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Abstract This chapter presents an overview of techniques used for the anal-
ysis, edition, and synthesis of continuous time series, with a particular em-
phasis on motion data. The use of mixture models allows the decomposition
of time signals as a superposition of basis functions. It provides a compact
representation that aims at keeping the essential characteristics of the signals.
Various types of basis functions have been proposed, with developments orig-
inating from different fields of research, including computer graphics, human
motion science, robotics, control, and neuroscience. Examples of applications
with radial, Bernstein and Fourier basis functions are presented, with asso-
ciated source codes to get familiar with these techniques.

1 Introduction

The development of techniques to process continuous time series is required in
various domains of application, including computer graphics, human motion
science, robotics, control, and neuroscience. These techniques need to cover
various purposes, including the encoding, modeling, analysis, edition, and
synthesis of time series (sometimes needed simultaneously). The development
of these techniques is also often governed by additional important constraints
such as interpretability and reproducibility. These heavy requirements mo-
tivate the use of mixture models, effectively leveraging the formalism and
ubiquity of these models.

The first part of this chapter reviews decomposition techniques based on
radial basis functions (RBFs) and locally weighted regression (LWR). The
connections between LWR and Gaussian mixture regression (GMR) are dis-
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cussed, based on the encoding of time series as Gaussian mixture models
(GMMs). I will show how this mixture modeling principle can be extended
to a weighted superposition of Bernstein basis functions, often known as
Bézier curves. The aim is to examine the connections with mixture models
and to highlight the generative aspects of these techniques. In particular,
this link exposes the possibility of representing Bézier curves with higher
order Bernstein polynomials. I then discuss the decomposition of time sig-
nals as Fourier basis functions, by showing how a mixture of Gaussians can
leverage the multivariate Gaussian properties in the spatial and frequency
domains. Finally, I show that these different decomposition techniques can
be represented as time series distributions through a probabilistic movement
primitives representation.

Pointers to various practical applications are provided for further read-
ings, including the analysis of biological signals in the form of multivariate
continuous time series, the development of computer graphics interfaces to
edit trajectories and motion paths for manufacturing robots, the analysis
and synthesis of periodic human gait data, or the generation of exploratory
movements in mobile platforms with ergodic control.

The techniques presented in this chapter are described with a uniform
notation that does not necessarily follow the original notation. The goal is
to tie links between these different techniques, which are often presented
in isolation of the more general context of mixture models. Matlab codes
accompany the chapter [1], with full compatibility with GNU Octave.

2 Movement primitives

The term movement primitives refers to an organization of continuous mo-
tion signals in the form of a superposition in parallel and in series of simpler
signals, which can be viewed as “building blocks” to create more complex
movements, see Fig. 1. This principle, coined in the context of motor con-
trol [24], remains valid for a wide range of continuous time signals (for both
analysis and synthesis). Next, I present three popular families of basis func-
tions that can be employed for time series decomposition.

2.1 Radial basis functions (RBFs)

Radial basis functions (RBFs) are ubiquitous in continuous time series en-
coding [28], notably due to their simplicity and ease of implementation. Most
algorithms exploiting this representation rely on some form of regression,
often related to locally weighted regression (LWR), which was introduced
by [9] in statistics and popularized by [4] in robotics. By representing, re-
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Fig. 1 Motion primitives with different basis functions φk, where a unidimensional
time series x̂ =

∑K
k=1 wkφk is constructed as a weighted superposition of K signals

φk.

Fig. 2 Polynomial fitting with locally weighted regression (LWR), by considering
different degrees of the polynomial and by adapting the number of basis functions
accordingly. The top row shows a very localized encoding of the movement, with
constant values used in Eq. (1), thus requiring the use of many basis functions to
represent the trajectory. In the top timeline graph, the colored horizontal segments
can also be interpreted as scalar weights used to approximate the original signal by
a weighted superposition of radial basis functions (see example in Fig. 1). The next
rows show that a reduction of this number of basis functions typically needs to be
compensated with more complex basis functions (polynomial of higher degrees). The
bottom row depicts the limit case in which a global encoding of the movement would
require a polynomial of high degree.
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spectively, N input and output datapoints as XI = [xI1,x
I
2, . . . ,x

