
Low-latency speaker spotting with online diarization and detection

Jose Patino1, Ruiqing Yin2, Héctor Delgado1, Hervé Bredin2, Alain Komaty3,
Guillaume Wisniewski2, Claude Barras2, Nicholas Evans1 and Sébastien Marcel3

1 EURECOM, France
2 LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, France

3 Idiap, Switzerland
lastname@{eurecom.fr,limsi.fr,idiap.ch}

Abstract
This paper introduces a new task termed low-latency speaker
spotting (LLSS). Related to security and intelligence applica-
tions, the task involves the detection, as soon as possible, of
known speakers within multi-speaker audio streams. The paper
describes differences to the established fields of speaker diariza-
tion and automatic speaker verification and proposes a new pro-
tocol and metrics to support exploration of LLSS. These can be
used together with an existing, publicly available database to as-
sess the performance of LLSS solutions also proposed in the pa-
per. They combine online diarization and speaker detection sys-
tems. Diarization systems include a naive, over-segmentation
approach and fully-fledged online diarization using segmental
i-vectors. Speaker detection is performed using Gaussian mix-
ture models, i-vectors or neural speaker embeddings. Metrics
reflect different approaches to characterise latency in addition
to detection performance. The relative performance of each so-
lution is dependent on latency. When higher latency is admis-
sible, i-vector solutions perform well; embeddings excel when
latency must be kept to a minimum. With a need to improve
the reliability of online diarization and detection, the proposed
LLSS framework provides a vehicle to fuel future research in
both areas. In this respect, we embrace a reproducible research
policy; results can be readily reproduced using publicly avail-
able resources and open source codes.

1. Introduction
An automatic speaker verification (ASV) system is usually
tasked with determining whether or not an audio sequence con-
tains a given speaker [1, 2]. Almost all work in the area,
e.g. [3, 4, 5, 6], involves offline processing. This paper reports
our ongoing work to develop a somewhat different system. In
our task the ASV system is required to determine whether or
not an audio sequence contains a given speaker as quickly as
possible. We refer to this task as low-latency speaker spot-
ting (LLSS).

The motivation relates to the needs of the security and intel-
ligence services. These involve the rapid and efficient detection
of known, target speakers from high volume audio streams. In
such cases, rapid detection is needed in order to facilitate rapid
reaction or response to potentially hostile intent; the first step
subsequent to detection involves an agent listening immediately

This work was supported through funding from both the Agence
Nationale de la Recherche (French research funding agency) and the
Swiss National Science Foundation within the ODESSA (ANR-15-
CE39-0010) and PLUMCOT (ANR-16-CE92-0025) projects.

to the audio stream. While it is not the focus of our work, the
LLSS task also relates to civilian and consumer applications in-
volving voice-based personal assistants and speaker-dependent,
but text-independent wake-up systems.

For the security/intelligence application, the cost of miss-
ing target speakers is high and the available resources to support
human listening are limited. In this sense the appropriate met-
ric for the assessment of solutions is similar to that used in the
majority of related research [7, 8], namely the cost of detection
(Cdet) with the usual parameters. Here though, the emphasis on
low-latency necessitates a two-dimensional metric which com-
bines the cost of detection with the detection lag or latency.

The minimisation of latency has implications on the man-
ner in which an audio sequence is processed. The LLSS task
implies processing at a segmental level. While shorter segments
will allow for detection with shorter latency, the associated re-
duction in data will naturally degrade reliability [9], inferring
the need to strike a balance between latency and reliability. Fur-
thermore, in our application there is also potential for multiple,
competing speakers. Here too, then, there are differences be-
tween the existing research and the LLSS task. Solutions will
likely combine ASV technology with some form of online seg-
mentation or speaker diarization.

The contributions of this paper include: (i) a formulation
of the LLSS task and metrics in Section 3; (ii) the first LLSS
solutions in Section 4; (iii) a protocol for LLSS assessment in
Section 5; (iv) the benchmarking of LLSS solutions against or-
acle solutions in Section 6. The database used for this work is
based upon the adaptation of a database that is already in the
public domain. In embracing a policy of reproducible research,
the metrics and protocol used for the work reported in this paper
are being released publicly, together with open-source versions
of the presented LLSS solutions.

