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ABSTRACT
Recognizing eye movements is important for gaze behavior under-
standing like in human communication analysis (human-human or
robot interactions) or for diagnosis (medical, reading impairments).
In this paper, we address this task using remote RGB-D sensors to
analyze people behaving in natural conditions. This is very chal-
lenging given that such sensors have a normal sampling rate of 30
Hz and provide low-resolution eye images (typically 36x60 pixels),
and natural scenarios introduce many variabilities in illumination,
shadows, head pose, and dynamics. Hence gaze signals one can
extract in these conditions have lower precision compared to dedi-
cated IR eye trackers, rendering previous methods less appropriate
for the task. To tackle these challenges, we propose a deep learn-
ing method that directly processes the eye image video streams to
classify them into fixation, saccade, and blink classes, and allows
to distinguish irrelevant noise (illumination, low-resolution arti-
fact, inaccurate eye alignment, difficult eye shapes) from true eye
motion signals. Experiments on natural 4-party interactions demon-
strate the benefit of our approach compared to previous methods,
including deep learning models applied to gaze outputs.
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1 INTRODUCTION
By providing access to the attention of people or even to their in-
tention and mind, gaze tracking finds application in many domains
ranging from human behavior and communication analysis [Ba
and Odobez 2008], human-robot/computer interaction [Klotz et al.
2011], psychological studies [Muralidhar et al. 2018], or medical
diagnosis [Isaac et al. 2014]. However, beyond the sheer instanta-
neous estimation of gaze direction, gaze analytics can often benefit
from the recognition of the actual eye movements (saccades, blinks,
...). They provide not only a good way to denoise the gaze signal
and therefore improve attention inference but also a better charac-
terization of the eye activities useful for behavior understanding.

In this paper, we address the recognition of eye movements from
videos with a normal sampling rate (30 Hz) and low-resolution eye
images (36x60 pixels). Previous approaches instead mainly relied on
common infrared-based sensors like Eyelink 1000, iView X or Tobi
TX300, but they are rather expensive, often require calibration and
can restrain user movements (head pose, headbox size), limit their
applicability to screen-based tasks, or can be quite invasive (need to
wear goggles). These conditions might not be a problem for appli-
cations like medical exams or neurological investigation. However,
they make difficult the application of eye movements recognition
for gaze analytics at large scales in fields like driving assistance,
conversational agents or sociological studies, where we want users
to act naturally without head-mounted devices, constrained head
pose or the need for user-specific calibration.

Computer vision technologies are best suited for such appli-
cations, as they adapt to cheaper sensors, to a larger head pose
diversity and to larger spaces. They have their own drawbacks: eye
images have lower resolution, sampling rates are limited by the
sensors used, and natural conditions introduce higher variabilities
(e.g. head pose, illuminations, and dynamics of eye movements).
Although promising works have been achieved in particular thanks
to deep learning techniques [Krafka et al. 2016; Liu et al. 2018; Park
et al. 2018; Yu et al. 2018; Zhang et al. 2015, 2016], the extracted
gaze signals remain noisier and less reliable than with dedicated IR
eye trackers, making previous methods for eye movement recog-
nition less suitable. Hence, new methods are required but, to the
best of our knowledge, none has been proposed to recognize eye
movements from standard videos or video-based gaze sensors.

The novel method we propose detects eye movements from the
streams of eye images and head pose information, as presented in
Fig. 1. Processing the raw signal allows to leverage computer vision
and machine learning techniques to distinguish nuisance elements
like low-quality data, illumination factors, eye shape variations,
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Figure 1: Common workflow when using an eye tracker sys-
tem (top) and proposed workflow (bottom).

Figure 2: KTH-Idiap dataset [Oertel et al. 2014]. Recording
setup (left) and example of a video (right).

or bad eye alignments which might be responsible for noisy and
unstable gaze outputs, from the information (e.g. pupil motion)
useful for the classification of eye movements. We evaluate this
method on a dataset consisting of videos from a four-party meeting
recorded by Kinect sensors (RGB-D sensor, VGA, 30 Hz), as pre-
sented in Fig. 2. The nature of the recorded signals forces us to focus
on macro movements like fixation and saccade, as post-saccadic
oscillations are too subtle to be observed in this kind of data. Our
approach also allows to directly detect blink in addition to fixation
and saccade, which might also be useful for behavior analysis (e.g.
to evaluate light comfort in office space, fatigue state while driving,
cognitive load, etc.). In comparison, blinks are often removed man-
ually [Anantrasirichai et al. 2016; Pekkanen and Lappi 2017; Santini
et al. 2016] or by eye trackers, as they lead to data loss [Larsson
et al. 2013], but we do not have access to such a filtering method.

