before matching.

Performance on SWS 2013

We consider two cases depending on the number of examples per query to evaluate different

bottleneck features for QbE-STD. In case of a single example per query, the corresponding

bottleneck features constitute the template. On the other hand, with multiple examples per

query we compute an average template using traditional DTW (Sakoe and Chiba, 1978) before

performing the detection experiment as discussed in Section 2.6.3.

The C min
nxe and MT W V scores for query detection experiments using monolingual bottleneck

features is shown in Table 5.2. We can see that the bottleneck features from Portuguese (PT)

performs the best in terms of C min
nxe score with very close performance from Spanish (ES)

bottleneck features.

We implemented two multilingual networks using 3 languages (PT, ES, RU) and 5 languages
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Table 5.4: Performance of the DTW based template matching approach in QUESST 2014 using
monolingual bottleneck features for different types of queries in evaluation set.

Training Language
T1 Queries T2 Queries T3 Queries

C min
nxe ↓ MT W V ↑ C min

nxe ↓ MT W V ↑ C min
nxe ↓ MT W V ↑

Portuguese (PT) 0.5582 0.4671 0.6814 0.3048 0.8062 0.1915
Spanish (ES) 0.5788 0.4648 0.7074 0.2695 0.8361 0.1612
Russian (RU) 0.6119 0.4148 0.7285 0.2434 0.8499 0.1385
French (FR) 0.6266 0.4242 0.7462 0.2086 0.8522 0.1249

German (GE) 0.6655 0.3481 0.7786 0.1902 0.8533 0.1038

Table 5.5: Performance of the DTW based template matching approach in QUESST 2014 using
multilingual bottleneck features for different types of queries in evaluation set.

Multilingual Network
T1 Queries T2 Queries T3 Queries

C min
nxe ↓ MT W V ↑ C min

nxe ↓ MT W V ↑ C min
nxe ↓ MT W V ↑

PT-ES-RU 0.4828 0.5459 0.6218 0.3626 0.7849 0.2057
PT-ES-RU-FR-GE 0.4606 0.5663 0.6013 0.3605 0.7601 0.2138

(PT, ES, RU, FR, GE) as discussed in Section 5.2.2. The 3 language network uses the best

performing monolingual training languages. Performances of the features extracted from

these networks are shown in Table 5.3. We observe that PT-ES-RU-FR-GE features significantly

outperform PT-ES-RU features indicating that additional languages for training provide better

language independent features.

Performance on QUESST 2014

We have only one example per query in case of QUESST 2014 dataset, thus the correspond-

ing bottleneck features constitute the template. It has three different types of queries as

discussed in Section 2.4.3. Similar to (Rodríguez-Fuentes et al., 2014), we did not employ

any specific strategies to deal with those different types of queries. The C min
nxe and MT W V

scores corresponding to different types of queries using monolingual bottleneck features is

shown in Table 5.4. We can see that the bottleneck features from Portuguese (PT) performs

the best in terms of C min
nxe score for all three types of queries. The corresponding results using

mulit-lingual bottleneck features is shown in Table 5.5. We have a similar observation as in

SWS 2013 that PT-ES-RU-FR-GE network performs better than PT-ES-RU network indicating

that more language for training helps in obtaining better bottleneck features for DTW.
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Table 5.6: Performance of the CNN based matching approach in SWS 2013 using PT-ES-RU-
FR-GE bottleneck features for single and multiple examples per query using all evaluation
queries.

System
Single Example Multiple Examples

C min
nxe ↓ MT W V ↑ C min

nxe ↓ MT W V ↑
DTW based Matching 0.6204 0.4358 0.5866 0.4580
CNN based Matching 0.6078 0.3986 0.5767 0.4115

5.6.3 CNN based Matching

We use the bottleneck features extracted from PT-ES-RU-FR-GE network to train a CNN for

matching queries and test utterances, as it performs the best for both SWS 2013 and QUESST

2014 databases. We describe the CNN training process and compare its performance with the

DTW based matching in the following.

