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Abstract
Automatic Speech Recognition (ASR) has recently proved to
be a useful tool to reduce the workload of air traffic controllers
leading to significant gains in operational efficiency. Air Traf-
fic Control (ATC) systems in operation rooms around the world
generate large amounts of untranscribed speech and radar data
each day, which can be utilized to build and improve ASR mod-
els. In this paper, we propose an iterative approach that utilizes
increasing amounts of untranscribed data to incrementally build
the necessary ASR models for an ATC operational area. Our ap-
proach uses a semi-supervised learning framework to combine
speech and radar data to iteratively update the acoustic model,
language model and command prediction model (i.e. prediction
of possible commands from radar data for a given air traffic
situation) of an ASR system. Starting with seed models built
with a limited amount of manually transcribed data, we simu-
late an operational scenario to adapt and improve the models
through semi-supervised learning. Experiments on two inde-
pendent ATC areas (Vienna and Prague) demonstrate the utility
of our proposed methodology that can scale to operational en-
vironments with minimal manual effort for learning and adap-
tation.
Index Terms: Speech recognition, Iterative learning, Semi-
supervised learning, Air traffic control

1. Introduction
Automatic Speech Recognition (ASR) is making inroads into
our everyday lives through its adoption in several human com-
puter interaction systems, replacing the traditional forms of in-
teraction with natural language interaction. Virtual assistants
capable of natural language understanding, even within a lim-
ited domain of comprehension, can greatly ease human inter-
action with machines. One domain that can benefit from such
speech technologies is Air Traffic Control (ATC), where voice
communication is still the main form of communication with air
traffic controllers guiding and navigating aircraft in an airspace
through voice commands to pilots.

Currently, the commands issued by controllers are also
manually entered and recorded for the purposes of planning and
safety, thus doubling effort and adversely affecting controller’s
productivity. Recently, it has been shown that introducing au-
tomation into this process in the form of ASR, called Assistant
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Based Speech Recognition (ABSR), has the potential to reduce
controller’s workload and improve operational efficiency [1, 2].
The task of an ABSR system is to recognize a controller’s spo-
ken utterances to extract meaningful ATC command hypotheses
(text hypotheses are only an intermediate step).

For optimal performance, an ABSR system needs to be
adapted within each airspace, which is a time and resource
intensive process. Within the MALORCA project (http:
//www.malorca-project.de), we wish to adapt ABSR
systems to an airspace and controller with minimum manual
intervention. Although ATC communication is limited in vo-
cabulary and is assumed to follow a standard phraseology, it
is considered as a challenging task due to low quality speech,
multiple English accents, high rate of speaking and local varia-
tions/deviations in phraseology. Nevertheless, the commands
issued by controllers are accompanied by time-synchronized
radar data that can be used to provide a situational context for
all commands issued by controllers. ATC systems operate con-
tinuously and hence generate increasing amounts of (untran-
scribed) speech and radar data, motivating us to explore the use
of semi-supervised learning methods for building and adapting
the corresponding ABSR system. Further, we operate in a bi-
modal (speech and radar) setting where radar data complements
speech to either correct ASR hypotheses or to select data for
semi-supervised learning.

ASR in ATC domain has been explored to a limited ex-
tent [3, 4] and multi-modal speech recognition has been largely
explored with visual data [5]. Methods that utilize the radar
data to improve ASR through semi-supervised learning have
only been recently explored [2, 6]. In this paper, we propose an
iterative semi-supervised learning approach to build and adapt
an ABSR system in a bi-modal setting that is representative of
the operational environment. The proposed approach can be
deployed to build a continuously adapting ABSR system for a
new ATC area starting from little (or no) transcribed speech data
from the area. We first describe the components of an ABSR
system along with the approach we take for iterative learning.
We then demonstrate our approach on operational data from two
ATC areas - Prague and Vienna.

2. ABSR components
The ABSR system and components are built independently for
Vienna and Prague ATC areas. A brief description of each com-
ponent is presented below.

