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Validity of pervasive computing 
based continuous physical activity 
assessment in community-dwelling 
old and oldest-old
Narayan schütz1, Hugo saner1,2, Beatrice Rudin4, Angela Botros1, Bruno pais5, 
Valérie santschi5, philipp Buluschek6, Daniel Gatica-perez7,9, prabitha Urwyler  1,3, 
Laura Marchal-Crespo1,8,10, René M. Müri  1,3 & tobias Nef1,8

In older adults, physical activity is crucial for healthy aging and associated with numerous health 
indicators and outcomes. Regular assessments of physical activity can help detect early health-related 
changes and manage physical activity targeted interventions. The quantification of physical activity, 
however, is difficult as commonly used self-reported measures are biased and rather unprecise point 
in time measurements. Modern alternatives are commonly based on wearable technologies which are 
accurate but suffer from usability and compliance issues. In this study, we assessed the potential of an 
unobtrusive ambient-sensor based system for continuous, long-term physical activity quantification. 
towards this goal, we analysed one year of longitudinal sensor- and medical-records stemming from 
thirteen community-dwelling old and oldest old subjects. Based on the sensor data the daily number 
of room-transitions as well as the raw sensor activity were calculated. We did find the number of room-
transitions, and to some degree also the raw sensor activity, to capture numerous known associations 
of physical activity with cognitive, well-being and motor health indicators and outcomes. the results 
of this study indicate that such low-cost unobtrusive ambient-sensor systems can provide an adequate 
approximation of older adults’ overall physical activity, sufficient to capture relevant associations with 
health indicators and outcomes.

It is commonly known and widely accepted that physical activity positively influences health. There is strong 
scientific evidence that physical activity reduces the risk for a variety of health outcomes like high blood pressure, 
type 2 diabetes, cancer, weight gain, falls, depression, loss of cognitive function or functional ability in seniors1,2. 
While these findings are of high relevance for all age groups, they are of special importance for the growing 
number of old and even more so for the oldest-old adults – especially since physical activity is a modifiable risk 
factor3,4. In addition, seniors are more likely to suffer from chronic diseases, experience falls or face significant 
cognitive decline. They are also more prone to a sedentary lifestyle5 and results of cardiorespiratory fitness meas-
ures even suggest an age-related acceleration in decline6, which might also be detectable by physical activity.

While it is evident that moderate-to-vigorous-intensity physical activity is usually better, research suggests 
that light- and moderate-intensity physical activity is still better than no physical activity in terms of health ben-
efits2. This is important for seniors as they may often find it difficult to engage in high-intensity physical activities 
such as running or aerobic exercise. Light- and moderate-intensity physical activities like cooking, vacuuming 
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or other everyday activities, constitute an important and often integral part in older adult’s total physical activity. 
Measuring this type of physical activity is rather difficult but may be very important for the early detection of 
preventable physical activity decline or to monitor the course of interventions. Today, physical activity assess-
ments are often based on self-reporting which is not only prone to response bias but also suffers from recall bias 
– especially with declining memory4,7–9. Frequently used alternatives are accelerometer or pedometer based7,10. 
While these provide objective physical activity measures in free-living conditions, they must be worn, which 
becomes cumbersome in long-term assessments of several months or even years and is thus often accompanied 
by wear-time dependent non-compliance issues10.

Advances in technology made pervasive computing feasible for technology assisted healthy aging by embed-
ding smart microprocessor-driven computing devices in everyday objects (as for instance seen in appliances of 
smart homes)11. A growing body of groundbreaking research shows that such systems are not only feasible and 
well accepted by seniors but are also useful for the detection of emergency situations or early changes in health 
status9,12,13. A frequently used and increasingly commercialized technology is passive infrared (PIR) motion sens-
ing, which is both inexpensive and unobtrusive, to an extent that people tend to forget about it14,15. In this context, 
PIR motion sensors work by detecting the presence of a person’s motion in an equipped room16. Besides safety 
applications17–20, most work in this direction primarily targeted cognitive outcomes. Galambos et al. for instance 
showed that changes in PIR-sensor derived motion density maps correspond to exacerbations of depression and 
dementia21. In a similar manner Hayes et al. demonstrated that variability in PIR-sensor derived activity and 
gait-speed data differed between cognitively normal subjects and those with mild cognitive impairment (MCI)22. 
Similarly, Urwyler et al. highlighted the difference between sensor derived activities of daily living patterns in 
healthy and MCI subjects23.