CNN Training

The development and evaluation queries in SWS 2013 database share the same search space

for QbE-STD. The labels provided for development queries indicate whether a query occurs in

a test utterance or not. Thus we only have these queries to train our CNN. We use 495 out of

505 queries for training and rest of the 10 queries are used for tuning which were chosen in a

random manner. Effectively, we have 1551 queries when we consider different examples of

the same query. We have designed our experiment in this manner to follow the setup of SWS

2013 task and make a fair comparison.

We use the bottleneck features from all the queries and test utterances, and filter them using a

SAD to obtain 1488×10750 training example pairs. Out of these examples 24118 are positive ex-

amples and rest are negative examples. We balance the classes following the strategy discussed

in Section 5.4.2. We combine the examples from both classes and prepare batches of 20 sam-

ples of query and search utterance pairs. We use the Adam optimization algorithm (Kingma

and Ba, 2014) with a learning rate of 10−4 to train the CNN by optimizing cross entropy loss.

The whole setup is implemented using Pytorch (Paszke et al., 2017).

Performance on SWS 2013

We present the performance of CNN based matching system for QbE-STD in Table 5.6 and

compare it with the best DTW based matching system from previous section for different

number of examples per query. Similar to DTW based system, we use template averaging to

obtain the template for queries with multiple examples. This process was only performed

during test time, however the training samples were formed using only single example per
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Table 5.7: Performance of the CNN based matching approach in SWS 2013 using PT-ES-RU-
FR-GE bottleneck features for different types of queries in evaluation set.

System
T1 Queries T2 Queries T3 Queries

C min
nxe ↓ MT W V ↑ C min

nxe ↓ MT W V ↑ C min
nxe ↓ MT W V ↑

DTW based Matching 0.4606 0.5663 0.6013 0.3605 0.7601 0.2138
CNN based Matching 0.4121 0.6103 0.5235 0.4375 0.6569 0.3603

query. We observe from Table 5.6 that the CNN based matching performs significantly better

in terms of C min
nxe score for both single and multiple examples per query case. This indicates

that the CNN produces more informative scores about the ground-truth than the DTW.

Performance on QUESST 2014

We use the model trained on SWS 2013 for testing on QUESST 2014 evaluation set to analyze

the generalizability of CNN based matching system. We compare the performance of DTW

and CNN based matching and present the results in Table 5.7. As discussed earlier, it has three

types of queries and we do not apply any specific strategies to deal with them. We can clearly

see that CNN performs significantly better than the DTW system for all 3 types of queries.

The performance gets increasingly worse from Type 1 to Type 2 and from Type 2 to Type 3.

This can be attributed to the training of our system using only queries from SWS 2013 which

are similar to Type 1 queries from QUESST 2014. However the consistency in performance

improvement for all kinds of queries shows that CNN based matching system is generalizable

to newer datasets.

5.6.4 End to End QbE-STD System

In this section, we utilize the bottleneck feature extractor and CNN based matching network

to construct the end to end QbE-STD system. We present the end to end training procedure

and its performance on both SWS 2013 and QUESST 2014 databases. We also discuss that the

CNN based matching network can be used as a loss function to obtain better features for DTW

based template matching.

End to End Training

We implement the architecture presented in Section 5.5.1 using Pytorch (Paszke et al., 2017).

The training and development sets consists of the same pairs of query and test utterances

as used for training the CNN in previous section. The difference is, we train the CNN using

bottleneck features, whereas the end-to-end network uses the corresponding MFCC features.

We attempt to train the network by randomly initializing the weight matrices of the whole
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Table 5.8: Performance of the End-to-End neural network based approach in SWS 2013 for
single and multiple examples per query using all evaluation queries. Different number of
layers in the feature extractor block were frozen to train with limited data.

