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ABSTRACT
Interactive learning platforms are in the top choices to acquire new
languages. Such applications or platforms are more easily available
for spoken languages, but rarely for sign languages. Assessment
of the production of signs is a challenging problem because of the
multichannel aspect (e.g., hand shape, hand movement, mouthing,
facial expression) inherent in sign languages. In this paper, we pro-
pose an automatic sign language production assessment approach
which allows assessment of two linguistic aspects: (i) the produced
lexeme and (ii) the produced forms. On a linguistically annotated
Swiss German Sign Language dataset, SMILE DSGS corpus, we
demonstrate that the proposed approach can effectively assess the
two linguistic aspects in an integrated manner.
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1 INTRODUCTION
In recent years, there is growing interest in developing assistive
systems that can help in bridging the gap or breaking the barrier
between Hearing and Deaf communities through multimodal sys-
tems. In that direction, as sign languages (SLs) are under-studied
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and under-resourced languages, there is interest in developing in-
teractive applications that could aid in SL acquisition. Currently,
existing platforms test comprehension and vocabulary through
pre-recorded videos, while SL production tests are realized by on-
line recording for later analysis, which is both expensive and time
consuming. Existing interactive e-learning platforms that contain
production testing use either self-correctness, such as the web-
based e-learning resource SignAssess [4] which allows to compare
the recorded user’s video to a pre-recorded reference one, or real-
time SL verification which assesses if the produced sign is correct
or incorrect, such as SignAll [16] technology, ISARA [6] application.
Assessing whether a produced sign is correct or incorrect would not
be sufficient by itself to aid SL learners. The reason being that SL
consists of different channels of information corresponding to man-
ual components (hand position, hand movement and hand shape)
and non-manual components (mouthing, facial gesture, posture).
So, for realistic adoption of SL learning applications, there is need
for a framework that enables assessment of those multiple channels
of information in a linguistically valid manner.

In a recent work [15], a Hidden Markov Model (HMM) based SL
processing framework was proposed that enables modeling of the
multi-channel information present in the SL, akin to modeling of
multi-channel articulatory information in speech production [13].
The present paper builds upon that work to propose a SL assessment
approach that, in an integrated manner, can assess sign production
at: (a) lexeme level, i.e. verify whether a produced sign is targeting
the right reference sign or not and (b) form level, i.e. assessing sepa-
rately the different form channels of a sign, such as hand movement
and hand shape. We demonstrate the potential of the proposed ap-
proach through a validation study on Swiss German Sign Language.

The remainder of the paper is organized as follow: Section 2 pro-
vides a background on the phonology-based SL processing frame-
workSection 3 presents the proposed SL assessment approach. Sec-
tion 4 presents the experiment setup and Section 5 the results and
analysis. Finally, we conclude in Section 6.

2 BACKGROUND
In [15], a phonological approach for SL processing was proposed,
based on the understanding that, in both SL and spoken language,
there is a production phenomenon that generates a signal and there
is a perception phenomenon, which interprets the generated signals
in terms of elements of “language", e.g. words, phrases. Given this
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relationship, the articulatory feature based speech processing study
developed in [13] in the framework of Kullback-Leibler divergence
based HMM (KL-HMM) [1, 2] was adapted to SL processing.

Briefly, in this approach, first posterior probabilities of subunits
z𝑡,𝑓 = [𝑃 (𝑣𝑠1

𝑓
|v𝑡 ) · · · 𝑃 (𝑣𝑠𝑑𝑓 |v𝑡 ) · · · 𝑃 (𝑣𝑠

𝐷𝑓

𝑓
|v𝑡 )]T corresponding to

different channels 𝑓 ∈ {1, · · · 𝐹 } are estimated given the visual
signal (v1, · · · v𝑡 , · · · v𝑇 ), where 𝑣𝑠𝑑𝑓 denotes visual subunit, 𝑑 cor-
responding to channel 𝑓 . The stacked posterior probability vectors
from different channels, z𝑡 = [z𝑡,1 · · · z𝑡,𝐹 ]T, are then used as fea-
ture observations for HMM, whose state emission distributions are
parameterized by categorical distributions y𝑖 = [y𝑖,1 · · · y𝑖,𝐹 ]T, for
𝑖 ∈ {1, . . . , 𝐼 } where 𝐼 is the number of HMM states. Following the
investigations in speech processing, the transition probabilities are
assumed to be 0.5 to stay on the same state and 0.5 to transit from
the state [1, 2]. The state emission distributions i.e. the categorical
distributions are estimated by minimizing a cost function based on
Kullback-Leibler (KL) divergence [1, 2, 15]. When decoding, such
as in the case of sign language recognition (SLR), Viterbi search is
performed with local scores based on KL-divergence.

