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ABSTRACT

Recognising dysarthric speech is a challenging problem as it
differs in many aspects from typical speech, such as speaking
rate and pronunciation. In the literature the focus so far has
largely been on handling these variabilities in the framework
of HMM/GMM and cross-entropy based HMM/DNN systems.
This paper focuses on the use of state-of-the-art sequence-
discriminative training, in particular lattice-free maximum mu-
tual information (LF-MMI), for improving dysarthric speech
recognition. Through a systematic investigation on the Torgo
corpus we demonstrate that LF-MMI performs well on such
atypical data and compensates much better for the low speak-
ing rates of dysarthric speakers than conventionally trained
systems. This can be attributed to inherent aspects of current
speech recognition training regimes, like frame subsampling
and speed perturbation, which obviate the need for some tech-
niques previously adopted specifically for dysarthric speech.

Index Terms— Speech recognition, pathological speech
processing, dysarthria, LF-MMI.

1. INTRODUCTION

Neurodegenerative diseases like Parkinson’s or amyotrophic
lateral sclerosis (ALS) not only reduce speech intelligibility,
but affect the entire motor system. Assistive systems that
recognise such pathological speech could therefore help carry
out daily tasks, such as switching on the light or changing TV
channels, that are otherwise very difficult for people with lim-
ited motor control. Although considerable progress has been
made in the field of automatic speech recognition (ASR), it
has been found that current commercial and open-source ASR
systems still perform poorly on pathological speech data [11].
This highlights the need for further research in this area that
results in tangible improvements in mainstream speech tech-
nology and thus directly improves the quality of life for people
with speech disorders.

Given the scarcity of pathological speech datasets, there
has been an emphasis on adapting ASR models trained on
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typical speech [2, 10, 13, 23]. Other works investigated trans-
forming pathological speech to be more similar to typical
speech, for example with speech enhancement methods [1]
or by adjusting speech tempo [22]. Alternatively, Jiao et al.
[6], Xiong et al. [22] have also employed data augmentation
techniques to create additional, artifical dysarthric speech data.
As many speech disorders affect the movement of articulators
in the vocal tract, modelling articulatory information has been
found to be beneficial [5, 19, 24].

Most previous works on dysarthric speech recognition have
been in the framework of maximum likelihood trained hid-
den Markov model (HMM)/Gaussian mixture model (GMM)
models or hybrid HMM/deep neural network (DNN) mod-
els trained with a frame-level cross entropy objective. How-
ever, as ASR is a sequence modelling problem, recent state-
of-the-art systems are increasingly trained with sequence-
discriminative loss functions, especially lattice-free maximum
mutual information (LF-MMI) [17]. The use of such sequence-
discriminative criteria has not been sufficiently explored in the
context of pathological speech yet. LF-MMI has previously
been applied to dysarthric speech [22], but its performance in
comparison with other methods has not yet been analysed in
detail.

Multiple now common techniques employed for perfor-
mance or efficiency reasons in LF-MMI training and other
state-of-the-art models, such as frame subsampling [21] and
speed perturbation [9], potentially also give performance ben-
efits especially on dysarthric speech. For frame subsampling,
only every third frame is preserved during training and decod-
ing for a substantial speedup. At training time, this sampling
is repeated with different offsets, so that the model still sees
every frame. Similarly, for dysarthric speech recognition it
was suggested to increase the frame shift of dysarthric speaker
during feature extraction to compensate for their lower speak-
ing rates [4]. Speed perturbation augments the training data
with multiple (usually 2) copies of itself with slightly modified
speed to make models more robust to different speaking rates
and to increase the amount of training data, which is crucial
for neural network training on small corpora. It could thus
also help with the much larger speaking rate variability found
in dysarthric speech. We therefore focus our analysis on these
techniques.

We evaluate our systems on the Torgo corpus of dysarthric



speech [20] and unlike previous works split the evaluation
between isolated and multi-word utterances to obtain more
informative results. We show that time-delay neural network
(TDNN) acoustic models trained with the LF-MMI objective
give state-of-the-art results and especially reduce the number
of insertion errors. ASR systems commonly insert many spuri-
ous words when recognising dysarthric speech [12] because it
is often much slower than the speech they are typically trained
on.