# of layers frozen
Single Example Multiple Examples

C min
nxe ↓ MT W V ↑ C min

nxe ↓ MT W V ↑
3 0.5555 0.4328 0.5396 0.4552
2 0.5637 0.4417 0.5541 0.4557
1 0.5522 0.4461 0.5395 0.4682
0 0.5339 0.4412 0.5207 0.4654

network. However those trained models yield very poor QbE-STD performance. This can

be attributed to the limited training data as well as the complexity of the problem. Thus,

we start the training by initializing different blocks of the model with corresponding pre-

trained network as discussed in Section 5.5.2. In order to limit the trainable parameters,

we progressively freeze the first few layers of the feature extraction block and train separate

networks. In this case of end-to-end training, the frame-level speech activity detection (SAD)

(as discussed in Section 5.6.2) is performed on the output of feature extraction network before

using them to compute the similarity matrix. It is not applied on the MFCC features in order

to avoid discontinuities in the contextual input vectors.

Performance on SWS 2013

The performance of the end-to-end QbE-STD system is presented in Table 5.8. We freeze the

first few layers of the feature extractor while keeping the rest of network trainable and show

the corresponding results. Similar to previously presented systems, we use template averaging

to obtain the template for queries with multiple examples. However, the template averaging is

performed after the query examples are forward passed through the feature extractor. We can

see from Table 5.8 that the best performance is obtained by training all layers of the feature

extractor. It shows that the problem of limited training data can be alleviated by pre-training

different parts of the network.

Performance on QUESST 2014

The generalization ability of the models trained on SWS 2013 is evaluated using QUESST

2014 database. The Qbe-STD performance of those models on QUESST 2014 is presented

in Table 5.9. We observe that T1 queries perform best with the model trained using 2 frozen

layers, whereas T2 and T3 queries perform best with the model trained using 1 frozen layer. It

can be attributed to the training of the models using SWS 2013, which enables the network to

optimize for that database when fine-tuning all layers of the feature extractor.
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Table 5.9: Performance of the End-to-End neural network based approach in QUESST 2014 for
different types of queries in evaluation set. Different number of layers in the feature extractor
block were frozen to train with limited data.

# of layers frozen
T1 Queries T2 Queries T3 Queries

C min
nxe ↓ MT W V ↑ C min

nxe ↓ MT W V ↑ C min
nxe ↓ MT W V ↑

3 0.3881 0.6395 0.5238 0.4362 0.6254 0.3669
2 0.3796 0.6499 0.5158 0.4433 0.6278 0.3617
1 0.3888 0.6309 0.5124 0.4513 0.6148 0.3793
0 0.4268 0.6190 0.5338 0.4338 0.6591 0.3646

Table 5.10: Performance of the DTW based template matching approach using multilingual
bottleneck features which are fine tuned using CNN based loss function. The experiments
were performed using evaluation queries in SWS 2013 for single and multiple examples per
query.

# of layers frozen
Single Example Multiple Examples

C min
nxe ↓ MT W V ↑ C min

nxe ↓ MT W V ↑
3 0.5788 0.4633 0.5521 0.4888
2 0.5705 0.4708 0.5539 0.4914
1 0.5607 0.4719 0.5429 0.4894
0 0.5718 0.4597 0.5593 0.4738

Bottleneck 0.6204 0.4358 0.5866 0.4580

CNN based Matching as Loss Function

In the end-to-end model for QbE-STD, we can freeze the parameters of the CNN based match-

ing network and consider the CNN as a loss function for fine tuning the feature extraction

network. This loss function enables the feature extractor to learn and generate features which

produce more discriminative similarity matrices to be classified by the CNN. It can be ob-

served through the performance of the system. We use the features obtained after fine-tuning

the network to perform DTW based matching and compare it with the best performance

obtained using bottleneck features as shown in Section 5.6.2. Similar to previous section,

we progressively freeze different number of layers of the feature extractor. The results are

presented in Table 5.10. We observe that the feature extractor retrained with 1 frozen layer

gives the best results which is significantly better than the bottleneck features indicating the

importance of CNN based loss function.
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Table 5.11: Performance comparison of DTW based Matching, CNN based Matching and End-
to-End neural network model for QbE-STD in SWS 2013 using single and multiple examples of
all evaluation queries.

