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Abstract: Although current trends in speech
processing consider deep learning through
data-driven technologies, many potential
applications exhibit lack of training or development
data. Therefore, considerably light signal
processing techniques are still of interest. This
paper describes an efficient technique for
decomposing the AM and FM components of the
speech signal, which is not based on frame-by-frame
short-time analysis of the signal. Instead, we
estimate all-pole models of frequency-localized
Hilbert envelopes of large segments of speech signal
at different frequencies. The technique on
decomposition of speech signal into AM and FM
components appears to be of interest in voice
studies benefiting from alleviation of the
message-bearing components of speech (e.g.
security oriented applications such as speaker
recognition, or speech diagnosis often relying on
spectra averaging to discard the content of the
speech). Similarly, discarding speaker information
while preserving the message in the speech is of
interest for  privacy-oriented  applications.
Experimental results on automatic speech and
speaker recognition tasks clearly show that the AM
component preserves the content (message) of the
speech, while the FM component -carries the
information related to the speaker.
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I. INTRODUCTION
Dominant view of speech signal processing is still
based on the linear model of speech production, where
short segments of the signal (short enough so that the
vocal tract does not significantly change within the
segment) can be represented by short-time spectrum
computed from these segments. The short-time
spectrum consists of its spectral envelope (representing
a linear filter emulating vocal tract transfer function at
a given time instant) and its fine spectral structure. It is

widely accepted that the spectral envelope mainly
represents the phonetic value of the speech segment
(i.e. message) and the fine structure represents the
spectrum  of the excitation source. Many
speech-oriented applications would benefit from being
able to reliably separate contributions of the signal
excitation and of the filtering.

Typical conventional techniques, such as linear
prediction (LP) [7], are based on the linear modeling
and apply frame-by-frame inverse filtering of speech
using estimates of spectral envelopes of short speech
segments. In this paper, we abandon the notion of the
short-time spectrum of speech. Instead, we (along with
work of Dudley 1940 [5]) see the speech as an audible
signal generated by voice source (frequency modulated
component FM), which is modulated by inaudible and
mostly invisible movements of the vocal tract
(amplitude  modulated component AM). The
movements of the vocal tract carry a bulk of the
message in speech, while the voice source makes these
tract movements audible, allowing for the message to
be perceived by a listener.

The paper describes an efficient technique for
decomposing the AM and FM speech components, not
based on frame-by-frame short-time analysis. Instead,
we estimate all-pole models of frequency-localized
Hilbert envelopes of large speech segments at different
frequencies. This is done by applying the LP technique
to short segments of a cosine transformed speech
signal. Since each segment of the cosine transformed
signal represents the individual frequency component
of the original signal, the resulting all-pole models
yield the frequency-localized Hilbert envelopes of the
signal. Inverse cosine transforms of their LP residuals
then yield frequency-localized FM components of the
voice source signal. Summing all frequency-local FM
estimates yields the FM voice signal with its message
alleviated. When the audible AM component of the
speech signal is desired, the frequency-localized
all-pole models of Hilbert envelopes are used to
compute  frequency-localized  modulated noise



components, which are summed to yield the AM signal
component carrying the speech message.
II. AM-FM DECOMPOSITION

The concept of AM-FM decomposition is presented
through frequency domain linear prediction (FDLP) -
an efficient technique for autoregressive modelling of
temporal envelopes of the signal [8]. FDLP proposes to
model the speech in critical bands as a modulated
signal with the AM component obtained using Hilbert
envelope estimate and the FM component obtained
from the Hilbert carrier. The sub-band temporal
envelopes can then be estimated using FDLP. Unlike
traditional temporal domain LP representing the
envelope of the power spectrum of the signal [7],
FDLP particularly exploits the prediction power of
slowly varying long-term AM envelopes of speech
signals in critical sub-bands. The final FDLP model
provides smoothed, minimum phase representation of
temporal rather than spectral envelopes.

The duality between time and frequency domains
suggests that the power of autoregressive models can
be applied equally well to discrete spectral
representations of the signal instead of time-domain
signal samples. Interestingly for FDLP, it has been
analytically shown that the squared magnitude
response of the all-pole filter approximates the Hilbert
envelope of the signal. At the same time it is known
that the quadrature version of a real input signal and its
Hilbert transform are identical for many modulated
signals, known in practice. We can therefore presume
that the Hilbert envelope approximates squared AM
envelope of the signal. Thus, FDLP estimates the AM
envelope of the signal and the FDLP residual contains
the FM component of the signal. Acoustic signals in
sub-bands are modulated signals and hence, FDLP can
be used for AM-FM decomposition of sub-band
signals.