2. Prior work
The topics of speaker diarization and automatic speaker ver-
ification are closely related to the LLSS task. Speaker di-
arization [10] involves the clustering of speech recordings into
speaker-homogeneous segments. In contrast to the LLSS task,
speaker diarization is typically performed offline and with no
prior information (e.g. number of speakers or speaker models).
A number of online diarization [11, 12, 13, 14, 15] and speaker
tracking [16, 17] solutions have been reported. These use online
speaker clustering algorithms [18, 19]. Only speaker tracking
systems assume prior knowledge of target speakers but they do
not consider latency.

Ideally, speaker recognition should be possible by using

Odyssey 2018 The Speaker and Language Recognition Workshop
26-29 June 2018, Les Sables d’Olonne, France

140 10.21437/Odyssey.2018-20

http://www.isca-speech.org/archive/Odyssey_2018/abstracts/60.html

latency

target starts

speaking

at time t*

system triggers

the alarm

at time tθ

detection threshold θ

call monitoring

starts at time 0
call

ends

target ceases to

speak at time T*

Figure 1: Low-latency speaker spotting (LLSS) systems aim to detect target speakers with the lowest possible latency.

small amounts of speech. Unfortunately, with current technol-
ogy, this is only possible if the text employed for enrolment and
testing phases is constrained. This task is known in the litera-
ture as text-dependent speaker recognition [20, 21], and is often
associated with specific applications, e.g. user-friendly human-
robot interaction [22]. On-going research focused on keyword-
spotting offers solutions that do not require more than a mere
few seconds of speaker content [23], resulting in extremely low
latencies.

However, text-related constraints are not suitable for certain
scenarios, like surveillance, which motivate the majority of text-
independent ASV research [1]. The text-independent ASV task
tends to involve either single-speaker or two-speaker record-
ings. Research within the scope of the Speakers in the Wild
(SITW) [24] initiative considers multi-speaker scenarios which
necessitate some form of diarization as a precursor to ASV. Pub-
lished research addresses only offline processing and the lack of
speaker segmentation references means that the SITW database
is ill-suited to the exploration of LLSS.

None of the prior work addresses all aspects of the LLSS
task. Existing databases do not support the joint evaluation and
optimisation of speaker diarization and text-independent recog-
nition, nor the development of online, low-latency solutions. In
addition, while existing databases can be adapted, there are no
common protocols to support LLSS research.

3. Low-latency speaker spotting
This section provides a formal definition of the low-latency
speaker spotting (LLSS) task and outlines two different ap-
proaches to evaluate the latency achieved by potential solutions.

3.1. Task definition

The low latency speaker spotting (LLSS) task aims at determin-
ing whether or not an audio sequence contains a given speaker
with the shortest possible delay. Figure 1 illustrates the se-
quence of an audio stream (e.g. an intercepted telephone con-
versation) during which a known, target speaker (for which ex-
ample speech data is available) is active during the indicated
segments. The target is active from time t∗ but is detected only
at time tθ . The goal of the LLSS task is to detect the activity
of the target speaker as soon as possible, i.e. to minimise the
detection latency tθ − t∗.

Note that this is different from explicitly providing the
speaker starting time t∗. If this value is needed in the context
of a specific application, further automatic or manual processing
may occur in order to refine t∗ estimates once the target speaker
has been detected. For a monitoring system, the audio stream

may have been buffered and a security agent may listen to the
stream after rewinding the audio by a few seconds, according
to the typical detection latency; for a real-time human-robot in-
teraction application, spotting the various users as quickly as
possible is the main goal, regardless of the precise value of t∗.

An LLSS system may typically rely on regular log-
likelihood ratio estimates (example blue profile in Figure 1) ac-
cording to:

Λ(t) = ln f(at0|H1)− ln f(at0|H0) (1)

where at0 is the audio from time t = 0 to time t and f() is
a conditional probability density given hypothesis H1 or H0,
namely that the target speaker is either active in the audio stream
at some point up to time t or not.

Given a detection threshold θ, the LLSS decision Γ at time
t would then be:

Γ(t) = 1

(
max
τ∈[0,t]

Λ(τ)− θ
)

(2)

where 1 is the Heaviside function (returning 0 and 1 for nega-
tive and positive values, respectively). Note that the decision is
irreversible once the threshold has been reached, even if Λ may
later decrease. An ideal log-likelihood ratio estimator should
thus return Λ(t) < θ for t < t∗ and Λ(t) ≥ θ for t ≥ t∗.
In practice, Λ(t) need not be produced periodically, but can be
produced at arbitrary instances, leading to piecewise constant
functions Λ : R+ 7→ R.