I

N ]
>

and
XO = [xO1 ,x

O
2 , . . . ,x

O

N ]
>

, we are interested in the problem of finding a ma-
trix A so that XIA would match XO by considering different weights on
the input–output datapoints {XI ,XO} (namely some datapoints are more
informative than others for the estimation of A). A weighted least squares
estimate Â can be found by solving the objective

Â = arg min
A

tr
(

(XO −XIA)
>
W (XO −XIA)

)
= (XI>WXI)

−1
XI>W XO, (1)

where W ∈RN×N is a weighting matrix. Locally weighted regression (LWR)
is a direct extension of the weighted least squares formulation in which K
weighted regressions are performed on the same dataset {XI ,XO}. It aims
at splitting a nonlinear problem so that it can be solved locally by linear
regression. LWR computes K estimates Âk, each with a different function
φk(xIn), classically defined as the radial basis functions

φ̃k(xIn) = exp
(
− 1

2
(xIn − µIk)

>
ΣI

k
−1

(xIn − µIk)
)
, (2)

where µIk andΣI

k are the parameters of the k-th RBF, or in its rescaled form1

φk(xIn) =
φ̃k(xIn)∑K
i=1 φ̃i(x

I
n)
. (3)

An associated diagonal matrix

Wk = diag
(
φk(xI1), φk(xI2), . . . , φk(xIN )

)
(4)

can be used with (1) to evaluate Âk. The result can then be employed to
compute

X̂O =

K∑
k=1

WkX
IÂk. (5)

The centroids µIk in (2) are usually set to uniformly cover the input space,
and ΣI

k=Iσ2 is used as a common bandwidth shared by all basis functions.
Figure 2 shows an example of LWR to encode planar trajectories.

LWR can be directly extended to local least squares polynomial fitting
by changing the definition of the inputs. Multiple variants of the above for-
mulation exist, including online estimation with a recursive formulation [27],
Bayesian treatments of LWR [31], or extensions such as locally weighted pro-

1 We will see later that the rescaled form is required for some techniques, but for
locally weighted regression, it can be omitted to enforce the independence of the
local function approximators.
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jection regression (LWPR) that exploit partial least squares to cope with
redundant or irrelevant inputs [33].

Examples of application range from inverse dynamics modeling [33] to the
skillful control of a devil-stick juggling robot [5]. A Matlab code example
demo LWR01.m can be found in [1].

2.1.1 Gaussian mixture regression (GMR)

Fig. 3 Left: Gaussian mixture regression (GMR) for 1D input xI and 1D output xO,
with a GMM composed of two Gaussians. Right: Gaussian that best approximates
a mixture of three Gaussians. The multimodal distributions in dashed line depict
the probability density functions for the mixtures of three Gaussians in gray color
(examples in 1D and 2D are depicted). The Gaussians in green color approximate
these multimodal distributions.

Gaussian mixture regression (GMR) is a another popular technique for time
series and motion representations [13, 8]. It relies on linear transformation and
conditioning properties of multivariate Gaussian distributions. GMR provides
a synthesis mechanism to compute output distributions with a computation
time independent of the number of datapoints used to train the model. A
characteristic of GMR is that it does not model the regression function di-
rectly. Instead, it first models the joint probability density of the data in
the form of a Gaussian mixture model (GMM). It can then compute the re-
gression function from the learned joint density model, resulting in very fast
computation of a conditional distribution.

In GMR, both input and output variables can be multidimensional. Any
subset of input–output dimensions can be selected, which can change, if re-
quired, at each time step. Thus, any combination of input–output mappings
can be considered, where expectations on the remaining dimensions are com-
puted as a multivariate distribution. In the following, we will denote the block
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decomposition of a datapoint xt ∈ RD at time step t, and the center µk and
covariance Σk of the k-th Gaussian in the GMM as

xt =

[
xIt
xOt

]
, µk =

[
µIk
µOk

]
, Σk =

[
ΣI

k Σ
IO

k

ΣOI

k Σ
O

k

]
. (6)

We first consider the example of time-based trajectories by using xIt as a time
variables. At each time step t, P(xOt |xIt) can be computed as the multimodal
conditional distribution