In this work, we assess the potential of PIR-sensors in the light of physical activity. In particular, we explore 
the validity and potential of unobtrusive, continuous PIR-sensor readings for physical activity quantification, 
targeting in-home light- and moderate-intensity physical activity. Towards this goal, we analyzed the behavior 
of PIR-sensor based (physical) activity metrics and compared them with a multitude of cognitive, well-being 
and motor-function related assessments to see whether this approximation to physical activity sufficiently cap-
tures known effects of physical activity on commonly used health indicators and outcomes. The data for the 
analysis stems from a naturalistic sample of thirteen community dwelling old and oldest-old Swiss subjects 
(age = 90.9 ± 4.3 years, female = 69.23%) from the StrongAge cohort in Olten (Switzerland). All analyzed sub-
jects shared the same apartment layout. The subjects were monitored for the duration of one year. Simultaneously, 
a battery of standardized clinical tests and assessments were performed repeatedly. The resulting data was aggre-
gated and analyzed in terms of baseline differences. In addition, physical activity data from a subject with rapid 
health decline was evaluated and visualized in a case study format.

Results
Over roughly one year, more than 89’389 person-hours were recorded from the homes of thirteen old and 
oldest-old participants (age = 90.9 ± 4.3 years) (Table 1), all sharing the same apartment layout and sensor 
placement. During the same period, classic assessments of multiple health outcomes have been assessed. Two 
normalized PIR-sensor derived measures of physical activity were calculated. First, the daily sensor activity – 
measuring the time the sensors were detecting activity (Equation (1)). Second, the normalized daily number of 
room-transitions (measuring the hourly number of transitions between different rooms) (Equation (2)). Here, 
we present the resulting associations and observations between these sensor-based physical activity metrics and 
the classic clinical assessments (Fig. 1).

Cognitive function and well-being. With regard to cognitive and well-being factors, three differ-
ent assessments were analysed: the Montreal Cognitive Assessment (MoCA)24, the Geriatric Depression Scale 
(GDS)25 and the EQ-VAS score (EQ-VAS as part of the EQ-5D-3L)26. EQ-VAS scores showed a significant cor-
relation with the number of room-transitions (ρ = 0.593, p = 0.033). However, no associations with depression 
were found – as measured by the GDS. General cognitive functioning, as measured by the MoCA, was negatively 

Participant Age (years) Sex BMI (kg/m2) MoCAa Hours Monitored

1 94 f 21.502 15 6925.428

2 91 m 25.911 23 7594.068

3 95 f 24.006 25 7595.858

4 91 m 25.952 25 7596.852

5 88 m 27.465 24 7596.960

6 91 m 22.309 14 7597.152

7 94 f 28.076 25 7595.049

8 80 f 24.387 21 7299.515

9 89 f 23.336 22 7587.843

10 94 f 27.344 18 7595.700

11 98 f 22.491 23 3744.691

12 89 f 23.795 14 7597.119

13 88 f 22.269 17 3062.842

Table 1. Participant characteristics and demographics. aAt inclusion.
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correlated with the coefficient of variation (CV) of the sensor activity (ρ = −0.556, p = 0.048) as well as with the 
CV of the number of room-transitions (ρ = −0.587, p = 0.035).

Motor function. Multiple motor function related factors, consisting of muscle strength (handgrip, knee 
extensor and hip flexor) as well as mobility measures, were examined. Mobility measures included the fall risk 
related timed up and go (TUG)27 test and the balance and gait focused Tinetti performance-oriented mobility 
assessment (POMA)28.

Amongst the measured muscle groups, right hand handgrip strength showed the strongest correlation with 
both physical activity measures (sensor activity: ρ = 0.692, p = 0.009; number room-transitions: ρ = 0.775, 
p = 0.002). The remaining muscle groups were only correlated to the number of room-transitions metric and 
apart from the right knee and right hip also to the CV of the number of room-transitions (handgrip right: 
ρ = −0.648, p = 0.017 and handgrip left: ρ = −0.577, p = 0.039).

Concerning the TUG times, the cognitive variant (walking while simultaneously counting backwards) had 
the strongest negative correlation with the number of room-transitions metric (ρ = −0.670, p = 0.012), but also 
the times for the normal and manual TUG variant showed significant negative correlations with the number 
of room-transitions (ρ = −0.599, p = 0.031 and ρ = −0.659, p = 0.014, respectively). The POMA score for gait 
showed a negative correlation with the number of room-transitions (ρ = 0.606, p = 0.028) but no significant cor-
relation was found in case of the POMA balance score.