2.1. Datasets
The speech and radar data used in this paper are described in
Table 1 and come from operational environments in two differ-
ent ATC areas - Prague and Vienna. The data from both ATC
areas was recorded in the second half of 2016. The speech
was recorded at a sampling rate of 8 kHz and has been seg-



Dataset Prague Vienna
Dur. #Spk. Dur. #Spk.

Train 3.3 9 2.6 15
Untrans 18.3 11 18.2 41
Test 1.4 3 1.1 5
Total 23.0 12 21.9 45

Table 1: Prague and Vienna datasets, showing the duration
(Dur. in hours) and number of speakers (#Spk.) in each dataset

mented into short utterances containing only a few controller
commands. The utterances are timestamped and the accompa-
nying radar data is synchronized with them. The pilot replies
to controller utterances are not recorded and stored since they
are not relevant in our studies. All recordings are assigned
with speaker labels but only a part of the dataset is annotated
with text and command transcripts using an in-house annota-
tion tool. The speech data comprises different speakers, accents
and airspace situations. While the data is not publicly available
currently, the speech content of the dataset is similar to other
publicly available ATC domain datasets such as the LDC ATC
dataset [7] and ATCOSIM dataset [8].

A large part of the data from Prague and Vienna shown
in Table 1 is untranscribed (denoted as Untrans). The tran-
scribed data is divided into Train and Test datasets. The
Train dataset is used to build seed ASR models while Test
dataset is used to evaluate our proposed approach. The Test
dataset does not share any speakers with the Train dataset.
The Untrans dataset is untranscribed without any accompa-
nying text/command transcripts and is used to apply iterative
semi-supervised learning.

Since the amount of transcribed data available is limited,
we also utilize other transcribed resources to train the ASR
models. We pool 150 hours of English speech data from the
publicly available LIBRISPEECH [9], ICSI [10], AMI [11] and
TED-LIUM [12] datasets, which have been extensively used for
recognition of conversational speech. The speech data and ac-
companying transcripts (called MEGA) are used in conjunction
with Train dataset [6].

2.2. Lexicon and Acoustic Model

All possible in-domain words from Vienna and Prague ATC
areas such as airlines and waypoints are combined and added
to the standard CMU-Sphinx dictionary to form an extended
pronunciation lexicon subsequently used with acoustic and lan-
guage models in ASR engine. There are hence no out of vocab-
ulary words in training or testing.

As an Acoustic Model (AM), we employ conventional
DNN/HMM (Deep Neural Network Hidden Markov Model),
similar to our preliminary studies [6]. More specifically, to in-
crease amount of labeled data for training, we add the MEGA
dataset to the limited Prague/Vienna Train dataset and used
to train a DNN/HMM acoustic model, called as DNN-BASE.
Next, we adapt this model to Vienna/Prague ATC area using
the corresponding Train dataset. The adaptation process first
re-initializes and randomizes the weights of the last layer of
the previously trained DNN-BASE, keeping the architecture
and weights of the other layers unchanged. We finally retrain
the entire network using Train dataset to obtain supervised-
adapted DNN (denoted to as DNN-SUP). This way of reini-
tializing the last layer and retraining the complete network was
found to be effective for supervised adaptation using in-domain
data [13, 14, 15].

2.3. Language Model

The standardized phraseology used in ATC suggests the use of a
rule based Context-Free Grammar (CFG) that models the con-
troller phraseology to build a language model (LM) [16, 17].
However, a closer analysis reveals that controllers often deviate
from standards in operational environments and a statistical LM
can model such deviations more effectively. In this paper, we
use a hybrid approach that combines a grammar-induced class
language model with a conventional n-gram language model.

To induce classes, we use the grammar to tag command
words with ATC concepts and use the concepts as the word
classes. However, there are out-of-grammar words due to the
variations introduced by controllers that cannot be assigned to
a class, in which case the word itself is identified as the class.
We then approximate these grammar-induced class LM to an n-
gram LM using a variant of probability-conversion method [18]
described in [19], where a given n-gram set is scored with the
class-based model and the obtained scores are converted into a
back-off n-gram model.