P(xOt |xIt) =

K∑
k=1

hk(xIt) N
(
µ̂Ok (xIt), Σ̂

O

k

)
, (7)

with µ̂Ok (xIt) = µOk +ΣOI

k Σ
I

k
−1

(xIt − µIk) ,

Σ̂O

k = ΣO

k −ΣOI

k Σ
I

k
−1
ΣIO

k ,

and hk(xIt) =
πk N (xIt | µIk,ΣI

k)∑K
i=1 πi N (xIt | µIi ,ΣI

i )
,

computed with

N (xIt | µIk,ΣI

k) = (2π)−
D
2 |ΣI

k|
− 1

2 exp
(
− 1

2
(xIt − µIk)

>
ΣI

k
−1

(xIt − µIk)
)
.

When a unimodal output distribution is required, the law of total mean
and variance (see Fig. 3-right) can be used to approximate the distribution
with the Gaussian

P(xOt |xIt) = N
(
xOt | µ̂O(xIt), Σ̂O(xIt)

)
, (8)

with µ̂O(xIt) =

K∑
k=1

hk(xIt) µ̂
O

k(x
I

t),

and Σ̂O(xIt) =

K∑
k=1

hk(xIt)
(
Σ̂O

k +µ̂Ok(x
I

t) µ̂
O

k(x
I

t)
>
)
− µ̂O(xIt) µ̂O(xIt)

>
.

Figure 3 presents an example of GMR with 1D input and 1D output. With
the GMR representation, LWR corresponds to a GMM with diagonal co-
variances. Expressing LWR in the more general form of GMR has several
advantages: (1) it allows the encoding of local correlations between the mo-
tion variables by extending the diagonal covariances to full covariances; (2)
it provides a principled approach to estimate the parameters of the RBFs,
similar to a GMM parameters fitting problem; (3) it often allows a signifi-
cant reduction of the number of RBFs, because the position and spread of
each RBF are also estimated; and (4) the (online) estimation of the mixture
model parameters and the model selection problem (automatically estimating
the number of basis functions) can readily exploit techniques compatible with
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GMM (Bayesian nonparametrics with Dirichlet processes, spectral clustering,
small variance asymptotics, expectation-maximization procedures, etc.).

Another approach to encode and synthesize a movement is to rely on time-
invariant autonomous systems. GMR can also be employed in this context to
retrieve an autonomous system P(ẋ|x) from the joint distribution P(x, ẋ)
encoded in a GMM, where x and ẋ are position and velocity, respectively
(see [14] for details). Similarly, it can be used in an autoregressive context
by retrieving P(xt|xt−1,xt−2, . . . ,xt−T ) at each time step t, from the joint
encoding of the positions on a time window of size T .

Practical applications of GMR include the analysis of speech signals [32,
16], electromyography signals [18], vision and MoCap data [30], and cancer
prognosis [11]. A Matlab code example demo GMR01.m can be found in [1].

2.2 Bernstein basis functions

Fig. 4 Linear (left), quadratic (center) and cubic (right) Bézier curves constructed
as a weighted superposition of Bernstein basis functions.

Bézier curves are well-known representations of trajectories [12]. Their under-
lying representation is a superposition of basis functions, which is overlooked
in many applications. For 0 6 t 6 1, a linear Bézier curve is the line traced
by the function xp0,p1

(t), from p0 to p1,

xp0,p1
(t) = (1− t)p0 + tp1. (9)

For 0 6 t 6 1, a quadratic Bézier curve is the path traced by the function
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xp0,p1,p2
(t) = (1− t) xp0,p1

(t) + t xp1,p2
(t)

= (1− t)
(

(1− t)p0 + tp1

)
+ t
(

(1− t)p1 + tp2

)
= (1− t)2p0 + 2(1− t)tp1 + t2p2. (10)

For 0 6 t 6 1, a cubic Bézier curve is the path traced by the function

xp0,p1,p2,p3
(t) = (1− t) xp0,p1,p2

(t) + t xp1,p2,p3
(t)

= (1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3. (11)

For 0 6 t 6 1, a recursive definition for a Bézier curve of degree n can be
expressed as a linear interpolation of a pair of corresponding points in two
Bézier curves of degree n− 1, namely

x(t) =

n∑
i=0

bi,n(t)pi, with bi,n(t) =
n!

i!(n− i)!
(1− t)n−i ti, (12)

with bi,n(t) the Bernstein basis polynomials of degree n, where n!
i!(n−i)! are

binomial coefficients, which can also be noted as
(
n
i

)
.