2 RELATEDWORK
The common approach for eye movements recognition is to define
features to perform rule-based classification (review in [Anders-
son et al. 2017]). Starting with basic detectors that use velocity or
dispersion to detect fixations [Salvucci and Goldberg 2000], more
and more complex features and rules were used to improve perfor-
mances [Hessels et al. 2017; Veneri et al. 2011] or detect more eye
movements [Larsson et al. 2015, 2013]. The main limitations are
the need to carefully design features and rules with the risk to limit
the method’s application to a specific problem and the assumption
of high-quality data [Zemblys et al. 2016].

Machine learning approaches have been proposed, e.g. using a
Random Forest applied to 14 features [Zemblys et al. 2016]. Also,
a Convolutional Neural Network (CNN) was shown effective to
classify fixations, saccades and smooth pursuits in a dataset con-
taining free viewing stimuli experiments [Hoppe and Bulling 2016].
In [Bellet et al. 2018], authors obtained human-level performances
with a U-Net inspired network that takes 179 frames equally dis-
tributed in the past and the future (corresponding to 180-360 ms

Figure 3: Histogram of estimated head pose (left) and exam-
ples of eye image sequences (right).

Figure 4: Network architecture of Eye Movement Detector.

time window). However, these methods use clean data recorded at
high sampling rate by powerful, but invasive, sensors.

Low sampling rate signals were shown to be significantly more
difficult to work with [Zemblys et al. 2016]. Some methods still
achieved good performances using extracted gaze from mobile eye
trackers data, at 30 fps [Anantrasirichai et al. 2016; Santini et al.
2016]. However, their estimation of gaze mostly relies on eye images
with higher resolution than remote sensors can provide.

Importantly, none of the works above use eye images as input,
which differs from the method we propose.

3 METHOD
The workflow is presented in Fig. 1, and comprises two main steps.
The first one performs an accurate head tracking followed by head
frontalization and eye image cropping. The frontalization reduces
the variability of the eye appearance due to the head pose orienta-
tion. The second step consists of eye movement recognition.

3.1 Eye image extraction.
Though facial landmark detection [Baltrusaitis et al. 2013, 2018;
Kazemi and Sullivan 2014] has achieved remarkable progress, their
performances are sensitive to large head poses variations and occlu-
sions. In this paper, we track the head pose based on the color and
depth images, relying on RGB-D sensors along with the Headfusion
method [Yu et al. 2017] which relies on the automatic fitting of both
a 3D Morphable Model (3DMM) of the face and a 3D raw represen-
tation of the head. This makes the method more robust to the large
head poses variations encountered in the used dataset (see Fig. 3a
for a histogram). We then rectify the head mesh to a frontal pose
as described in [Funes-Mora and Odobez 2016] and crop the image
of the eye which was closest to the camera (which is less distorted)
based on eye landmarks detected with the Dlib library [King 2009].
Sample eye image sequences are shown in Fig. 3b.
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3.2 Eye movement recognition.
The eye movement recognition is based on the processing of eye im-
ages sequences (color only). Since the eye activity that we target can
be recognized from eye observations over fixed time windows [Bel-
let et al. 2018], we adopt a temporal sliding window approach
relying on a neural network consisting of convolutional and fully
connected layers, rather than using explicit temporal models like
recurrent architectures.

In our model, the label of a frame is estimated by taking as input
several images, by processing them first individually to extract
relevant and abstract information about the gaze (iris position),
concatenate them in a common part to process the sequence of these
features and perform the final classification. In the individual part,
the feature extraction is the same for all eye images so the weights
are shared. In the common part, the sequence of head poses is
injected in the network for better results, as eye appearance changes
can be due to head pose variations instead of eye movements, like
when fixation occur along with head gesture motion.

The architecture is presented in Fig. 4. In our design, the network
takes 9 consecutive frames (from t−4 to t+4) with dimension 36x60
as input and predicts the label of the frame t . Each eye frame is
processed by 4 convolutional layers for feature extraction. Then the
extracted features of the 9 frames are stacked and further processed
by 2 convolutional layers processing along the temporal dimension.
The estimated head pose (rotation angles of yaw, pitch, and roll)
is introduced at this stage by concatenating the features from the
previous layers with the rotation angles of the 9 frames. The result is
forwarded to 2 fully connected layers formaking the final prediction.
In this work, eye movement detection is modeled as a classification
task and we use a cross-entropy loss for training the network.