3.2. Absolute vs. speaker latency

An ideal LLSS system would trigger an alarm as soon as the
target speaker starts speaking. In practice, this is not feasible as
a certain amount of speech from the target speaker is needed
before they can be recognised or ‘spotted’. For instance, in
Figure 1, the alarm is triggered at tθ ≈ 150s while the tar-
get speaker starts speaking at t∗ ≈ 100s, leading to an absolute
latency δ of approximately 50s.

In practice, the absolute latency δ will be influenced by the
detection threshold θ. Low values of θ may lead to the alarm be-
ing triggered too early, before the target speaker starts speaking.
For the sakes of evaluation (specifically the need to maintain a
constant number of trials and to assign a latency to each), those
trials are not marked as false alarms. Instead, their latency is
bound to 01. High values of θ may lead to the alarm not being

1Note that low values of θ would also lead to a high number of false
alarms, making the system useless in practice. Such operating points
lack practical interest.

141

online

speaker

diarization

cluster #1

cluster #nt

cluster #2

scoring

scoring

scoring

max

score s1
t

score snt
t

score s2
t

score st

audio
stream

up to
time t

enrollment
target

speech

target model

speaker detection

scoring

Figure 2: Common architecture to proposed LLSS solutions

triggered at all. In between, latency will likely increase mono-
tonically with θ.

More precisely, the absolute latency is defined as:

δθ = max(tθ − t∗, 0) (3)

where t∗ is again the time at which the target starts speaking
for the first time and tθ is the time at which the alarm is first
triggered.

In the case that the alarm is never triggered, tθ is set to the
time T ∗ in the audio stream at which the target speaker ceases
to be active, giving:

tθ =

{
min

{
t ∈ R+|Λ(t) > θ

}
if ∃t ∈ R+, Λ(t) > θ

T ∗ otherwise
(4)

However, this definition may lead to arbitrarily high latency in
the case, for example, that the first (possibly short) utterance
of the target speaker is missed and the second utterance occurs
long after. A more meaningful, alternative metric is the speaker
latency, defined as the actual duration of speech uttered by the
target speaker in the [t∗, tθ] time range.

3.3. Detection under variable or fixed latency

For a given detection threshold θ, the value of either the abso-
lute or the speaker latency δθ as defined in Eq. (3) will depend
on the actual trial. If one does not constrain the maximal latency
and lets the system use whichever latency gives the best detec-
tion performance (i.e. equivalent to Γ(t) with t→∞), then this
is referred to as a variable latency scenario. Detection perfor-
mance and detection latency are then two complementary (but
possibly contradictory) metrics. The average detection latency
increases monotonically with θ, while the detection cost reaches
its minimum value for a specific value of θ. Therefore, one may
rely on curves displaying the detection cost as a function of δ to
compare the performance of different systems.

However, averaging the latency across trials may in fact
hide very different behaviours. Depending on the final applica-
tion, we might prefer to evaluate the detection performance of
a LLSS system at a given application-driven latency δ. In this
fixed latency scenario, the system is expected to trigger an alarm
during the [0, t∗ + δ] time range. The detection performance
of such a system may then be calculated using corresponding
scores according to:

λδ = max
t∈[0,t∗+δ]

Λ(t) (5)

Depending on the value of the detection threshold θ, the
system will trigger an alarm if λδ ≥ θ whereas no alarm will be
triggered if λδ < θ. Standard speaker recognition metrics then
apply. They include the false alarm rate FARδ(θ), the missed
detection rate MDRδ(θ), the equal error rate EERδ , and the
detection cost Cδdet(θ) given by:

Cδdet(θ) = Cmiss × Ptarget ×MDRδ(θ) + (6)
Cfalse alarm × (1− Ptarget)× FARδ(θ)

4. LLSS solutions
This section describes a number of different solutions to the
LLSS task. They share a common architecture depicted in Fig-
ure 2 which combines online speaker diarization with different
approaches to speaker detection. At any time t, online speaker
diarization provides a set of nt speaker clusters {cti}1≤i≤nt .
Speaker detection is then applied to compare the speech seg-
ments in each cluster cti against a set of pre-trained target
speaker models, thereby giving scores (or likelihood-ratios) sti .
A final score at time t is defined as the maximum score over all
clusters: st = max1≤i≤nt s

t
i . The remainder of this section

describes the two different online speaker diarization systems
and three speaker detection systems explored in this work.

4.1. Online speaker diarization

Two different approaches to online speaker diarization are com-
pared. Both rely on an LSTM-based voice activity detector
(VAD) [25].