Figure 4 illustrates the construction of Bézier curves of different orders.
Practical applications are diverse but include most notably trajectories in
computer graphics [12] and path planning [10]. A Matlab code example
demo Bezier01.m can be found in [1].

2.3 Fourier basis functions

In this section, we will adopt a notation to make links with the superposition
of basis functions seen in Fig. 1. By starting with the unidimensional case, we
will consider a signal g(x) varying along a variable x, where x will be used as
a generic variable that can for example be a time variable as in the example
of Fig. 1, or the coordinates of a pixel in an image. The signal g(x) can be
approximated as a weighted superposition of basis functions with

g(x) =

K−1∑
k=−K+1

wk φk(x)

= w>φ(x),

where w and φ(x) are vectors formed with the elements of wk and φk(x),
respectively. wk and φk(x) denote the coefficients and basis functions of the
Fourier series, with
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φk(x) =
1

L
exp

(
−i2πkx

L

)
=

1

L

(
cos

(
2πkx

L

)
− i sin

(
2πkx

L

))
, ∀k∈ [−K+1, . . . ,K−1], (13)

with i the imaginary unit of a complex number (i2 = −1).
In time series encoding, the use of Fourier basis functions provides useful

connections between the spatial domain and the frequency domain. In the
context of Gaussian mixture models, several Fourier series properties can be
exploited, notably regarding zero-centered Gaussians, shift, symmetry, and
linear combination. These properties are reported in Table 1 for the 1D case.

Table 1 Fourier series properties (1D case).

Symmetry property:
If g(x) is real and even, φk(x) in (13) is also real and even, simplifying to
φk(x) = 1

L
cos
(
2πkx
L

)
, which then, in practice, only needs an evaluation on

the range k ∈ [0, . . . ,K − 1], as the basis functions are even. We then have

g(x) = w0 +
∑K−1
k=1 wk 2 cos

(
2πkx
L

)
, by exploiting cos(0)=1.

Shift property:
If wk are the Fourier series coefficients of a function g(x), exp(−i2πkµ

L
)wk are the

Fourier coefficients of g(x− µ).

Combination property:
If wk,1 (resp. wk,2) are the Fourier series coefficients of a function g1(x) (resp.
g2(x)), then α1wk,1 + α2wk,2 are the Fourier coefficients of α1g1(x) + α2g2(x).

Gaussian property:

If g0(x) = N (x | 0, σ2) = (2πσ2)−
1

2 exp(− x2

2σ2 ) is mirrored to create a real and even
periodic function g(x) of period L � σ (implementation details will follow), the

corresponding Fourier series coefficients are of the form wk = exp(−2π2k2σ2

L2 ).

Well-known applications of Fourier basis functions in the context of time
series include speech processing [32, 16] and the analysis of periodic motions
such as gaits [3]. Such decompositions also have a wider scope of applications,
as illustrated next with ergodic control.

2.4 Ergodic control

In ergodic control, the aim is to find a series of control commands u(t) so that
the retrieved trajectory x(t) ∈ RD covers a bounded space X in proportion
of a desired spatial distribution ĝ(x), see Fig. 5-(a). As proposed in [22], this
can be achieved by defining a metric in the spectral domain, by decomposing
in Fourier series coefficients both the desired spatial distribution ĝ(x) and
the (partially) retrieved trajectory x(t). The goal of ergodic control is to
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Fig. 5 2D ergodic control problem. (a) shows the spatial distribution ĝ(x) that the
agent has to explore, encoded here as a mixture of two Gaussians (gray colormap in
left graph). The right graphs show the corresponding Fourier series coefficients ŵk

in the frequency domain (K = 9 coefficients per dimension), which can be computed
analytically by exploiting the shift, symmetry and linear combination properties of
Gaussians. (b) shows the evolution of the reconstructed spatial distribution g(x) (left
graph) and the computation of the next control command u (red arrow) after T/10
iterations. The corresponding Fourier series coefficients wk are shown in the right
graph. (c) shows that after T iterations, the agent covers the space in proportion to
the desired spatial distribution, with a good match of coefficients in the frequency
domain (we can see that ŵk and wk are nearly the same). (d) shows how a periodic
signal ĝ(x) (with range [−L/2, L/2] for each dimension) can be constructed from
the original mixture of two Gaussians ĝ0(x) (red area). The constructed signal ĝ(x)
is composed of eight Gaussians in this 2D example (mirroring the Gaussians along
horizontal and vertical axes to construct an even signal of period L). (e) depicts
the first few basis functions of the Fourier series (for the first four coefficients in
each dimension), represented as a 2D colormap corresponding to periodic signals of
different frequencies along two axes.
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minimize