The remainder of the paper is organised as follows. Sec-
tion 2 describes the Torgo corpus and the ASR systems that we
train on it. In Section 3 we present our results and analyse the
strong performance of LF-MMI systems. Section 4 concludes
the paper and summarises the main contributions.

2. EXPERIMENTAL SETUP

2.1. Dataset

We used the Torgo corpus of dysarthric speech [20], which
contains about 15 hours of recordings from 15 speakers. There
are 8 mostly severely dysarthric speakers (total of 6 hours of
speech) and 7 control speakers (total of 9 hours of speech)
with no speech disorder.

Participants were asked to do different recordings tasks.
For ASR training we included only the isolated word and
sentence recordings in line with previous works. We further
discarded utterances that had no transcriptions or that were too
short to contain any speech.

Table 1: Torgo corpus statistics.

Total utterances 16394
Total unique utterances 971
Total multi-word utterances 4161
Total unique multi-word utterances 356

Table 1 provides statistics on the utterances that we in-
cluded for ASR training. It shows that the number of unique
utterances is small, meaning that many are repeated within
and across speakers [25]. About 75% of utterances consist of
isolated words, among which are many minimal pairs, such as
rate and raid without context that would disambiguate them.
In fact, for 88% of isolated words there is at least one other
word with a pronunciation within an edit distance of 1. The
average closest edit distance is 1.16. This makes the corpus
very useful for automatic assesment of speech intelligibility
and similar tasks, but more challenging for ASR. Even for
speakers without any speech disorders correctly recognising
the minimal pairs is expected to be difficult.

2.2. Systems

2.2.1. HMM/GMM

We used the open-source Kaldi speech recognition toolkit [16]
for all our experiments. We followed the typical development
pipeline to train a subspace GMM (SGMM) [15] baseline
model on 39-dimensional MFCC+∆+∆∆ features. We used
the hyperparameters and provided Kaldi recipe of España-
Bonet and Fonollosa [4].1 The code for our experiments is
publicly available.2

We also chose to model phones independent of their po-
sition in words as suggested by Joy and Umesh [7] because
of data sparsity and because the lower speaking rates lead to
reduced coarticulation effects.

2.2.2. HMM/DNN

It is important to avoid excessive hyperparameter tuning on
Torgo, which would easily lead to overfitting because of the
little amount of data and the cross-validation approach for
evaluation. Our hybrid HMM/DNN models are therefore based
on the well-tuned Kaldi recipes for the 5-hour subset of the
Librispeech corpus.3

The main system that we analyse below is a 13-layer
factorised TDNN model [18] trained with the sequence-
discriminative LF-MMI objective function. For comparison,
we also trained a 9-layer TDNN-LSTM model with a con-
ventional frame-wise cross-entropy (CE) objective. As is the
default in Kaldi, we trained the HMM/DNN models on speed
perturbed data for which the original data is augmented by
perturbed versions at 0.9 and 1.1 times the original speed.

2.3. Evaluation protocol

As there are only 8 dysarthric speakers and their degree of
dysarthria varies a lot, we maintain the leave-one-out cross-
validation training procedure where each of the 15 speakers is
evaluated separately and models are trained on the remaining
14 speakers.

Unlike previous works, we split the evaluation of isolated-
and multi-word utterances by treating the two tasks separately.
Otherwise the results would be less informative because of the
different challenges in these two tasks. Most prior research on
dysarthric speech recognition has focused on isolated words
because of the lack of datasets that include continuous speech.
However, we do not see this as a limitation. Speaking can
require a significant effort from severely dysarthric speakers
and to maximise communication efficiency they might choose
to use shorter utterances. For example, the homeService cor-
pus [14] was recorded in realistic home environments and
contains simple 1–2 word commands like “Volume up”. Most

1https://github.com/cristinae/ASRdys
2https://github.com/idiap/torgo asr
3https://github.com/kaldi-asr/kaldi/tree/master/egs/mini librispeech
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other pathological speech corpora are not recorded specifically
for ASR, but for speech assessment purposes, which explains
why the sentences in the Torgo corpus are often long and
unnatural.