Case study of a subject with a rapid decline in health. Although one year is rather short to capture 
significant health changes in such a small population sample, the relationship between health and our physical 
activity metrics can be shown visually in one participant (participant 11) with a very quick and eventually fatal 
decline in health. In that regard we visualized the course in room-transition based physical activity between a 
healthy subject (participant 9) and the one with significant health issues (Figs 2 and 3). It is apparent that not only 
did the participant with health issues exhibit a more sedentary lifestyle to begin with (visible in the difference of 
base levels in physical activity) but also did the measured physical activity decrease in a short time-frame.

Discussion
To evaluate the feasibility and validity of PIR-sensor based physical activity assessments, we analysed the relation-
ship of sensor derived physical activity metrics with results from standardized clinical assessments. The results 
from thirteen community-dwelling seniors allowed us to evaluate whether this approach towards physical activ-
ity quantification captures similar relationships with well-being, cognitive and motor function as conventional 
physical activity itself. The main advantage of PIR-sensor based physical activity measurements over traditional 
methods is its ability to objectively, continuously and unobtrusively measure light- and moderate-intensity phys-
ical activity. This might allow for gapless longitudinal assessment of physical activity over the course of years and 
maybe even decades, which could benefit from early detection of physical activity decline (and subsequently to 
a reasonable degree also general health) and improve management of respective interventions7. In addition, it 
might also facilitate physical activity research in older adults.

Clinical assessments. Fall risk, estimated by TUG times, is negatively correlated to baseline values of 
room-transitions, indicating that more room-transitions reduce fall risk. Similarly, gait performance was posi-
tively correlated with the room-transitions – as measure by the gait score of the POMA. Muscle strength measures 

Figure 1. Visual Correlation Matrix of the four sensor-derived physical activity metrics and the clinical 
assessments). Shown is a visual representationh of the respective correlations as measured by the Spearman’s 
rank correlation coefficients (ρ) based on an α = 0.05i. The sensor-derived physical activity metrics (rows) 
represent the mean and the coefficient of variation (CV) of the daily measurements over the whole monitoring 
duration. The size as well as colour-intensity signal the correlation strength, where red means a strong positive 
and blue a strong negative correlation. aTimed Up & Go (TUG)27 (Counting = while additionally counting 
backwards from 100; Cup = while holding a full cup of water). bGeriatric Depression Scale (GDS)25. cTinetti 
Performance-oriented mobility assessment (POMA)28. dMontreal cognitive assessment (MoCA)24. eKnee 
extensor strength (Knee). fHip flexor strength (Hip). gVisual analogue scale: measuring perceived health based 
on the EQ-5D-3L system (EQ-VAS)26. hcreated using the R package “corrplot”34 i*<0.05; **<0.01.

https://doi.org/10.1038/s41598-019-45733-8


4Scientific RepoRts |          (2019) 9:9662  | https://doi.org/10.1038/s41598-019-45733-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

were predominantly correlated to room-transitions, with the exception of right-hand grip strength, which was 
also found to correlate with sensor activity. So far, these findings are in line with research about physical activ-
ity1,2. Interestingly, depression (measured by the GDS) had no significant correlations although literature would 
suggest otherwise2. While this could probably be explained by the small sample size and a rather optimistic 
study population, it might also be related to the measured intensity of physical activity. Many depression related 
physiological benefits of physical activity are primarily related to higher intensity physical activity29. Similarly 
to the GDS, MoCA derived cognitive functioning was not correlated to either of the sensor-derived metrics, in 
contrast to what physical activity literature would state. However, the CV of sensor activity and room-transitions 
showed a strong relationship with MoCA scores, which supports multiple findings, showing increased variance 
in the behavior of people with MCI21–23. Although highly speculative, this could suggest that the variation in 
daily physical activity levels is an even more important hallmark of cognitive decline than low baseline physical 
activity levels. Self-rated health quantified by the (EQ-VAS) did show a significant correlation with the number of 
room-transitions which reflects findings about health-related quality of life and physical activity30,31.