ε =
1

2

∑
k∈K

Λk

(
wk − ŵk

)2
(14)

=
1

2

(
w − ŵ

)>
Λ
(
w − ŵ

)
, (15)

where Λk are weights, ŵk are the Fourier series coefficients of ĝ(x), and wk
are the Fourier series coefficients along the trajectory x(t). K is a set of
index vectors in ND covering the D-dimensional array k = r × r × · · · × r,

with r = [0, 1, . . . ,K−1] and K the resolution of the array.2 w ∈ RKD

and ŵ ∈ RKD

are vectors composed of elements wk and ŵk, respectively.

Λ ∈ RKD×KD

is a diagonal weighting matrix with elements Λk. In (14), the
weights

Λk =
(
1 + ‖k‖2

)−D+1
2 (16)

assign more importance on matching low frequency components (related to
a metric for Sobolev spaces of negative order). The Fourier series coefficients
wk along a trajectory x(t) of continuous duration t are defined as

wk =
1

t

∫ t

τ=0

φk
(
x(τ)

)
dτ, (17)

whose discretized version can be computed recursively at each discrete time
step t to build

wk =
1

t

t∑
s=1

φk(xs), (18)

or equivalently in vector form w = 1
t

∑t
s=1 φ(xs).

For a spatial signal x ∈ RD, where xd is on the interval [−L2 ,
L
2 ] of period

L, ∀d ∈ {1, . . . , D}, the basis functions of the Fourier series with complex
exponential functions are defined as (see Fig. 5-(e))

φk(x) =
1

LD

D∏
d=1

exp

(
−i2πkdxd

L

)

=
1

LD

D∏
d=1

cos

(
2πkdxd
L

)
− i sin

(
2πkdxd
L

)
, ∀k∈K. (19)

2 For D = 2 and K = 2, we have K =
{

[ 00 ] , [ 01 ] , [ 10 ] , [ 11 ]
}

.
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Computation of Fourier series coefficients ŵk for a spatial
distribution represented as a Gaussian mixture model

We consider a desired spatial distribution ĝ0(x) represented as a mixture of
J Gaussians with centers µj , covariance matrices Σj , and mixing coefficients

αj (with
∑J
j=1 αj = 1 and αj > 0),

ĝ0(x) =

J∑
j=1

αj N
(
x |µj ,Σj

)
(20)

=

J∑
j=1

αj (2π)−
D
2 |Σj |−

1
2 exp

(
− 1

2
(x−µj)>Σ−1j (x−µj)

)
,

with each dimension on the interval [0, L2 ]. ĝ0(x) is extended to a periodized
function by constructing an even function on the interval X , where each
dimension xd is on the interval X = [−L2 ,

L
2 ] of period L. This is achieved

with mirror symmetries of the Gaussians around all zero axes, see Fig. 5-
(d). The resulting spatial distribution can be expressed as a mixture of 2DJ
Gaussians

ĝ(x) =

J∑
j=1

2D∑
m=1

αj
2D
N
(
x
∣∣Amµj ,AmΣjA

>
m

)
, (21)

with linear transformation matrices Am.3 By exploiting the symmetry, shift
and Gaussian properties presented in Section 2.3, the Fourier series coeffi-
cients ŵk can be analytically computed as

ŵk =

∫
x∈X

ĝ(x) φk(x) dx

=
1

LD

J∑
j=1

2D∑
m=1

αj
2D

exp

(
−i2πk

>Amµj
L

)
exp

(
−2π2k>AmΣjA

>
mk

L2

)

=
1

LD

J∑
j=1

2D−1∑
m=1

αj
2D−1

cos

(
2πk>Amµj

L

)
exp

(
−2π2k>AmΣjA

>
mk

L2

)
.