3 PROPOSED SIGN LANGUAGE ASSESSMENT
APPROACH

The present paper develops an automatic SL assessment approach
by building upon the phonological approach for SL processing
using KL-HMM approach presented in the previous section. More
precisely, as illustrated in Figure 1, to assess sign production, the
proposed approach compares the different channels of information
by matching sequence of stacked probability distributions 𝑍 =

(z1 · · · z𝑡 · · · z𝑇 ) corresponding to the test sign production and the
sequence of stacked categorical distributions𝑌 = (y1 · · · y𝑛 · · · y𝑁 )
corresponding to the KL-HMM representing the target reference
lexeme (i.e. the sign expected to be produced), through dynamic
programming and thresholding the resulting score or cost.

Formally, the match is obtained by dynamic programming with
the following recursion,

𝑆 (𝑛, 𝑡) = 𝑙 (y𝑛, z𝑡 )+min
[
𝑆 (𝑛, 𝑡−1)+𝑐trans, 𝑆 (𝑛−1, 𝑡−1)+𝑐trans

]
, (1)

where 𝑐trans = − log(0.5) is the transition cost and 𝑙 (y𝑛, z𝑡 ) is the
local score defined by symmetric KL-divergence (SKL) between the
probability distributions, i.e.,

𝑙 (y𝑛, z𝑡 ) =
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𝑓 =1
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and z𝑑
𝑡,𝑓

denote 𝑑th element in the vectors y𝑛,𝑓 and z𝑡,𝑓 , re-
spectively. The best matching path with the begin/end time frames
𝑡𝑏𝑛 and 𝑡𝑒𝑛 , respectively of each state 𝑛 in the reference lexeme, can
be obtained as part of the dynamic programming recursion.

Given the best matching path, the state duration normalized
lexeme-level score S𝑙𝑒𝑥 can be estimated as,

S𝑙𝑒𝑥 =
1
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Figure 1: Illustration of the assessment framework.

while the state duration normalized form-level score S 𝑓

𝑓 𝑜𝑟𝑚
for

each channel 𝑓 can be estimated as,

S 𝑓

𝑓 𝑜𝑟𝑚
=

1
𝑁

·
𝑁∑
𝑛=1

∑𝑡𝑒𝑛

𝑡=𝑡𝑏𝑛
𝑆𝐾𝐿(y𝑛,𝑓 , z𝑡,𝑓 )

𝑡𝑒𝑛 − 𝑡𝑏𝑛 + 1
. (5)

As comparison of probability distributions using KL-divergence
and other measures such as Bhattacharya distance is equivalent to
hypothesis testing [3, 9], lexeme-level and form-level assessment
can be carried out by simply applying a threshold 𝛿𝑙𝑒𝑥 and 𝛿 𝑓

𝑓 𝑜𝑟𝑚

on S𝑙𝑒𝑥 and S 𝑓

𝑓 𝑜𝑟𝑚
to decide correct/incorrect lexeme and forms.

4 EXPERIMENTAL SETUP
We validated the proposed approach on the large-scale SMILE Swiss
German Sign Language database [5] (referred as SMILE DSGS data-
base in the following) which was created in the context of develop-
ing an assessment system for lexical signs of Swiss German Sign
Language (DSGS for Deutschschweizerische Gebärdensprache). We
demonstrate the approach using two channels of information for
which linguistic annotations are available, namely, hand movement
(hmvt) and hand shape (hshp).

4.1 SMILE DSGS database
The SMILE DSGS database [5] is composed of 11 adult L1 signers
and 19 adult L2 learners performing three times 100 isolated signs
of a DSGS vocabulary production test. Only the second pass out of
the three was manually linguistically annotated. The data collection
was done using the Microsoft Kinect v2 sensor and the high speed
and high resolution GoPro video cameras.

In our experimental setup, we only used the second pass anno-
tated with the ‘Category of sign produced’ annotation of the SMILE
transcription/annotation scheme (presented in [5]). Briefly, this



linguistic annotation evaluates, through six categories, the accept-
ability of a sign according to linguistic criteria (lexeme, meaning
and form), see Table 1. To ensure that enough correct samples
for each sign is available (minimum 5 samples/sign annotated as
cat.1 or cat.2), 94 signs were selected out of the 100. The cat.1 and
cat.2, consisting of acceptable sign productions, was partitioned in
a signer-independent manner into 1125 training set samples from
15 signers, 509 development set samples from 7 signers and 581 test
set samples from 8 signers. We used the same test set samples for
evaluating both the KL-HMM references (in terms of SLR) and the
proposed assessment system. The cat.1 and cat.2 were used to build
the different components of the proposed assessment system.

Table 1: SMILE annotation scheme of the ‘Category of sign
produced’ annotation

Category Same lexeme
as target sign?

Same meaning
as target sign?