sensor-derived metrics. Overall, the number of room-transitions metric was much stronger and more fre-
quently correlated to clinical assessment results, when compared to the sensor activity metric. A possible expla-
nation would be that the number of room-transitions represents a higher level of physical activity than sensor 
activity does. This seems plausible since transitions between rooms require a person to be at least walking, while 
sensor activity could also be largely generated due to light-intensity physical activity. Another reason might be 
that the number of room-transitions is just better comparable (less variation due to noise) between different 
subjects – since all share the same apartment layouts, a transition means mostly the same movement, irrespec-
tive of the person, while activity may be influenced by factors like the location and consequentially the distance 
and angle to the sensor. Concerning literature, the limited body of research about the usefulness of different 
PIR-sensor based metrics is inconclusive. While a case study from Campbell et al. suggested that the daily num-
ber of transitions could be useful in detecting changes in health status32, other studies made similar claims about 
activity33 – for the sake of simplicity, we here refer to the number of sensor firings and sensor activity as the same.

Case study. Retrospective findings from a case study of a senior with rapid declining health (participant 11), 
which eventually led to the senior’s death, showed a visible and rapid decline in measured physical activity and 
repeated clinical assessments, including TUG times and muscle strength (Fig. 3). This is while all three measures 
remained approximately steady in case of the reference subject (participant 9). It is also noticeable that baseline 
physical activity of this participant was already low at baseline, when compared to a healthy reference (see Figs 2, 3).  
It is even possible that the PIR-sensor based physical activity decline would have been more drastic if the growing 
number of visits from nurses, family and friends (notice the dark red days throughout the second last week of 
December in Fig. 2) were completely excluded from the data. These results further confirm the intuitive assump-
tion that fast changes in physical activity can be measured using PIR-sensor based physical activity metrics and 
that these changes may be a response to changes in overall health, which further validates similar findings from 
other studies12,32,33.

Limitations. One of the main limitations of PIR-sensor derived physical activity is the fact that it can only 
measure in-home physical activity, which may not show the whole range of physical activity a senior engages in. 
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Figure 2. Room-transition heatmaps: comparison between healthy subject and subject with health issues. 
Shows two heatmaps comparing five months of physical activity measured by the number of room-transitions. 
One example of a healthy participant (participant 9) with a rather active lifestyle (upper) and the other one of 
a subject (participant 11) which developed severe and eventually fatal health issues (lower). Note the increased 
number of transitions throughout the second last week of the subject with health issues, distinctly showing the 
influence of visits from nurses, family and friends. (more intense colour signifies more room-transitions).
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In addition, baseline physical activity evaluations, thus inter-individual comparisons will be difficult to extend 
to older adults with different apartment layouts. Note that this does not affect intra-individual physical activity 
changes and patient specific characteristics. However, based on our observations intra-individual change, if not 
induced by short-term illness (as for instance in the highlighted case study) has high variability and potential 
seasonal patterns, likely requiring data over multiple years to quantify less significant trends. Another limitation 
is that we cannot currently distinguish between multiple persons in the apartment, thus the method is only appli-
cable for seniors living alone and who do not have frequent long-term visits that would significantly offset sensor 
readings. It is further not clear how the results would apply to similar aged populations with different local culture 
as the main assumption of this approach is based on the observation that Central European seniors spend a very 
significant amount of time inside their homes.

outlook. Future research with different senior populations will be necessary to validate the proposed physical 
activity assessment method and how it is related to health. In addition, it will be very important to extend the 
monitoring duration to several years to exclude seasonal trends and to better quantify the effect of the weaker 
intra-individual changes, instead of just baseline differences. Especially for potential clinical applications it would 
be important to validate individual changes in a larger population to identify threshold values which signify a 
specific risk of a health state change. To further validate this approach, it might also be important to compare the 
physical activity measured by PIR-sensors with simultaneously recorded data from accelerometers or pedometers.

Conclusion
To sum up, we found that PIR-sensor based metrics of physical activity, especially the number of room-transitions, 
to be associated with well-being as well as cognitive and motor function. These findings are in agreement with 
literature analyzing the effects of physical activity on health indicators and outcomes2. Therefore, we conclude 
that the PIR-sensor derived number-room transitions metric serves as a sufficient approximation of the true 
physical activity in community-dwelling Swiss seniors. Findings from a case study and related findings from 

Figure 3. Comparison of first and last measurements of multiple assessments in a healthy subject and one with 
rapidly declining health. Shows a case of rapid declining health (participant 11) and compares it with data from 
a healthy reference subject (participant 9). As such, the average in room-transitions of the first and last recorded 
month is displayed (left). In a similar manner, the handgrip strength (middle) and timed up and go (TUG) 
times (right) of the first and last assessments are shown. In all cases, for the subject with health issues there was a 
decrease in metrics (less room-transitions, less handgrip-strength, longer TUG times), while the healthy subject 
did not exhibit negative changes.
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other studies that employed similar sensor setups12,32,33 further confirm such a link between PIR-sensor measures 
and various health indicators and outcomes. Thus, PIR-sensor based assessment of physical activity could be a 
cost-effective and plausible approach for continuous, objective and unobtrusive long-term assessment of light- 
and moderate-intensity physical activity, which avoids the downsides of commonly used methods and bears the 
potential to aid in technology assisted healthy-aging.