(22)

With this mirroring, we can see that ŵk are real and even, where an evaluation
over k ∈K, j ∈ {1, 2, . . . , J} and m∈ {1, 2, . . . , 2D−1} in (22) is sufficient to
fully characterize the signal.

3 Am = diag(H2D−D+1:2D,m), where H2D−D+1:2D,m is a vector composed of the
last D elements in the column m of the Hadamard matrixH of size 2D. Alternatively,
Am=diag

(
vec(`m)

)
can be constructed with the array `m, with m indexing the first

dimension of the array `=s×s×· · ·×s ∈ Z2×2×...×2 with s=[−1, 1]. In 2D, we have
A1 =

[−1 0
0 −1

]
, A2 =

[−1 0
0 1

]
, A3 =

[
1 0
0 −1

]
and A2 =[ 1 0

0 1 ], see Fig. 5-(d).
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Controller for a spatial distribution represented as a Gaussian
mixture model

In [22], ergodic control is set as the constrained problem of computing a
control command û(t) at each time step t with

û(t) = arg min
u(t)

ε
(
x(t) +∆t

)
, s.t. ẋ(t) = f

(
x(t),u(t)

)
, ‖u(t)‖ 6 umax,

(23)
where the simple system ẋ(t) = u(t) is considered (control with velocity
commands), and where the error term is approximated with the Taylor series

ε
(
x(t)+∆t

)
≈ ε

(
x(t)

)
+ ε̇

(
x(t)

)
∆t +

1

2
ε̈
(
x(t)

)
∆t2. (24)

By using (14), (17), (19) and the chain rule ∂f
∂t = ∂f

∂x
∂x
∂t , the Taylor series is

composed of the control term u(t) and ∇xφk
(
x(t)

)
∈ R1×D, the gradient of

φk
(
x(t)

)
with respect to x(t). Solving the constrained objective in (23) then

results in the analytical solution (see [22] for the complete derivation)

u = ũ(t)
umax

‖ũ(t)‖
, with ũ = −

∑
k∈K

Λk
(
wk − ŵk

)
∇xφk

(
x(t)

)>
= −∇xφ

(
x(t)

)
Λ
(
w − ŵ

)
, (25)

where ∇xφ
(
x(t)

)
∈ RD×KD

is a concatenation of the vectors ∇xφk
(
x(t)

)
.

Figure 5 shows a 2D example of ergodic control to create a motion approxi-
mating the distribution given by a mixture of two Gaussians. A remarkable
characteristic of such approach is that the controller produces natural explo-
ration behaviors (see Fig. 5-(c)) without relying on stochastic noise in the
formulation. In the limit case, if the distribution g(x) is a single Gaussian
with a very small isotropic covariance, the controller results in a standard
tracking behavior.

Examples of application include surveillance with multi-agent systems [22],
active shape estimation [2], and localization for fish-like robots [23]. A Matlab
code example demo ergodicControl 2D01.m can be found in [1].

3 Probabilistic movement primitives

The representation of time series as a superposition of basis functions can
also be exploited to construct trajectory distributions. Representing a col-
lection of trajectories in the form of a multivariate distribution has several
advantages. First, new trajectories can be stochastically generated. Then, the
conditional probability property (see (7)) can be exploited to generate trajec-
tories passing through via-points (including starting and/or ending points).
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Fig. 6 Left: Raw trajectory distribution as a Gaussian of size DT by organizing each
of the M samples as a trajectory vector, where each trajectory has T time steps and
each point has D dimensions (T = 100 and D = 2 in this example). Right: Trajectory
distribution encoded with probabilistic movement primitives (superposition ofK basis
functions). The right part of the figure depicts the linear mapping functions φ and
Ψ created by a decomposition with radial basis functions.