We first build a 3-gram language model with Kneser-Ney
(KN3) smoothing [20] from the training text data (data-LM).
Sampling large amounts of text from language models can help
obtain a good coverage of possible events in the test set. Hence,
we complement the limited transcribed text data with additional
text by sampling the data-LM. The sampled text is then scored
with the above-described class-based LM and converted to an
approximated 3-gram LM. Finally, the class-based approxi-
mated 3-gram LM is interpolated with the data-LM and then
applied to the FST-based decoder. DNN-SUP acoustic model
along with this interpolated language model for the supervised-
adapted baseline ASR system denoted as ASR-SA.

2.4. Concept Extraction

ASR system outputs word sequences from which we extract the
concepts and commands represented by this sequence. Con-
cepts include all meaningful words or expressions which are re-
lated to the controller’s command and the required action of the
aircraft. Concepts mainly include (i) the callsign composed of
an airline identifier (International Civil Aviation Organization
airline code) and a flight number, (ii) the command word or ex-
pression itself, and (iii) the command attributes (usually target
values for some flight parameters). This sequence of concepts
forms a command. For example, the following utterance “hello
air france six echo tango descend to flight level one six zero"
contains the following concepts:

• AFR6ET (air france six echo tango - callsign)
• DESCEND (descend - command word)
• 160 (one six zero - flight level attribute).

The complete command is hence AFR6ET DESCEND 160. To
extract concepts from the utterance, we use the rule based CFG
used to build the LM (Section 2.3). Each semantic slot for the
command is tagged in the CFG, and hence transducing [21] a
text hypothesis from the ASR over the CFG results in a seman-
tically tagged version of the text transcript, which is then for-
matted into a command. If transductions fail (due to a deviation
in phraseology not modelled by the CFG or due to ASR errors),
the command extractor returns “NO_CALLSIGN" if the call-
sign is missed, and “NO_CONCEPT", if the command word or
the command attribute could not be recovered. Thus, using the
AM, LM and the concept extractor, given a speech utterance
by a controller, we obtain a plain text hypothesis (sequence of
words as they were spoken) and the command hypothesis (in-
tended semantic command).
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Figure 1: Iterative learning of an ABSR system. The iterations k = {1, · · · ,K} correspond to using 25%, 50%, 75% and 100% of
available untranscribed data, respectively. k = 0 corresponds to using only transcribed training data (0% untranscribed data).

2.5. Command Prediction Model

The radar data accompanying speech data provides dynamically
changing snapshots (i.e. every few seconds) of the airspace
and hence can be used to provide a situational context for the
ASR engine. Given a dataset of airspace situations (encoded in
the radar data) and the corresponding ground-truth commands
issued by controllers, we build a Command Prediction Model
(CPM) [22, 23] that provides a list of plausible commands for
a given airspace situation. This list of commands is called the
dynamic context and is used for iterative semi-supervised learn-
ing. The context can be used to reduce the search space of the
ASR decoder during recognition or be used to correct gener-
ated ASR hypotheses. In this paper, we use the context for both
command recognition and correction, as we describe in the next
section.

3. Iterative Learning

With the components of the ABSR system described in Sec-
tion 2 - AM, LM and CPM, we propose an iterative learning
approach to build and adapt the system to a new ATC area. A
block diagram of the proposed approach is shown in Figure 1.
We simulate the increasing amounts of untranscribed data in
operational environments by chronologically arranging the con-
troller sessions in Untrans dataset and splitting it into a se-
quence of K data splits {S1, S2, · · · , SK}, such that Sk is a
subset of the next Sk+1. S0 contains no data from Untrans
dataset while SK refers to the complete Untrans dataset. In
this paper, we consider K = 4 data splits, with Sk containing
k · 25% of untranscribed data.