This model was developed by investigating and comparing sev-
eral architectures. Among others, we saw that using past informa-
tion only decrease the performance and that adding more than 4
frames in the past and future does not improve the results. Our
hypothesis is that 4 frames in the future (i.e. 130 ms) are enough for
the network to decide if a variation in the eye appearance is due to
a blink (recover the same appearance in the future), to a saccade
(appearance changes in the future) or to some noise.

4 EXPERIMENTAL SETUP
4.1 Data and annotations
We used the video recordings from the KTH-Idiap database [Oertel
et al. 2014]. It consists of five four-party meetings (Fig. 2) in which
people discuss naturally alternating monologues, dialogues, and
animated discussions. This makes our task challenging because
of the highly dynamic nature of the interaction. Indeed, partici-
pants are not only looking passively but are actively moving and
performing head gestures, facial expressions and social gaze to com-
municate. Participants were recorded using Kinect sensors (VGA, 30
fps) placed on the table at around 0.8 meters from each participant.

All 20 videos were frame by frame annotated in 5 classes: fix-
ation, blink during a fixation (fix-blink), saccade, blink during a
saccade (sac-blink) and unknown. The distinction of blinks happen-
ing during fixation and saccade is important, as the eyes behavior
is quite different in both cases. As annotations are time-consuming,
in each video we took eleven 30 second long segments at regular

time intervals for annotation, which represents overall 110 min-
utes of data. Also, we annotated one out of three frames, as for
event detection we care more about annotating a large number of
them rather than to precisely segment them. We ended up with a
total of 65’000 annotated frames (fix:52’900, sac:8300, fix-blink:2400,
sac-blink:1400), with an overrepresentation of fixation (81%).

4.2 Baseline methods
Lacking direct comparison, we used baseline methods which use as
input an XY gaze signal instead of eye images. Experiments were
made on the same dataset, extracting gaze direction from color eye
images using amulti-level HoG SVR [Funes-Mora and Odobez 2016]
trained on a separate dataset. This method was shown to deliver
state-of-the-art performance on low-resolution images involving
large head rotation. From our experience, it is more reactive to
eye motion compared to deep neural networks (although the latter
perform better overall), which is important for the task at hand
here. Note that it does not explicitly detect blinks, but it usually
generates a down-up pattern on the Y-axis.

• Dispersion-Threshold Identification (I-DT) [Salvucci and Gold-
berg 2000]. This classic method distinguishes fixations and
saccades by measuring dispersion in a moving time window.
Parameters were trained to maximize the Cohen’s kappa.

• Naive Segmented Linear Regression (NSLR-HMM) [Pekkanen
and Lappi 2017]. First, a segmented linear regression de-
noises and segments the signal, then an HMM classifies the
obtained segments into fixation, saccade, smooth pursuit,
and post-saccadic oscillations (PSO) classes. We used the im-
plementation and the trained model provided by the author
(https://gitlab.com/nslr/) and considered smooth-pursuit and
PSO as fixation to allow comparison with our method.

• Convolutional Neural Network (FFT-CNN) [Hoppe and Bulling
2016]. This CNN uses the Fast Fourier Transform of the XY
gaze signal as input to classify time windows as fixation,
saccade or smooth pursuit. We implemented and trained this
model from scratch.

4.3 Experimental protocol
We used the "leave one subject out" protocol, ignoring frames la-
beled as "unknown". To get balanced classes for training we applied
down- and up-sampling on the 19 training videos to obtain 20’000
frames for each class, including frames with interpolated labels.
However, we used neither interpolation nor resampling on the
video used for testing.

To compare methods’ performances, we relied on the Cohen’s
kappa [Cohen 1960], which measures agreement for classifications
taking into account the probability of random agreements which
is especially important in unbalanced datasets: κ = po−pe

1−pe , where
po is the observed agreement probability and pe the probability of
random agreement. Usually, the agreement is considered as weak
if κ > 0.2, as moderate if κ > 0.4 and as strong if κ > 0.6. It was
computed on each video, to get the variance across subjects.

As we compare methods that do not extract all the same eye
movements, we need to define a way to combine and/or ignore
some labels. We defined the following tasks:
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Table 1: Evaluation of methods.