System
Single Example Multiple Examples

C min
nxe ↓ MT W V ↑ C min

nxe ↓ MT W V ↑
DTW based Matching 0.6204 0.4358 0.5866 0.4580
CNN based Matching 0.6078 0.3986 0.5767 0.4115

End-to-End 0.5339 0.4412 0.5207 0.4654

Table 5.12: Performance comparison of DTW based Matching, CNN based Matching and End-
to-End neural network model for QbE-STD in QUESST 2014 using different types of queries in
evaluation set.

System
T1 Queries T2 Queries T3 Queries

C min
nxe ↓ MT W V ↑ C min

nxe ↓ MT W V ↑ C min
nxe ↓ MT W V ↑

DTW based Matching 0.4606 0.5663 0.6013 0.3605 0.7601 0.2138
CNN based Matching 0.4121 0.6103 0.5235 0.4375 0.6569 0.3603

End-to-End 0.3796 0.6499 0.5158 0.4433 0.6278 0.3617

5.6.5 System Comparisons

In this section, we compare the three systems for QbE-STD presented in this chapter: (i) DTW

based Matching of bottleneck features, (ii) CNN based Matching of bottleneck features and (iii)

End-to-End neural network model using different metrics as discussed in the following.

C min
nxe and MT W V scores

The performance comparisons using C min
nxe and MT W V scores corresponding to SWS 2013

and QUESST 2014 databases are presented Tables 5.11 and 5.12 respectively. We observe that

the CNN based Matching performs significantly better than the DTW based Matching and

the End-to-End system performs significantly better than the DTW based Matching in both

databases in terms of C min
nxe score.

DET curves

We also present the same system comparison using DET curves for both databases in Fig-

ures 5.5 and 5.6 respectively. In case of SWS 2013 database, we compare the performance

using single example per query, and for QUESST 2014 database T1 query performances are

compared. In both databases the CNN based Matching and End-to-End system performs
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Figure 5.5: DET curves comparing the performance of DTW based Matching, CNN based
Matching and End-to-End system on SWS 2013 database using evaluation queries with single
example.
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Figure 5.6: DET curves comparing the performance of DTW based Matching, CNN based
Matching and End-to-End system using T1 evaluation queries of QUESST 2014 database.
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Figure 5.7: Comparison of QbE-STD performance of language specific evaluation queries
(single example per query) of SWS 2013 using C min

nxe values (lower is better)

Figure 5.8: Comparison of QbE-STD performance of language specific evaluation queries (T1
query) of QUESST 2014 using C min

nxe values (lower is better)

better than the DTW based Matching except for very low false alarm rates.

Language Specific Performance

Finally, we compare the language specific query performance of different systems for both

databases using C min
nxe values in Figures 5.7 and 5.8 respectively. In SWS 2013 database, the

experiments are performed using single examples per query. The comparison shows that the

performance of CNN based Matching and End-to-End system are noticeably worse than the

DTW based Matching for ‘Isixhosa’, ‘Isizulu’, ‘Sepedi’ and ‘Setswana’ indicating that the perfor-

mance gains are not uniform throughout different languages. This is due to the considerably

less amount of training data corresponding to those languages which can be seen in Table 2.2

in Chapter 2.

In QUESST 2014 database, we compare the T1 query performances. Similar to SWS 2013

database, non-uniform performance improvement is observed for queries of different lan-
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guages. The performance is marginally worse only for ‘non-native English’ queries in End-to-

End system.