Same form
as target sign? #test samples

cat.1 yes yes yes 581cat.2 yes yes slightly different
cat.3 yes yes no 412cat.4 yes slightly different slightly different
cat.5 no yes no 183cat.6 no no no

4.2 Hand movement subunits posterior
probability estimation

The handmovement subunits extractionwas inspired by themethod
presented in [14]. Briefly, a 36 dimensional position and velocity
features for both hands was extracted from the 3D skeleton with
three different coordinate centers (head, shoulder and hip center). A
shoulder normalization was then applied to compensate the varia-
tion in-between the signers by aligning the neck joint of all the sign-
ers w.r.t a randomly chosen signer and scaling the shoulder width.
Whole sign left-to-right HMMs with different number of states (3
to 30) for each sign was trained were trained using HTK [18]. The
state emission distributions were modeled by single Gaussians with
a diagonal covariance matrix. The development data was decoded
using all the 28 whole sign-based HMM/GMMs for all the signs, and
the most frequently recognized model in terms of number of states
was chosen. These states served as the hand movement subunits.

We trained a multilayer perceptron (MLP) to classify the hand
movement subunits based on the alignments obtained from the
HMM/GMM (Gaussian Mixture Models) systems. The input to the
MLP are 36-dimensional feature observation with four frames pre-
ceding and following context. The output non-linearitywas softmax.
TheMLPwas trained with cross-entropy based error criterion using
the Quicknet software [8]. The trained MLP was used to extract
hand movement posterior features zhmvt

𝑡 for the KL-HMM.

4.3 Hand shape subunit posterior probability
estimation

We used a residual network based Convolutional Neural Network
(CNN) architectures, namely ResNeXt-101 [17], trained on the
One-Million-Hands [11] dataset. The hand shape observations are
the hand shape class-conditional posterior probabilities zhshp+𝑡 ,
where the classes are composed by a transition shape and the

60 linguistically inspired hand shapes presented in https://www-
i6.informatik.rwth-aachen.de/~koller/1miohands-data/.

Then, as a second channel, to improve the quality and the gener-
alization of our hand shape subunit representations, we first start by
reducing the number of classes by choosing the most common hand
shape classes present in the One-Million-Hands dataset. Inspired
by the sample distribution of ImageNet [7], we kept the hand shape
classes which have at least 1000 samples in the training set, reduc-
ing our number of classes to 27. We then collected new samples
from four participants, two L2 signers and two non-signers, to help
with the class imbalance. Leading to adapted hand shapes, denoted
as 𝑓 = hshp−.

The stack of the 61 hand shapes and the 28 adapted hand shapes
were used in our experiment, i.e. zhshp+𝑡 and zhshp−𝑡 . We trained our
networks using Adam optimizer [10] using a batch size of 32. We
apply random rotation, zoom and colour jitter to help our networks
generalize better. To further address the class imbalance issue, we
re-sample the training images w.r.t. their corresponding classes and
simulate a uniform distribution over all classes. Our models were
implemented using the PyTorch deep learning framework [12].

To overcome the jittery wrist localization of SMILE dataset [5]
we utilize a state-of-the-art 2D pose estimation method, namely
OpenPose [19], to localize wrist locations. Using the wrist pixel
coordinates, we crop patches around both hands and extract their
posteriors over the hand shape classes for our KL-HMM framework.

4.4 Sign reference systems
We trained five KL-HMM systems to develop reference models for
each sign, namely,

• the rlS system refers to the case where only the hand shape
subunit posterior probabilities of the right and left hands
estimated by the residual network based CNN are stacked
and modeled.

• theM system refers to the casewhere only the posterior prob-
abilities of hand movement subunits obtained by combining
right and left hand features are modeled. In other words,
distinction between dominant hand and non-dominant hand
is not made.

• the rlM system refers to the case where hand movement
subunits are obtained for the left hand and the right hand
separately; two separate MLPs are trained to classify the the
left hand and the right hand movement subunits; and the left
and right hand movement subunits posterior probabilities
estimated by the respective MLPs are stacked and modeled.

• the rlS+M and rlS+rlM systems refer to the case of using the
concatenation of the hand shape and the hand movement
subunit probability posteriors depending on the different
setups presented above.

Data of the cat.1 and cat.2 (see Table 1) were used to train and
test the reference models as it corresponds to “acceptable signs”
annotation. All the KL-HMM systems were trained using 3 to 30 KL-
HMM states per sign. The system that yielded the best recognition
accuracy on the development data was chosen as the reference.

Evaluation of KL-HMM reference models: Table 2 presents
the recognition accuracy (RA) of the different KL-HMM systems
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with the corresponding number of states as well as the correspond-
ing number of features (𝐷 𝑓 ). It can be observed that the system
modeling both hand movement and hand shape information yields
the best SLR performance. These results show that the KL-HMM
reference lexeme models are indeed modeling the different signs
and are able to discriminate between them.