Fig. 7 Left: Illustration of probabilistic movement primitives as a linear mapping
between the original space of trajectories and a subspace of reduced dimensionality.
After projecting each trajectory sample in this subspace (with linear map Ψ† com-
puted as the pseudoinverse of Ψ), a Gaussian is evaluated, which is then projected
back to the original trajectory space by exploiting the linear transformation prop-
erty of multivariate Gaussians (with linear map Ψ). Such decomposition results in
a low rank structure of the covariance matrix, which is depicted in the bottom part
of the figure. Right: Representation of the covariance matrix ΨΨ> for various basis
functions, all showing some form of sparsity.
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This is simply achieved by specifying as inputs xI in (7) the datapoints that
the system needs to pass through (with corresponding dimensions in the hy-
perdimensional vector) and by retrieving as output xO the remaining parts
of the trajectory.

A naive approach to represent a collection of M trajectories in a proba-
bilistic form is to reorganize each trajectory as a hyperdimensional datapoint
xm = [x>1 ,x

>
2 , . . . ,x

>
T ]
> ∈ RDT , and fitting a Gaussian N (µx,Σx) to these

datapoints, see Fig. 6-left. Since the dimension DT might be much larger
than the number of datapoints M , a potential solution to this issue could be
to consider an eigendecomposition of the covariance (ordered by decreasing
eigenvalues)

Σx = V DV > =

DT∑
j=1

λjvjv
>
j , (26)

with V = [v1,v2, . . . ,vDT ] and D = diag(λ21, λ
2
2, . . . , λ

2
DT ). This can be ex-

ploited to project the data in a subspace of reduced dimensionality through
principal component analysis. By keeping the first KT components, such ap-
proach provides a Gaussian distribution of the trajectories with the structure
N (Ψµw,ΨΨ>), where Ψ=[v1λ1,v2λ2, . . . ,vDKλDK ].

The ProMP (probabilistic movement primitive) model proposed in [25]
also encodes the trajectory distribution in a subspace of reduced dimension-
ality, but provides a RBF structure to this decomposition instead of the
eigendecomposition as in the above. It assumes that each sample trajectory
m ∈ {1, . . . ,M} can be approximated by a weighted sum of K normalized
RBFs with

xm = Ψwm + ε, where ε ∼ N (0, σ2I), (27)

and basis functions organized as

Ψ = φ⊗ I =


Iφ1(t1) Iφ2(t1) · · · IφK(t1)
Iφ1(t2) Iφ2(t2) · · · IφK(t2)

...
...

. . .
...

Iφ1(tT ) Iφ2(tT ) · · · IφK(tT )

 , (28)

with Ψ ∈RDT×DK , identity matrix I ∈RD×D, and ⊗ the Kronecker product
operator. A vector wm ∈ RDK can be estimated for each of the M sample
trajectories by the least squares estimate

wm = (Ψ>Ψ)
−1
Ψ>xm. (29)

By assuming that {wm}Mm=1 can be represented with a Gaussian N (µw,Σw)
characterized by a center µw ∈ RDK and a covariance Σw ∈ RDK×DK , a
trajectory distribution P(x) can then be computed as

x ∼ N
(
Ψµw , ΨΣwΨ> + σ2I

)
, (30)
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with x ∈RDT a trajectory of T datapoints of D dimensions organized in a
vector form and I∈RDT×DT , see Figures 6 and 7.

The parameters of the ProMP model are σ2, µIk, ΣI

k, µw, and Σw. A
Gaussian of DK dimensions is estimated, providing a compact representa-
tion of the movement, separating the temporal components Ψ and spatial
components N (µw,Σw). Similarly to LWR, ProMP can be coupled with
GMM/GMR to automatically estimate the location and bandwidth of the
basis functions as a joint distribution problem, instead of specifying them
manually. A mixture of ProMPs can be efficiently estimated by fitting a
GMM to the datapoints wm, and using the linear transformation property
of Gaussians to convert this mixture into a mixture at the trajectory level.
Moreover, such representation can be extended to other basis functions, in-
cluding Bernstein and Fourier basis functions, see Fig. 7-right.

ProMP has been demonstrated in various robotic tasks requiring human-
like motion capabilities such as playing the maracas and using a hockey
stick [25], or for collaborative object handover and assistance in box assem-
bly [21]. A Matlab code example demo proMP01.m can be found in [1].

4 Further challenges and conclusion

This chapter presented various forms of superposition for time signals analysis
and synthesis, by emphasizing the connections to Gaussian mixture models.
The connections between these decomposition techniques are often underex-
ploited, mainly due to the fact that these techniques were developed sepa-
rately in various fields of research. The framework of mixture models provides
a unified view that is inspirational to make links between these models. Such
links also stimulate future developments and extensions.