The language models (LMs) are different for the two eval-
uation tasks. For isolated word recognition it is a unigram
model containing all around 600 possible words, which may
be preceded or followed by silence. In Section 3 we also eval-
uate the effect of constraining the decoding grammar so that
the output is always a single word. For sentences we use a
bigram LM that is trained on all the sentence data. In both
cases we trained the LMs on the data of all speakers, they thus
also include that of the test speaker. This is impossible to avoid
because there is very high text overlap between speakers as ex-
plained in Section 2.1 and in this way we focus on improving
the acoustic model (AM). Improvements on the LM side could
only be obtained with LMs trained on large external corpora
because the Torgo corpus is so small [25].

The language model weight for decoding in each exper-
iment was set to the average of the best values obtained for
each control speaker.4

3. RESULTS AND ANALYSIS

Table 2 shows the results for evaluating the baseline systems
described in Section 2.2 separately on isolated-word and multi-
word utterances. The word error rates (WERs) are averaged
over dysarthric and control speakers for readability, but there
can be substantial variation within these groups as illustrated
in Figure 1.

As hypothesised, WERs on the isolated word task are high
even for the control speakers because of the inherent challenge
in distinguishing minimal pairs without further context. On

Table 2: WER for different systems, averaged for dysarthric
(Dys) and control (Con) speakers, respectively. Every second
row shows the effect of restricting the output to a single word
during isolated word recognition.

1-word Isolated Sentences
LM Dys Con Dys Con

SGMM – 56.1 19.4 41.5 4.4
X 47.2 18.7 – –

CE – 53.6 24.6 38.0 9.3
X 44.9 24.0 – –

LF-MMI – 49.2 24.0 25.9 7.9
X 43.0 22.0 – –

4In Kaldi it is common to perform a grid search for language model
weight and word insertion penalty at decoding time even on test data because
differences are often small, but with the cross-validation setup on the Torgo
corpus it is important to avoid tuning any parameters on a specific dysarthric
speaker’s data because the impact might be much larger.
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Fig. 1: Association between mean phoneme duration and
WER for dysarthric (dys) and control (con) speakers. The
WER results are from the LF-MMI and SGMM models on the
Torgo sentence task. Mildly dysarthric speakers also achieve
very low WER. Dashed lines connect results from the same
speaker.

the other hand, the sentences are recognised with only very
few errors for the control group and mildly dysarthric speakers
because the strong LM renders this task quite easy. Despite this
advantage, WERs for moderate to severely dysarthric speakers
are much higher in this case. This highlights that there is still
a lot of room for improvement just on the AM side.

LF-MMI training always helps for dysarthric speakers
except for one compared to both SGMM and CE-based models.
However, the SGMM outperforms the neural network models
on the control speakers, perhaps because on such a small
corpus the neural networks are more sensitive to the additional
variability in the training data introduced by the dysarthric
speech. Indeed, if the LF-MMI system is trained for the same
number of epochs and with the same hyperparameters on the
control speech only, it performs much better, with WERs
of 18.3% on the isolated words and 2.9% on the sentences
averaged over all control speakers.

The large improvements of LF-MMI models on the sen-
tences are because they make much fewer insertion errors,
indicating that they are better equipped to handle very low
speaking rates. Figure 1 shows how speaking rate and WER
are correlated. We approximate speaking rate information by
computing mean phoneme durations from forced alignments
of the training data with the methodology of Xiong et al. [22].
It can be seen that dysarthric speakers have the lowest speak-
ing rates and also the highest WERs. There are another three
mildly dysarthric speakers that have normal or even slightly
shorter phoneme durations that the ASR system recognises



very well.
For the sake of completeness, we also evaluated all speech

grouped together and with the methodology of España-Bonet
and Fonollosa [4]. We substantially outperform their best
results obtained with hybrid HMM/DNN systems that were
the previous state of the art on this corpus.