Segmental diarization: the first online diarization module does
not perform any clustering: it relies simply on a segmental ap-
proach of a 3s sliding window with a 1s shift, and creates a new
cluster at each step. Note that only speech content, often shorter
than the complete 3s, is considered. This approach is denoted
as segmental diarization in the rest of the paper.

Automatic diarization: the second automatic system is based
on i-vectors [6] and online sequential clustering using the same
sliding window, a cosine similarity measure and an empirically
optimized threshold to assign segments to existing clusters, or
to create new ones. Should the score of a new segment pro-
duced from its comparison against the set of existing clusters
fall below the threshold, then it will be assigned to a new clus-
ter. Otherwise, it will be assigned to the cluster among the ex-
isting set corresponding to the highest score. Speaker clusters
are represented by i-vectors extracted from the averaged suffi-
cient statistics of their respective segments. The system uses 19

142

Figure 3: Distribution of target speech duration per trial for the
designed test subset.

MFCC coefficients as a frontend, a universal background model
(UBM) of 256 components and a T matrix of rank 100, both
learned from training data. i-vectors are length-normalised and
whitened. All parameters were empirically optimised on the de-
velopment set with according to the standard diarization error
rate (DER) metric.

Oracle diarization: the performance of both online diariza-
tion systems is compared to that of an oracle diarization system
in order to observe the impact of diarization errors on LLSS
performance. The oracle system simulates the behaviour of an
error-less, but still online system; it uses data from time zero to
time t.

4.2. Speaker detection

The performance of three different approaches to speaker de-
tection were explored. The systems considered are described in
the following.

GMM-UBM: the first system is a standard, 256-component
Gaussian mixture model with universal background model
(GMM-UBM) [3], with a conventional MFCC frontend (the
same as that used for diarization), maximum a posteriori model
adaptation and log-likelihood ratio scoring.

i-vector: the second is an i-vector system [6] with a T matrix of
dimension 100 and PLDA scoring [26] between target and test
i-vectors, that uses a 100-dimensional speaker space and was
trained on the same data as the UBM and the total-variability
matrix. The frontend features are the same as that of the GMM-
UBM system and the diarization system.

Neural embedding: the final system is based on the neu-
ral speaker embedding approach introduced in [27] and fur-
ther improved in [28]. Briefly, an LSTM-based neural network
is trained to project speech sequences into a 192-dimensional
space, using the triplet loss paradigm. Implementation details
are identical to the ones used in [29]. The target (resp. cluster)
model is the sum all embeddings extracted from a 3s sliding
window with a 1s shift over the enrollment data (resp. cluster).
Resulting vectors are compared using the cosine distance.

5. LLSS assessment
None of the existing databases employed in either speaker di-
arization or speaker detection/verification are suited to the ex-
ploitation of the LLSS task. This section describes the steps
taken to adapt an existing database for this purpose.

Table 1: LLSS protocol details: number of speakers, number of
enrolled models, and number of target and non-target trials.

Set # speakers # models # target # non-target

Train 127 - - -
Dev. 22 121 9430 64451
Eval. 24 164 12250 102560

5.1. Database

The evaluation of LLSS solutions requires a large database
of multi-speaker audio recordings and ground-truth speaker
and segment level annotations. While several multi-speaker
databases exist (e.g. the SITW database [24]), the Augmented
Multi-party Interaction (AMI) meeting corpus [30] is widely
used, publicly available and is provided with the necessary
speaker and segment annotations. Consequently, it was adopted
for all experimental work reported in this paper.

The AMI database contains a set of audio meetings contain-
ing sessions of approximately 40 minutes and recorded across
3 different sites under different conditions and scenarios. As a
consequence, speakers groups are disjoint in terms of site, while
meetings collected at each site contain independent speaker
groups with around 4 speakers each. There are approximately 4
meeting recordings for each group.

5.2. Protocols

Despite the use of a standard database, it was necessary to de-
sign new protocols to support the development and evaluation
of LLSS solutions. Nonetheless, the standard full-corpus2 train-
ing, development and evaluation partition is still respected. All
experiments were performed using data corresponding to the
mix-headset condition of the AMI meeting corpus.

Training data is used exclusively for background modelling.
Speaker disjoint development and evaluation sets are both parti-
tioned into enrollment and test subsets. Enrolment data is used
to train target speaker models.