III. DETAILED ANALYSIS
Source-filter linear model of speech production: Our
current view of speech is dominated by the concept of
the linear model of speech production (Chiba and
Kajiyama 1942) [6], where the stationary source signal
is filtered by the stationary filter. It assumes no
interaction between the two components of this model
(hence “linear”). This model is the basis for the LP
speech analysis.

Carrier nature of speech: Before Chiba and
Kajiyama, Homer Dudley (Dudley 1940) [4] published
his concept of speech, where he suggested that for the
human communication by speech, nature evolved a
technique which is conceptually identical to the (then
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Fig. 1: Dudley’s concept of speech [5] as a modulated
carrier signal and the linear model of speech
production.

dominant) AM radio communication. In his concept,
messages are carried in signal changes, reflected in
slow movements of vocal tract. The movements are
made audible by using them for modulating the audible
voice carrier. The current paper follows this concept in
the form of the FDLP.

Estimating components of models of speech: In
deriving the speech messages, we are primarily
interested in the vocal tract movements, i.e., in the
modulation function. On the other hand, in many
applications of voice technologies such as a speaker
recognition, or voice pathologies, it is the carrier,
which is of interest.

Conventional method of the carrier extraction is
inverse filtering, where estimated spectral envelopes of
short speech segments are used for design filters,
which are then used for whitening the respective short
segments of speech signals. A typical example of this
technique is the LPC inverse filtering [7]. This in
effect yields the modulating function, which is sampled
at the frame-rate of the short-time analysis. Since the
assumptions of stationarity and linearity are easily
violated, an accurate estimation of the individual
components of this model can be difficult [9].

We are following the original Dudley’s concept, where
estimated temporal envelopes of spectral trajectories of
speech signals at different frequencies are used for
alleviating message components in respective
frequency bands. Estimating the modulating function
was originally done by analog low-pass filtering of
spectral energies in different frequency bands [4].
Here, we show that the concept of the all-pole
modeling employed in the LP analysis can be
successfully adopted for the estimation of spectral
energy trajectories in different frequency bands.



IV. FDLP
The concept of the FDLP for modeling short segments
of Hilbert envelopes was investigated in [11] and
extended by modeling of Hilbert envelopes in narrow
frequency bands in [12,8].
In FDLP, the LP prediction is applied to the cosine
transform of the speech signal s(2), t€¢0,T). One way
to compute the cosine transform g(z), t€{0,T) of a
signal s(?) is through the Fourier transform of the signal
Sgm (t), t€(0,2T), which is the even symmetrized
s(t), i.e, q(w)=F[Sym (H)]. The g(w) is a function of
frequency and is real and even symmetric.
Being after the cosine transform in frequency domain
allows for a selection of the frequency range to be
further processed. The signal
q,, (®) = g (0) w (@) , where window
w(wy) = {(Wwe ®=Aw <0, <Awn 0, otherwise.
o, indicates the center of the frequency band to be
processed. The Fourier transform of ¢,, (»), which is
still real and causal, obeys the Krammers-Kroening
relation F [g,, (0)] = {0, () + H[so, ()]} .
The signal in a given frequency band, centered at
©, Sw, (1) ,now stands in place of the real part of the
Fourier transform and its Hilbert transform takes place
of its imaginary part. The instantaneous energy in the
signal in a given frequency band (Hilbert envelope)
Hy, ()= Swo(t)2 + Hlsg, (t)]2 is an equivalent of the
power spectrum P (®) in the time-domain LP.
The autoregressive model computed from the cosine
transform of the signal g (@) obeys the equation
— 1 { Hmo(t)

E% 2T —J; Hﬂ,;(t)
where Hm; (¢)is the all pole autoregressive model of
the Hilbert envelope H,, (9)and E,, is the error of the
model fit in the frequency band centered at ®, over
the time interval 7. The form of the error equation
implies a good fit of the spectrum of the autoregressive
model Hm; (H)to the peaks of the Hilbert envelope
Hg, (). Center of the frequency window w(®,) is
typically gradually moved through the whole frequency
range of the signal to be processed.
Re-synthesis from the FDLP: The FDLP model can
be used to construct inverse filter for whitening the
segment of the cosine transform. Whitened segment is
inverse cosine filtered to represent the whitened signal
in the respective band. Adding whitened signals from
all frequency bands yields the carrier signal.
Modulating white noise in the frequency bands by the
estimated ~ FDLP  Hilbert envelopes  yields
whispered-like
speech with the original speech message.
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Fig. 2: The upper part of the picture shows the
conventional LP as used in estimation of short-time
spectral envelopes of short segments of speech
centered at different times t0. The lower part shows the
process of estimation of Hilbert envelopes in different
frequency bands of speech signal centered at f0.