Method Task κ mean κ std
our 4 classes .536 .093
our fix-sac-blink .552 .091
our blink-others .671 .104
our fix-sac .501 .130
FFT-CNN [Hoppe and Bulling 2016] 4 classes .417 .062
FFT-CNN [Hoppe and Bulling 2016] fix-sac-blink .431 .059
FFT-CNN [Hoppe and Bulling 2016] blink-others .297 .064
FFT-CNN [Hoppe and Bulling 2016] fix-sac .480 .122
I-DT [Salvucci and Goldberg 2000] fix-sac .306 .095
NSLR-HMM [Pekkanen and Lappi 2017] fix-sac .369 .065

Figure 5: Qualitative comparison over 2 segments. Colors
represent labels (green: fixation, blue: saccade, pink: blink),
while curves represent the 3D gaze direction signal.

• 4 classes. 4 classes: fixation, fix-blink, saccade and sac-blink;
• fix-sac-blink. 3 classes: fixation, saccade and blink (fix-blink
and sac-blink are merged in blink);

• blink-others. 2 classes: blink (i.e. fix-blink and sac-blink)
and others, which is the combination of fixation and saccade;

• fix-sac. 2 classes: fixation and saccade. Fix-blink and sac-
blink frames in the ground truth are ignored for evaluation
and frames recognized as fix-blink/sac-blink are considered
as fixation/saccade respectively.

5 RESULTS
Results are reported in Tab. 1. Our method achieves an overall
moderate agreement with the ground truth, which is a good result
given the difficulty of the tasks. It seems particularly suited to
detect blink (blink-others task) but saccade recognition is more
challenging (fix-sac task). Note that the standard deviations show
that performances variate across subjects.

Looking at baselines performances in Tab. 1, one can notice the
overall low scores of all methods, highlighting again the difficulty
of the task. The FFT-CNN method reaches lower performance than
our method, although it is not significant for the fix-sac one. It
struggles to distinguish saccades from blinks, which is consistent
with the intuition that blinks are better handled using eye images
than the gaze signal. Per-class accuracy validates this result: FFT-
CNN reaches 86% accuracy on fixation but only 33% for saccades
(versus 81% and 77% for our method), often confusing saccade
and blinks. It shows that (1) deep learning seems an appropriate
approach as FFT-CNN and our method beat the two other baselines
and (2) that using eye images helps to detect blinks, while not
decreasing saccade detection performances.

Examples of recognition are presented in Fig. 5. The left side of
Fig. 5 presents an example in which all classifiers detect most of
the blinks, although I-DT and NSLR-HMM are predicting saccades
for blinks. I-DT tends to merge successive blinks and deep learning
methods mistakenly predict saccades before and after blinks. Here,
NSLR-HMM performs well. In the example on the right of Fig. 5,
we can see that I-DT and FFT-CNN struggle to detect saccades.
NSLR-HMM is already better but still misses two events. Those
events correspond to small saccadic movements which are difficult
to distinguish from noise in the gaze signal. It shows that using
eye images helps to recognize subtle saccades that would be mixed
with noise in the gaze signal.

6 DISCUSSIONS AND LIMITATIONS
Our method relies on future information, creating a delay of about
130 ms between frame acquisition and eye movement estimation.
Some applications will suffer from this, but instant reactivity is not
always needed, like for off-line analysis, global statistics computa-
tion (blink rate) and low-frequency behavior estimation (attention).

All the proposed baselines rely on the same gaze estimation
method, chosen because it tends to react consistently to eye move-
ments. It would be interesting to make experiments with more
recent methods to see if those baseline methods can be improved.

Regarding performance, most errors of our method consist in
predicting saccades instead of fixations around blinks. It might
be interesting to check whether a temporal method, like HMM or
LSTM, could help to better learn the label transition statistics and
feature dynamics. However, the few tests we made using LSTM
were not conclusive, showing that it is not straight forward.

7 CONCLUSION
In this paper, we proposed a method based on computer vision
and deep learning in order to detect fixation, saccade, and blink in
natural interaction video recorded with remote sensors. We show
that deep learning approaches outperform classical methods for
saccade detection when facing noisy data coming from computer
vision methods instead of dedicated IR eye tracker sensors. Also,
our method outperforms another deep learning approach on blink
detection task, using eye images instead of gaze XY signal.

One limitation of our work is the precision of the annotations, as
the sampling rate of the sensor used to record the data is relatively
slow compared to the events we want to detect. Also, we compared
our approach with baseline methods that were not designed for the
exact same task, in term of detected eye movements or data quality.
That shows an advantage of deep learning methods, which can be
retrained on a different set of labels for direct comparison.

Finally, the overall performances obtained on the presented
dataset show that detecting eye movements in low-sampling rate
data acquired with remote sensors in natural conditions remains a
challenging task, although it is of high interest in many fields.
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