The single session which contains the greatest amount of
speech from a given target speaker is used for enrolment. The
speech from the target speaker is divided into N 60-second,
overlap-free speech segment splits. A subset of theseN splits is
randomly selected as the data for theM different models gener-
ated for the target speaker. SinceN varies across target speakers
(due to varying quantities of data per speaker), M is set to the
median of every N for each target speaker.

Testing content is generated from all the non-enrolment
content for each given speaker and through sub-session splits
of 1-minute duration. Each split contains speech from 0 to 4
speakers. While not ideal, under strict data constraints, the split-
ting of audio files serves to increase the number of trials and
variability.

A single LLSS trial is similar in nature to a classical ASV
trial; it involves an enrolled target model, a test sub-session, and
a trial class (target/non-target). Target trials for a given speaker
are defined by using all the test sub-sessions in which the tar-
get speaker is active. This leads to a distribution of target trials
illustrated in Figure 3. The target speaker content per trial ex-
ceeds only rarely 30 seconds duration. Remaining sub-sessions

2groups.inf.ed.ac.uk/ami/corpus

143

correspond to non-target trials. The protocol described above
results in the number of speakers, models, target and non-target
trials illustrated in Table 1.

6. Experimental results

The performance of the proposed LLSS solutions is analysed
in two different manners. The first analysis is in terms of fixed
and variable speaker latency using detection metrics described
in Section 3.3. Second, we analyse diarization influences upon
LLSS performance.

6.1. LLSS performance: fixed latency

Plots in Figure 4 depict the evolution in EER for the evaluation
set as a function of fixed speaker latency (latter part of Sec-
tion 3.3). Separate plots are shown for GMM-UBM, i-vector
and neural embedding speaker detection solutions following ei-
ther oracle, automatic or segmental diarization systems. The
right-most plot compares the EER against fixed speaker la-
tency for the best combination of diarization and detection ap-
proaches.

No matter what the detection system the best performance
is observed with oracle diarization. The performance observed
for automatic and segmental diarization systems is dependent
upon the detection system. For the GMM system, automatic
diarization fares poorly whereas for the neural embedding so-
lution, results for automatic diarization are broadly similar to
those obtained with oracle diarization.

While segmental diarization gives reasonable performance
in the case of the GMM and i-vector detection systems, per-
formance is poor for the neural embedding detection system.
Discrepancies between performance for oracle, automatic and
segmental diarization systems are, however, dependent to some
degree on the fixed speaker latency, especially for the neural
embedding detection system. While differences in performance
for oracle and segmental diarization are pronounced for lower
fixed latencies, these diminish almost entirely for higher fixed
latencies.

Of particular interest is how latency impacts upon the per-
formance of each LLSS solutions and then, which system per-
forms best. A summary of the three left-most plots for the two
practical approaches to diarization (segmental or automatic only
- the performance of the oracle system is discounted) is illus-
trated in the right-most plot of Fig. 4. It shows that the neu-
ral embedding detector outperforms the GMM and i-vector sys-
tems by a significant margin for the lowest fixed latency of 3s.
For higher fixed latencies, however, the GMM and i-vector sys-
tems outperform neural embeddings, albeit by a smaller margin;
there is little to choose between them.

6.2. LLSS performance: variable latency

An illustration of system performance in terms of Cdet is de-
picted in Fig. 5 for variable speaker latency (earlier part of Sec-
tion 3.3). Plots are again illustrated for each detection system
and for the best corresponding diarization system (segmental
or automatic). Cdet values are determined according to the
usual costs adopted by the NIST speaker recognition evalua-
tions (SRE) [31]. Profiles in Fig. 5 show a slightly different pic-
ture than that for fixed speaker latencies, with the automatic on-
line diarization system and neural embeddings detector showing

almost universally better performance. While segmental and au-
tomatic diarization systems with GMM and i-vector detection
systems show lower Cdet between approximately 3s and 10s,
differences are marginal.

In an alternative interpretation, for a given detection cost,
the neural embeddings system provides shorter speaker detec-
tion latencies than GMM and i-vector systems. Obviously, se-
lecting the system with minimal Cdet is not necessarily a sen-
sible strategy for a LLSS task; instead one needs to strike a
balance between performance and latency constraints, e.g. se-
lecting the lowest average latency for an admissible cost. In
almost all cases, however, this choice remains that of the neural
embeddings solution.

6.3. Diarization influences

Discrepancies in performance between segmental and auto-
matic diarization hypotheses were initially rather puzzling. For
the GMM detection system, automatic diarization performs
poorly. In contrast, for the neural embedding system, automatic
diarization leads to performance that is on a par with oracle di-
arization.