The proposed iterative learning method has three main
steps: (1) we generate the automatic transcripts of the current
data split using the current ASR model, (2) use the current CPM
to select data from those automatic transcriptions and (3) com-
bine the selected data with Train data to adapt AM, LM and
CPM. We describe each step further in detail.

3.1. Automatic transcript generation

We generate the automatic text and command transcripts for the
Sk subset of Untrans dataset using the ABSR system from it-
eration k−1. N -best text hypotheses are generated for each ut-
terance and the best text and command hypothesis is estimated
as the hypothesis that has the lowest Levenshtein distance to the
set of plausible commands predicted by the CPM. This enables
us to correct the output hypothesis based on situational context
information. For evaluation, the text and command hypothesis
for the Test dataset is also generated in the same way.

3.2. Data selection

The aim of data selection is to augment the Train dataset by
automatically transcribing Untrans data and selecting the best
possible transcripts we can rely on. We use the complemen-
tary information from the radar data and utilize the situational
context to select or reject a text/command hypothesis and the
corresponding audio recording. If the automatically generated
command transcript is plausible under the situational context
predicted by the CPM, it is selected and retained to augment
training data, else it is rejected. This is based on an assumption
that if the ASR output text/command hypothesis is also plausi-
ble from the perspective of radar, it is likely to be correct. In
addition, utterances for which the output is NO_CALLSIGN
and/or NO_CONCEPT are also rejected since that indicates an
error either in the ASR or concept extraction. The automatically
transcribed data from Sk thus selected is denoted as S?

k and is
combined with Train dataset for further model retraining.

3.3. Model retraining

The combined data (S?
k + Train dataset) is used to adapt and

retrain the AM and LM. We adopt the same method as described
in Section 2.2 to adapt the AM using the combined data, starting
from DNN-BASE. The LM is retrained with the combined data
transcripts to rebuild data-LM and then combining it with the
the class-based approximated 3-gram LM as described in Sec-
tion 2.3. In this paper, CPM training uses only untranscribed
data and hence only S?

k subset is used for retraining.
The models trained from S?

k and Train dataset form the
ASRk system, which is then used for automatic transcription in
the next iteration k + 1. It is important to note that the pivot it-
eration k = 0 starts with the supervised-adapted baseline ASR-
SA system. Further, the CPM is trained only using automati-
cally transcribed data, and since k = 0 iteration comprises only
Train data, a trained CPM is not available to correct text and
command hypotheses. Hence for k = 0, a 1-best text and com-
mand hypothesis is generated without any correction by CPM,
instead of N-best hypotheses. We finally note that this process
of incremental iterative semi-supervised learning is suitable for
this task since models can be updated often and at regular inter-
vals as more data is available through continuous operation of
ATC systems.

4. Experiments
The iterative learning experiments are conducted separately for
Prague and Vienna ATC areas. The AM and LM were built
using Kaldi [24]. We conduct four iterations of model retraining
with splits of 25%, 50%, 75% and 100% of Untrans dataset.

As input features to the DNN/HMM acoustic model, we
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Figure 2: WER and CER measures for iterative semi-supervised learning over different data split iterations for both (a) Prague and
(b) Vienna ATC areas. The numbers on the plot show the value of WER or CER. Similar to Figure 1, iteration k = 0 refers to ASR-SA
system, and k = {1, · · · ,K} correspond to using 25%, 50%, 75% and 100% of total untranscribed data, respectively.

Prague Vienna
Split (Sk) Total Select. Total Select.

(hours) (%) (hours) (%)

S1 (25%) 4.5 56% 4.6 49%
S2 (50%) 9.2 76% 9.1 74%
S3 (75%) 13.7 78% 13.7 77%
S4 (100%) 18.3 78% 18.2 79%

Table 2: Amount of total untranscribed data Sk (Total, in
hours) and selected data S?

k (expressed as a % of Sk) from the
Untrans dataset over iterations (k). S4(100%) corresponds
to the complete Untrans dataset.

applied 13 dim MFCCs with their delta and acceleration coef-
ficients (39 dim feature vector), along with fMLLR transforms
for speaker adaptive training. The DNN comprises 4 layers:
351 dim input layer (9 stacked feature vectors with a context
of 4 frames around the centered frame), hidden layers of 1200
nodes and output layer with 3800 units modeling senones. The
DNN is trained to minimize frame-level cross entropy. For de-
coding, except for k = 0 iteration when there is no available
CPM, we generate 5-best hypotheses and then correct them to
the 1-best hypothesis using the situational context.