5.7 Conclusions

In this chapter, we implemented several monolingual as well as multilingual neural network

networks to extract bottleneck features for QbE-STD and show that more training languages

give better performance. Then, we proposed a novel CNN based matching approach for QbE-

STD using those bottleneck features. It enables discriminative learning between positive and

negative classes, which is not featured in DTW based matching systems. It gives significant

improvement over the best DTW system with bottleneck features. We also propose to integrate

the bottleneck feature extractor with the CNN based matching network to provide an end-

to-end learning framework for QbE-STD. It gives further improvement over the CNN based

matching approach. Both the CNN based matching and end-to-end system are generalizable

to other database, giving significant improvement over the DTW based matching. We also

show that the CNN matching block in the end-to-end system can be used as a loss function to

obtain better language independent features.
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6 Conclusions and Future Work

In this chapter, we summarize the conclusions of this thesis in Section 6.1 and present some

possible future research directions in Section 6.2.

6.1 Conclusions

In this thesis, we addressed the problem of language independent spoken term detection

in zero resource scenario. We investigated sparse modeling and neural network based ap-

proaches to improve the performance over state-of-the-art.

We exploited the low-dimensional subspace structures of speech signal to obtain better poste-

rior features for QbE-STD. We used dictionary learning to model the phonetic subspaces in

an unsupervised manner and use them to enhance the phone posteriors. We also employed

DNNs to model the sub-phonetic attributes using corresponding labels, resulting in phono-

logical posteriors. Phone and phonological posteriors were shown to capture complementary

information. Hence, the use of a distance fusion technique to combine those two information

sources clearly results in significant performance improvement.

It was then shown that query matching can be casted as a subspace detection problem. In

this case, the query subspaces are modeled using dictionaries for sparse representation and

frame-level reconstruction errors are used to detect a query in a test utterance. This approach

is shown to be much faster than the DTW algorithm, however the detection performance was

worse. Thus, the reconstruction errors are used to improve the DTW based matching score

in two ways: (i) regularizing the distance matrix for DTW and (ii) re-scoring the DTW based

score. Both approaches yield significant improvement over the state-of-the-art.

We employ several monolingual as well as multilingual neural network to extract features for

query detection using DTW and show that more training languages give better performance.

The DTW-based matching was replaced by CNN-based matching to introduce a learning

framework for QbE-STD, yielding further improvements. In this case, the DTW distance matrix

is viewed as an image which contains a quasi-diagonal pattern if the query occurs in a test
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utterance. Finally, we integrate the CNN matching network with the feature extractor and

train the whole architecture in an end-to-end manner to gain further improvement. Both

CNN based matching and end-to-end system generalizes well to a very challenging database

(QUESST 2014). We also show that the CNN matching network can be used as a loss function

for this whole network and better language independent features can be obtained.

6.2 Directions for Future Research

We proposed a neural network based framework to replace the DTW. This new approach has

the potential to be used in other problems where DTW based systems are applicable (e.g. time

series analysis). The resulting system, although performing very well compared to previous

state-of-the-art, could still be improved in several ways, including:

• The CNN-based matching network has to deal with variable size images. We have pro-

posed simple down-sampling and zero-padding approaches to deal with this problem.

In the future, the system can benefit from better up-sampling and down-sampling

approaches.

• We have used the information whether a query occurs in a test utterance or not as

ground-truth label for that pair. Even though it is not as extensive as the corresponding

transcriptions, it could still be difficult to obtain. Thus, a DTW-based matching score

can be used as ground-truth for training the CNN.

• The query matching with CNN can be performed using a triplet loss function (Schroff

et al., 2015) to make it more discriminative. In this case, the system processes three

inputs instead of two. Each input sample consists of a test utterance with two queries,

one that occurs in the test utterance and other one that does not.

We have shown that language independent features obtained from multilingual networks

yield significantly better performance than the language dependent features obtained from

monolingual networks. We also demonstrated that the CNN-based matching can be used as

loss function to obtain more language independent features. Thus, true language independent

representations are the key to improving the query detection score. Future research can be

focused on achieving that goal with novel neural network architectures and loss functions.
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