In the following sections we will analyse the performance
of LF-MMI in more detail.

3.1. Constrained language model

Every second row in Table 2 also shows the results of forcing
the decoder to output only a single word for the isolated-word
utterances. This consistently improves results across speakers,
in particular for the most severely dysarthric ones because their
very low speaking rate otherwise leads to a large number of in-
sertion errors. This suggests that the WER on the sentence task
where the number of words is not known a priori could also
be reduced by appropriately tuning the word insertion penalty
during decoding for each speaker or utterance. However, this
penalty would need to be set in an unsupervised manner by
automatically estimating speaking rates.

3.2. Speed perturbation

As mentioned in Section 2, the training data for the hybrid
HMM/DNN systems was augmented with two speed-perturbed
copies. To test the effects of this we trained LF-MMI models
on the original data only, but increasing the number of epochs
by a factor of 3 to compensate for the lower amount of training
data. Results, shown in Table 3, are overall still better than SG-
MMs and cross-entropy models, maintaining a big reduction
in insertion errors as indicated by the sentence results. This
suggests that this reduction can at least in part be attributed to
the sequence-discriminative objective function.

However, the performance on control speech is better when
no speed perturbation is applied. It is then on par with the
SGMM results, but still worse than training on speed-perturbed
control speech only as observed above. This is perhaps be-
cause applying further distortions to dysarthric speech makes
the training data too variable to perform well on unimpaired
speech.

Table 3: LF-MMI systems trained without speed perturbation
still outperform SGMMs. The isolated word results use the
constrained LM.

Speed Isolated Sentences
perturbation Dys Con Dys Con

SGMM – 47.2 18.7 41.5 4.4
LF-MMI X 43.0 22.0 25.9 7.9

– 46.4 21.4 30.2 4.2

3.3. Frame shift

Previous work [4] proposed to apply a frame shift of 15 ms to
the dysarthric data while maintaining the usual 10 ms for the
control speech to compensate for the lower speaking rates of
dysarthric speakers. However, the good performance of the LF-
MMI systems suggests that it might not be necessary in these
models. Our results in Table 4 confirm that a constant frame
shift of 10 ms for the entire data does not reduce performance
on dysarthric speech. This is useful because the constant frame
shift does not require prior knowledge about the speaker.

Table 4: Applying a 15 ms frame shift to dysarthric and 10 ms
to control speakers compared with a constant 10 ms shift
throughout. The isolated word results use the constrained LM.

Frame Isolated Sentences
shift Dys Con Dys Con

LF-MMI 15/10 ms 43.0 22.0 25.9 7.9
10 ms 42.9 22.5 25.9 8.1

4. CONCLUSIONS

We applied LF-MMI training to dysarthric speech and demon-
strated that it also yields strong results on such a small and
atypical dataset. Our results are a new state of the art on the
Torgo corpus that can serve as strong baselines for further
research. When analysing these improvements we found that
especially insertion errors are reduced, which are otherwise
very frequent due to the low speaking rates of dysarthric speak-
ers. Contributing factors to this are the frame subsampling of
LF-MMI, data augmentation with speed perturbed speech and
the sequence-discriminative objective function itself. Further
analysis is required to determine the importance of each of
these factors. While hybrid HMM/DNN systems reduce the
number of errors on dysarthric speech, we observed that they
do not work as well for control speakers as systems trained
only on control speech or a traditional HMM/GMM system.
This calls for further research into improving speech recogni-
tion for everyone.

In future work we plan to focus on additional ways for
making ASR systems more invariant to speaking rate variabil-
ity. For example, segmental training was recently found to
be an effective way to normalise segment durations [3]. Does
this also apply in the case of dysarthric speech? We will also
cross-evaluate models that were trained on the UA-Speech
[8] and homeService [14] corpora. They both contain only
1–2 word utterances as well and can therefore be compared
with our isolated word recognition task.
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