The automatic diarization system uses a form of greedy se-
quential clustering. When performed in an online fashion, all
such systems have potential to introduce errors into the diariza-
tion hypothesis, errors from which the system can never recover.
Impure clusters that contain data from more than one speaker
are likely to remain impure as online diarization proceeds. On-
line diarization performance is illustrated in Table 2 for the eval-
uation partition of the AMI database. Note that DERs are natu-
rally higher than those typically reported in the literature - those
reported here relate to an online task. Even so, the purity of
clusters it produces is reasonable, with over 70% of clusters
corresponding to data from the dominant speaker. Coverage,
which refers to the percentage of encountered speaker data that
is assigned to the corresponding speaker model, exceeds an en-
couraging 80%.

It is evident that the proposed LLSS systems have different
capacities to accommodate errors in the diarization hypothesis.
This is mostly due to the different data demands and normal-
isation strategies employed by each detection solution. Refer-
ring to Figure 4, the neural embedding system copes well with
data impurities. The GMM and i-vector detection systems cope
less well with the same data impurities (the gap between perfor-
mance for oracle and automatic diarization is greater), however
the i-vector system outperforms the neural embedding system
for higher latencies (albeit only marginally).

In contrast to the automatic diarization system, the segmen-
tal approach does not accumulate speaker data through cluster-
ing. Diarization performance for the segmental approach is also
shown in Table 2. While results show a very high diarization
error rate of 95%, they show that, as expected, purity is higher,
while coverage is naturally very low. Thus, while speaker mod-
els will be comparatively poorly trained using only short seg-
ments of speech, they may yet give better performance in the
case that they are trained, more often than not, using data from
a single speaker. This is to be expected for such short segments
since the chances of them bridging speaker turns is low. As a
result, it is not necessarily surprising that the segmental diariza-
tion system performs well under some conditions. Eventually,
and by pure chance, the detection system will be presented with
a pure target speaker segment that will produce a high detection
score.

144

3s 5s 10s 15s
Fixed speaker latency

15%

20%

25%

30%

35%

EER GMM-UBM
oracle
automatic
segmental

3s 5s 10s 15s
Fixed speaker latency

15%

20%

25%

30%

35%

EER i-vector
oracle
automatic
segmental

3s 5s 10s 15s
Fixed speaker latency

15%

20%

25%

30%

35%

EER Neural embedding
oracle
automatic
segmental

3s 5s 10s 15s
Fixed speaker latency

15%

20%

25%

30%

EER Best approaches
GMM (segm.)
i-vector (auto.)
Emb. (auto.)

Figure 4: Influence of the detection latency on the detection performance on the evaluation set.

1s 2s 3s 5s 10s 15s
Variable speaker latency

0.0

0.2

0.4

0.6

0.8

1.0
Cdet

Cmiss = 10 / Cfa = 1/ Ptarget = 0.01

GMM-UBM (segmental)
i-vector (automatic)
Neural emb. (automatic)

1s 2s 3s 5s 10s 15s
Variable speaker latency

0.0

0.2

0.4

0.6

0.8

1.0
Cdet

Cmiss = 1 / Cfa = 1/ Ptarget = 0.001

GMM-UBM (segmental)
i-vector (automatic)
Neural emb. (automatic)

Figure 5: Detection performance as a function of the average
speaker latency for the best performing automatic systems on
the evaluation set.

It is clear from the analyses presented above that the depen-
dence of detection systems upon diarization is more complex
than may first appear. Future work should study this depen-
dence further and examine more carefully the robustness to each
detection solution to speaker cluster impurities. This may help
to better tune the combination of online diarization and speaker
detection, thus improving the reliability of LLSS solutions. The
same finding may suggest that the optimisation of diarization
systems with respect to the diarization error rate may not be
sensible when diarization is only an enabling technology, in-
stead of the final application.

7. Reproducible research

The AMI corpus is publicly available under a Creative Com-
mons license3. The proposed LLSS protocol and correspond-
ing evaluation metrics are available as open-source software
in pyannote.db.odessa.ami4 and pyannote.metrics [32] Python
packages. Finally, baseline online diarization outputs and code
for the segmental neural embedding approach are publicly avail-
able at https://gitlab.eurecom.fr/odessa/llss.