V. APPLICATIONS

The technique on decomposition of speech signal into
AM and FM components appears to be of interest in
voice studies, which would benefit from alleviation of
the message-bearing components of speech (e.g.
security oriented applications such as speaker
recognition, or speech diagnosis often relying on
spectra averaging to discard the content of the speech).
In this paper, we empirically show that AM and FM
components of the speech signal carry different types
of information, AM related to the content and FM
related to the speaker information, respectively.

V. EXPERIMENTS

We apply the AM-FM decomposition proposed in [10].
FDLP approach described in Section IV uses a simple
window on top of cosine transformed (1000 ms long)
speech segment to select a particular frequency band.
Unlike previous, the following experiments apply
slightly different FDLP version, available freely at
Github'. First, the input speech is decomposed into 32
critically-sampled frequency sub-bands by using a
conventional quadrature mirror filter (QMF) bank.
FDLP is then applied on each sub-band to model the
sub-band temporal envelopes (AM components). The
LP residual represents the FM in the sub-band signal.
These steps are reversed at the synthesis side, to
reconstruct the signal back from QMF sub-band
components.

Two sets of experiments are performed: automatic
speech recognition (ASR), and speaker verification
(SV) deployed on (i) original (fullband) speech, (ii),
the speech reconstructed only from the AM sub-band
components (i.e. envelope extracted using FDLP), and

! oithub.com/iiscleap/SignalAnalysisUsingAm-FM
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Tab. 1: ASR and SV results measured in terms of word
error rate (EER) and equal error rate (EER),
respectively, on Librespeech corpus.

ASR system SV system
WER [%] EER [%]
Original speech 10.1 14.7
AM-only 14.9 26.5
FM-only 53.9 25

(iii) the speech reconstructed only from the FM
sub-band components (i.e. carrier part alone).
Subjective listening tests clearly show that the
AM-only reconstructed signal sounds whispered. With
the carrier part alone, the synthesized signal sounds
message less.

Dataset and tool: For ASR and SV experiments, we
use Librispeech corpus [3] which consists of read
speech from audio books. We employ 100 hours for
training (train-clean-100) and 5.4 hours for testing
(test-clean). Kaldi toolkit [2] is used for building both
ASR and SV.

ASR: the system is built around a conventional
HMM-GMM framework. We use standard Kaldi (tri4)
recipe comprising MFCC features projected by
LDA+MLLT [1]. Roughly ~3.5K triphones and ~40k
Gaussians are used to build HMM-GMM.

SV: Gaussian Mixture Models (GMMs) with 32
components are trained for each speaker in test set.
Each GMM is built with the expectation-maximization
algorithm to maximize the likelihood of the data [13].
Only 10s of speech data were used for both GMM
development and testing. Cross-pair trials for SV
experiments were generated and trials comparing the
same audio are excluded. T-norm is applied on the test
scores.

VI. DISCUSSIONS AND CONCLUSIONS
The paper discusses employment of AM-FM
decomposition to efficiently alleviate message bearing
components from the speech. The technology is
demonstrated on ASR and SV tasks. As can be seen
from Tab. 1, the speech signal reconstructed from AM
components yields WER~14.9%, close to the
performance of the original signal (WER~10.1%) on
the standard ASR task. On the other side, the speech
reconstructed from FM-only components largely
increases WER (~53.9%). In the case of SV task, the
obtained results are less obvious. Original speech still

provides the best performance (EER~14.7%) as the SV
engine also exploits the content to model the speaker.
Nevertheless, the speech signal reconstructed from
FM-only components still outperform AM-only speech
(EER~25%) which clearly indicates that the speaker
related information is preserved by the Hilbert carrier.

FDLP technique described in this paper, allowing to
decompose the speech into AM and FM components,
operates on large segments of signal at different
frequencies. Empirically obtained results on automatic
speech and speaker recognition tasks confirm our
assumptions (determined by subjective listening) that
the AM-FM decomposition can reliably separate the
content and speaker related information from speech,
which can be applied in various speech-oriented tasks.
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