Methods
participants. The data presented here stems from a study where thirteen Swiss, community dwelling seniors, 
were equipped with pervasive computing systems for approximately one year. Inclusion criteria were based on age 
(≥80 years), the ability to live in an own apartment or house and to live alone. Recruitment aimed at representing 
a naturalistic sample of alone living, community dwelling older adults in central Switzerland, irrespective of their 
cognitive status.

The related study was conducted based on principles declared in the Declaration of Helsinki and approved by 
the Ethics Committee of the canton of Bern, Switzerland (KEK-ID: 2016-00406). All subjects signed and handed 
in an informed consent before study participation.

Clinical assessments. Clinical assessments were conducted at the beginning of the study and consisted of 
a battery of standardized tests, targeting well-being, cognitive and motor function. The cognitive and well-being 
part included the Montreal Cognitive Assessment (MoCA), the Geriatric Depression Scale (GDS) as well as 
EQ-5D-3L. The motor tests included the Tinetti Performance-Oriented Mobility Assessment (POMA), the Timed 
Up and Go (TUG) as well as muscle strength measurements for handgrip, knee extensor and hip flexor – for all 
three muscle-groups, the left and right-side strength was measured. The handgrip measurements were performed 
using a Jamar Plus + Dynamometer while knee and hip strength was assessed with a Lafayette® Manual Muscle 
Tester (Lafayette Instrument Company, Lafayette, Indiana).

In addition to the initial assessment, muscle strength and TUG measures were repeated every 6th week and 
where possible, the whole initial battery was repeated after one year (a different variation of the MoCA was used 
there to avoid memory effects). Throughout the whole study duration, the subjects were visited or contacted on a 
weekly basis to stay informed about sudden changes in health or lifestyle. As part of these visits, the participants 
were asked to fill out EQ-5D-3L questionnaires, including EQ-VAS scores.

More information regarding subject demographics and characteristics is summarized in Table 1.

sensor setup. The presented data was obtained using the commercial DomoCare® home monitoring system 
for seniors (DomoSafety S.A., Lausanne, Switzerland)15. This system included five passive infrared (PIR) motion 
sensing units and two magnetic door sensors that communicate with a base unit via the Zigbee protocol. The 
motion sensors measure presence or absence of motion once every two seconds (0.5 Hz). The base unit man-
ages the data and sends it to the cloud in real-time using the GSM network. The subject’s kitchen, living room, 
entrance, bedroom and bathroom were each equipped with one PIR-sensor (see Fig. 4).

The two door sensors were placed at the fridge and entrance doors. Wherever possible, the sensors were placed 
at the exact same locations in each apartment. Due to furniture related constraints some placements did vary 
slightly but were kept as comparable as possible.

Figure 4. Exemplary apartment layout and PIR-sensor placement. Gives a broad idea of the kind of apartments 
we monitored and where the sensors where placed.

https://doi.org/10.1038/s41598-019-45733-8
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Data analysis. The clinical tests and muscle measurements were aggregated by averaging, where not oth-
erwise mentioned. The sensor data was first pre-processed to remove days with extremely high or low activity 
(based on the 1st and 99th percentile of a maximum likelihood fitted normal distribution). Subsequently the 
activity-metrics for sensor activity and the number of room-transitions were calculated daily, for each participant:
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participants in total. Furthermore, to assess the importance of individual correlations, a significance level of 
α = 0.05 was employed.

Preprocessing and calculation of activity measures were done using the Python programming language ver-
sion 3.6 (Python Software Foundation). Correlations and their significance were calculated using the R program-
ming language version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria). Graphical illustrations 
and plots were created using both above-mentioned programming languages as well as Blender version 2.79 
(Blender Institute, Amsterdam, Netherlands).

Data and Code Availability
Data and code regarding the obtained results may be obtained upon request.
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