3groups.inf.ed.ac.uk/ami/corpus
4github.com/pyannote/pyannote-db-odessa-ami

Table 2: Online diarization performance in the form of DER
(%), cluster purity (%) and coverage (%), obtained with the i-
vector automatic online diarization system on evaluation sets,
evaluated using a using a standard collar of 250ms.

Diarization system DER Purity Coverage

Segmental 95.83 88.69 5.73
Automatic 34.24 75.48 81.52

8. Conclusions

This paper describes a new task termed low-latency speaker
spotting (LLSS). The LLSS task is motivated by security
and intelligence applications, but has application elsewhere,
e.g. voice-based personal assistants and speaker-dependent, but
text-independent wake-up systems. The LLSS task calls for the
recognition of known, target speakers as quickly as possible af-
ter they become active in an audio stream.

Results show that reliable online diarization is key to min-
imising latency and LLSS performance overall. Differences
in results obtained with oracle segmentation and segmental di-
arization demonstrate the challenge of automatic, online di-
arization; it can be difficult to outperform a simple segmental
approach. Results also show differences in how speaker de-
tection approaches cope with speaker model impurities. To-
gether, these findings show that effective solutions to the LLSS
task require a careful combination and joint optimisation of on-
line speaker diarization and speaker detection algorithms. They
also question the sense of optimising speaker diarization, online
or otherwise, in isolation when diarization is only an enabling
technology, instead of the end application.

Future work should investigate the differences in the be-
haviour of the proposed speaker detection techniques in de-
tail. It may also investigate strategies to cope with overlap-
ping speech from competing speakers and study more closely
combined, joint optimisation of the feature extraction, on-
line diarization and automatic speaker verification components.
Emerging end-to-end approaches thus offer another avenue for
future work.

145

9. References
[1] T. Kinnunen and H. Li, “An overview of text-independent

speaker recognition: From features to supervectors,”
Speech Communication, vol. 52, no. 1, pp. 12–40, 2010.

[2] J. H. L. Hansen and T. Hasan, “Speaker recognition by
machines and humans: A tutorial review,” IEEE Signal
processing magazine, vol. 32, no. 6, pp. 74–99, 2015.

[3] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker
verification using adapted Gaussian mixture models,”
Digital Signal Processing, vol. 10, no. 1-3, pp. 19–41,
2000.

[4] W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Sup-
port vector machines using gmm supervectors for speaker
verification,” IEEE Signal Processing Letters, vol. 13, no.
5, pp. 308–311, May 2006.

[5] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel,
“Joint factor analysis versus eigenchannels in speaker
recognition,” IEEE Trans. on Audio, Speech, and Lan-
guage Proc., vol. 15, no. 4, pp. 1435–1447, May 2007.

[6] N. Dehak, P. Kenny, R. Dehak, P. Ouellet, and P. Du-
mouchel, “Front-end factor analysis for speaker verifica-
tion,” IEEE Trans. on Audio, Speech and Language Proc.,
vol. 19, pp. 788–798, 2011.

[7] M. A. Przybocki, A. F. Martin, and A. N. Le, “NIST
speaker recognition evaluation chronicles - part 2,” in
Proc. Odyssey, June 2006, pp. 1–6.

[8] S. O. Sadjadi, T. Kheyrkhah, A. Tong, C. S. Greenberg,
E. S. Reynolds, L. Mason, and J. Hernandez-Cordero,
“The 2016 NIST Speaker Recognition Evaluation,” Proc.
Interspeech, pp. 1353–1357, 2017.

[9] A. Sarkar, D. Matrouf, P.-M. Bousquet, and J.-F. Bonas-
tre, “Study of the effect of i-vector modeling on short and
mismatch utterance duration for speaker verification,” in
Proc. Interspeech, 2012.

[10] X. Anguera, S. Bozonnet, N. Evans, C. Fredouille,
G. Friedland, and O. Vinyals, “Speaker Diarization: A Re-
view of Recent Research,” IEEE Trans. on Audio, Speech,
and Language Proc., vol. 20, no. 2, pp. 356–370, Feb.
2012.

[11] L. Lu and H.-J. Zhang, “Unsupervised speaker segmen-
tation and tracking in real-time audio content analysis,”
Multimedia Systems, vol. 10, no. 4, pp. 332–343, Apr.
2005.

[12] T. Oku, S. Sato, A. Kobayashi, S. Homma, and T. Imai,
“Low-latency speaker diarization based on Bayesian in-
formation criterion with multiple phoneme classes,” in
Proc. IEEE ICASSP, Mar. 2012, pp. 4189–4192.