Future challenges include a better exploitation of the joint roles that mix-
ture of experts (MoE) and product of experts (PoE) can offer in the treatment
of time series and control policies [26]. While MoE can decompose a complex
signal by superposing a set of simpler signals, PoE can fuse information by
considering more elaborated forms of superposition (with full precision ma-
trices instead of scalar weights). Often, either one or the other approach is
considered in practice, but many applications would leverage the joint use of
these two techniques.

There are also many further challenges specific to each basis function cat-
egories presented in this chapter. For Gaussian mixture regression (GMR), a
relevant extension is to include a Bayesian perspective to the approach. This
can take the form of a model selection problem, such as an automatic estima-
tion of the number of Gaussians and rank of the covariance matrices [29]. This
can also take the form of a more general Bayesian modeling perspective by
considering the variations of the mixture model parameters (including means
and covariances) [26]. Such extension brings new perspectives to GMR, by
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providing a representation that allows uncertainty quantification and multi-
modal conditional estimates to be considered. Other techniques like Gaussian
processes also provide uncertainty quantification, but they are typically much
slower. A Bayesian treatment of mixture model conditioning offers new per-
spectives for an efficient and robust treatment of wide-ranging data. Namely,
models that can be trained with only few datapoints but that are rich enough
to scale when more training data are available.

Another important challenge in GMR is to extend the techniques to more
diverse forms of data. Such regression problem can be investigated from a
geometrical perspective (e.g., by considering data lying on Riemannian man-
ifolds [18]) or from a topological perspective (e.g., by considering relative
distance space representations [17]). It can also be investigated from a struc-
tural perspective by exploiting tensor methods [20]. When data are organized
in matrices or arrays of higher dimensions (tensors), classical regression meth-
ods first transform these data into vectors, therefore ignoring the underly-
ing structure of the data and increasing the dimensionality of the problem.
This flattening operation typically leads to overfitting when only few train-
ing data are available. Tensor representations instead exploit the intrinsic
structure of multidimensional arrays. Mixtures of experts can be extended
to tensorial representations for regression of tensor-valued data [19], which
could potentially be employed to extend GMR representations to arrays of
higher dimensions.

Regarding Bézier curves, even if the technique is well established, there
is still room for further perspectives, in particular with the links to other
techniques that such approach has to offer. For example, Bézier curves can be
reframed as a model predictive control (MPC) problem [10, 6], a widespread
optimal control technique used to generate movements with the capability
of anticipating future events. Formulating Bézier curves as a superposition
of Bernstein polynomials also leaves space for probabilistic interpretations,
including Bayesian treatments.

The consideration of Fourier series for the superposition of basis functions
might be the approach with the widest range of possible developments. In-
deed, the representation of continuous time signals in the frequency domain
is omnipresent in many fields of research, and, as exemplified with ergodic
control, there are many opportunities to exploit the Gaussian properties in
mixture models by taking into account their dual representation in spatial
and frequency domains.

With the specific application of ergodic control, the dimensionality issue
requires further consideration. In the basic formulation, by keeping K basis
functions to encode time series composed of datapoints of dimension D, KD

Fourier series components are required. Such formulation has the advantage
of taking into account all possible correlations across dimensions, but it slows
down the process when D is large. A potential direction to cope with such
scaling issue would be to rely on Gaussian mixture models (GMMs) with
low-rank structures on the covariances [29], such as in mixtures of factor
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analyzers (MFA) or mixtures of probabilistic principal component analyzers
(MPPCA) [7]. Such subspaces of reduced dimensionality could potentially be
exploited to reduce the number of Fourier basis coefficients to be computed.

Finally, the probabilistic representation of movements primitives in the
form of trajectory distributions also offers a wide range of new perspectives.
Such models classically employ radial basis functions, but can be extended
to a richer family of basis functions (including a combination of those). This
was exemplified in the chapter with the use of Bernstein and Fourier bases
to build probabilistic movement primitives, see Fig. 7-right. More generally,
links to kernel methods can be created by extension of this representation [15].
Other extensions include the use of mixture models and associated Bayesian
methods to encode the weightswm in the subspace of reduced dimensionality.
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