The most relevant metric of performance for ATC applica-
tions is at the command level. However, since the ASR sys-
tem outputs hypotheses at both word level and command level,
we report the commonly used Word Error Rate (WER) and
the Command Error Rate (CER). The CER is interpreted with
the whole command as one unit, comparing the ground truth
command with the hypothesized command. Even a single mis-
recognized word can cause the whole command to be wrong
and hence CER is a much stricter measure of evaluation. We
use the supervised-adapted ASR-SA system (corresponding to
k = 0) as the baseline system in evaluation. We aim to ana-
lyze the effect of increasing amounts of data in such an iterative
learning task. We report results of evaluating the ASR systems
with both WER and CER measures on the Prague and Vienna
Test datasets. In addition, we also report the results of data se-
lection to evaluate and analyze the role of CPM in data selection
for semi-supervised learning.

4.1. Results and Discussion

Table 2 reports the total amount of untranscribed data available
in each data split Sk and the percentage of that data selected
(S?

k) to augment Train dataset for both Prague and Vienna
ATC areas. From the table, we see that a similar fraction of
the data is selected during each iteration in both Prague and Vi-
enna, indicating that the data selection method generalizes over

these datasets. We see that the fraction of data selected with
k = 1 iteration is low for both areas since automatic transcripts
are generated from 1-best hypothesis without correction by a
CPM, hence with higher errors. When a CPM is used, more
than around three quarters of data is selected for retraining, im-
plying that the context information is useful for correcting out-
put hypothesis and for data selection.

The performance of iterative semi-supervised learning is
summarized in Figure 2. The WER and CER presented are
computed over the unseen Test dataset of Vienna and Prague.
In general, from the table, we observe that CER is much higher
than WER for both areas since it is a stricter measure. We also
see that the WER and CER on Vienna data is higher than that
for Prague, attributed to the noisier data from Vienna compared
to Prague. There is a significant reduction in WER and CER
using k = 1 (25% data split) compared to k = 0 that does not
use any CPM. This reduction seen shows that 5-best hypotheses
and the CPM are useful to correct and improve performance of
the system. Despite the observation that WER seems to increase
through the next iterations for both Prague and Vienna areas, we
see that iterative learning reduces CER through the iterations.

The goal of the application and that of iterative learning is
to reduce CER incrementally. We observe a relative decrease in
CER of 17.8% and 12% with Prague and Vienna, respectively
from k = 1 (25% split) to k = 4 (using 100% untranscribed data)
while the WER slightly degrades. The reason behind this is that
many components in the ABSR system, such as the CPM [22]
and the concept extractor [25] use approaches that were de-
signed to optimize the CER (i.e., the primary metric for ABSR)
which does not necessarily optimize the WER. A detailed anal-
ysis and discussion of this difference can be found in [25].

5. Conclusions
We proposed an iterative semi-supervised approach to build and
adapt an ABSR system to a new ATC area by adapting the
AM, LM and CPM with limited transcribed data and increas-
ing amounts of untranscribed data, which is reflective of op-
erational environments. We exploited the bi-modal nature of
the problem and developed a radar data based data selection
method for untranscribed data. Our experiments on data from
Prague and Vienna ATC areas show a significant improvement
over a baseline that does not use any untranscribed data with
further improvements in CER in subsequent iterations despite a
marginal increase in WER. We built and evaluated systems for
Prague and Vienna separately. In the future, we wish to explore
combining all data sources and do cross domain adaptation for
different ATC areas.
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