[13] W. Zhu and J. Pelecanos, “Online speaker diarization us-
ing adapted i-vector transforms,” in Proc. IEEE ICASSP,
March 2016, pp. 5045–5049.

[14] D. Dimitriadis and P. Fousek, “Developing on-line
speaker diarization system,” in Proc. Interspeech, 2017,
pp. 2739–2743.

[15] G. Soldi, M. Todisco, H. Delgado, C. Beaugeant, and
N. Evans, “Semi-supervised On-line Speaker Diariza-
tion for Meeting Data with Incremental Maximum A-
posteriori Adaptation,” in Proc. Odyssey, 2016, pp. 377–
384.

[16] M. Zamalloa, L.-J. Rodriguez-Fuentes, G. Bordel, M. Pe-
nagarikano, and J.-P. Uribe, “Low-latency online speaker
tracking on the AMI corpus of meeting conversations,” in
Proc. IEEE ICASSP, 2010, pp. 4962–4965.

[17] M. H. Moattar and M. M. Homayounpour, “Variational
conditional random fields for online speaker detection and
tracking,” Speech Communication, vol. 54, no. 6, pp. 763–
780, July 2012.

[18] D. Liu and F. Kubala, “Online speaker clustering,” in
Proc. IEEE ICASSP, Apr. 2003, vol. 1, pp. 572–575.

[19] T. Koshinaka, K. Nagatomo, and K. Shinoda, “Online
speaker clustering using incremental learning of an er-
godic hidden Markov model,” in Proc. IEEE ICASSP,
Apr. 2009, pp. 4093–4096.

[20] A. Larcher, K. A. Lee, B. Ma, and H. Li, “Text-
dependent speaker verification: Classifiers, databases and
RSR2015,” Speech Communication, vol. 60, pp. 56–77,
2014.

[21] E. Variani, X. Lei, E. McDermott, I. Lopez-Moreno, and
J. Gonzalez-Dominguez, “Deep neural networks for small
footprint text-dependent speaker verification,” in Proc.
IEEE ICASSP, 2014, pp. 4052–4056.

[22] K. A. Lee, A. Larcher, H. Thai, B. Ma, and H. Li, “Joint
application of speech and speaker recognition for automa-
tion and security in smart home,” in Proc. Interspeech,
2011.

[23] G. Heigold, I. Lopez-Moreno, S. Bengio, and N. Shazeer,
“End-to-end text-dependent speaker verification,” in Proc.
IEEE ICASSP, 2016, pp. 5115–5119.

[24] M. McLaren, L. Ferrer, D. Castan, and A. Lawson, “The
2016 speakers in the wild speaker recognition evaluation,”
in Proc. Interspeech, 2016, pp. 823–827.

[25] R. Yin, H. Bredin, and C. Barras, “Speaker Change De-
tection in Broadcast TV using Bidirectional Long Short-
Term Memory Networks,” in Proc. Interspeech, August
2017.

[26] G. Sell and D. Garcia-Romero, “Speaker diarization
with PLDA i-vector scoring and unsupervised calibra-
tion,” in Spoken Language Technology Workshop (SLT),
2014 IEEE. IEEE, 2014, pp. 413–417.

[27] H. Bredin, “TristouNet: Triplet Loss for Speaker Turn
Embedding,” in Proc. IEEE ICASSP, March 2017.

[28] G. Gelly and J.-L. Gauvain, “Spoken Language Identifi-
cation using LSTM-based Angular Proximity,” in Proc.
Interspeech, August 2017.

[29] G. Wisniewski, H. Bredin, G. Gelly, and C. Barras, “Com-
bining Speaker Turn Embedding and Incremental Struc-
ture Prediction for Low-Latency Speaker Diarization,” in
Proc. Interspeech, August 2017.

[30] J. Carletta, “Unleashing the killer corpus: experiences in
creating the multi-everything ami meeting corpus,” Lan-
guage Resources and Evaluation, vol. 41, no. 2, pp. 181–
190, 2007.

[31] C. S. Greenberg, A. F. Martin, B. N. Barr, and G. R Dod-
dington, “Report on performance results in the NIST 2010
speaker recognition evaluation,” in Proc. Interspeech,
2011.

[32] H. Bredin, “pyannote.metrics: a toolkit for reproducible
evaluation, diagnostic, and error analysis of speaker di-
arization systems,” in Proc. Interspeech, August 2017.

146