Table 2: SL recognition accuracy (RA) of the reference KL-
HMM systems with the corresponding number of states (#
state) as well as the number of features (# feature)

KL-HMM References
rlS M rlM rlS+M rlS+rlM

RA 37.2 56.9 57.4 74.7 75.2
# state 26 18 24 29 28
# feature 178 2075 4214 178+2075 178+4214

4.5 Assessment systems
Lexeme assessment: to evaluate the lexeme assessment, accord-
ing to the category annotation of the data summarized in Table 1,
we separated the test correct/incorrect data as the following: cat.1-
2-3-4 which is correct target signs composed of cat.1 to cat.4 and
cat.5-6+ which is incorrect target signs composed of cat.5, cat.6
and since these categories contain only few data, we balanced the
incorrect set by creating additional data by matching each sample
of the cat.1 and cat.2 data with a randomly chosen wrong reference.
Form assessment: to evaluate the form assessment, we used the
cat.1-2 as correctly produced form data and since the targeted sign
is incorrect for cat.5-6+ we supposed that the produced form (hand
movement and hand shape) was incorrect. In the present study,
we did not make difference between dominant and non-dominant
hand.

We determined the thresholds, 𝛿𝑙𝑒𝑥 and 𝛿 𝑓
𝑓 𝑜𝑟𝑚

for 𝑓 ∈ {hmvt,
hshp} on the development set, which consists of cat.1 and cat.2
data (see Section 4.1). We created a set of correct sign scores by
matching the same sign instances and a set of incorrect match
scores by matching instances of different signs. 𝛿𝑙𝑒𝑥 and 𝛿 𝑓

𝑓 𝑜𝑟𝑚
for

each 𝑓 were set as the threshold that yielded the best F1 score for
lexeme assessment and form assessment.

5 RESULTS AND ANALYSIS
Lexeme assessment: Table 3 presents the F1 score of the lexeme
assessment study depending on the KL-HMM reference used to
align the produced sign. As it can be observed, combining the hand

Table 3: F1 scores of the correct lexeme assessment according
to the five reference KL-HMM systems

KL-HMM References
rlS M rlM rlS+M rlS+rlM
71.6 88.3 85.0 90.0 87.4

movement and shape channels helps in the lexeme assessment since
using rlS+M as reference gives the best assessment result. Another
relevant observation is that using combined right and left hand
movement (M,rlS+M) is sufficient for lexeme assessment.

Form assessment: Table 4 presents the F1 score of the forms error
assessment study of the hand movement channel and the hand
shape channel depending on the five KL-HMM references. First,

Table 4: F1 scores of the forms error assessment (handmove-
ment (hmvt) and hand shape (hshp)) according to the five
reference KL-HMM systems

KL-HMM References
rlS M rlM rlS+M rlS+rlM

hshp form 75.8 - - 77.6 78.0
hmvt form - 91.1 88.6 90.5 88.0

we can observe that adding the hand movement information helps
in the hand shape error assessment, while the reverse is not true.
Indeed using either rlS+M or rlS+rlM does not change significantly
and is better than using rlS for hand shape form error assessment. A
potential reason for that could be that the hand movement channel
has more temporal variations than the hand shape channel. This can
also explain why adding hand shape channel to hand movement
one does not help in hand movement error assessment. In fact,
hand movement form assessment using M or rlS+M, or using rlM
or rlS+rlM are not significantly different. Moreover, making no
distinction between dominant and non-dominant hand movement
gives better form assessment results. This aspect could be further
explained or understood by separating the one-handed or two-
handed sign assessment results. This is part of our future work.

6 CONCLUSION
This paper presented a phonologically motivated SL assessment
approach that allows to assess two different linguistic aspects of
a produced sign: the lexeme and the form. In this approach, in
the framework of KL-HMM, sequence of posterior probabilities of
subunits/classes corresponding to different channels are stacked
and compared using dynamic programming to compute lexeme
level and form level scores assessment. A validation study on the
SMILE DSGS dataset yielded promising lexeme level assessment
and form level assessment results. Our studies also showed that the
different components of the proposed assessment system can be
built only using cat.1 and cat.2 data. In the present work, we limited
ourselves to modeling and assessing hand movement and hand
shape information. The reason being lack of linguistically annotated
data sets for other channels (e.g. mouthing, facial expression) as
well as lack of reliable methods to extract information related to
those channels from the visual signal. Having said that, in principle
the proposed approach allows integration of those channels (see
Equation (2) and (5)), as and when reliable methods are available
to model those channels. In our future work, we will focus on
assessment of cat.3 and cat.4, where lexeme is correct but form is
incorrect.
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