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Abstract
HMMs have been the one of the first models to be applied for sign recognition and have become the baseline models due to their success
in modeling sequential and multivariate data. Despite the extensive use of HMMs for sign recognition, determining the HMM structure
has still remained as a challenge, especially when the number of signs to be modeled is high. In this work, we present a continuous
HMM framework for modeling and recognizing isolated signs, which inherently performs model selection to optimize the number of
states for each sign separately during recognition. Our experiments on three different datasets, namely, German sign language DGS
dataset, Turkish sign language HospiSign dataset and Chalearn14 dataset show that the proposed approach achieves better sign language
or gesture recognition systems in comparison to the approach of selecting or presetting the number of HMM states based on k-means,
and yields systems that perform competitive to the case where the number of states are determined based on the test set performance.
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1. Introduction

Following the recent developments and advancements on
automatic speech recognition, commercial systems are be-
coming available in our daily life, where users can use their
everyday communication means, i.e. speech, to interact
with machines. However these systems rarely address the
deaf members of our society, who predominantly use sign
languages as their primary means of communication. For
more accessible technology, research on automatic Sign
Language Recognition (SLR) should also advance, which
is currently in its infancy.
Sign languages are the natural communication media of
deaf people. In spoken languages, the words are pro-
duced through the vocal tract and are perceived as sounds,
whereas in sign languages, the signs are produced alone or
simultaneously, by use of hand shape, hand motion, hand
location, as well as facial expression, head motion, and
body posture, and they are perceived visually. The pro-
duction of signs follow both sequential and parallel nature:
signs come one after the other showing a sequential behav-
ior; at the same time each sign may contain parallel actions
of hands, face, head or body (Stokoe, 2005). Due to its vi-
sual nature, the multimodal properties, and parallel use of
different channels, sign languages present other challenges
for automatic recognition, from feature extraction to mod-
eling, in comparison to spoken languages.
HMMs offer a natural solution for SLR with their power in
handling sequential and multimodal data. They are exten-
sively used and have proven successful in the sign language
recognition domain (Ong and Ranganath, 2005; Cooper et
al., 2011). One of the challenges of using HMMs in sign
language processing is that sign languages are inherently
under-resourced i.e. few well developed resources with
several signers are available, and HMMs require a certain
amount of training data for robust parameter estimation.
Another challenge is to select the structure of the HMM, i.e.
the number of states, which directly can affect the perfor-

mance of sign language recognition system. Unlike speech
processing, where the spoken words are represented as a
sequence of subword units (e.g. phones) and the subword
units are modeled through an HMM with minimum dura-
tion constraint (Bourlard and Morgan, 1994), there is no
such prior knowledge for sign language. As discussed in
detail in Section 2, in many studies the number of states in
the HMM is fixed for all the signs in the dataset. This may
not be optimal, as the temporal structure of signs can differ,
akin to temporal differences in spoken words.
The present paper focuses on addressing the challenge re-
lated to defining or determining the HMM structure in sign
language processing. Specifically, we develop a HMM-
based approach where, during the training phase, each sign
is modeled by a set of HMMs with different number of
states. During the recognition phase, the sign language
recognition system determines the number of states for each
sign independently such that the joint likelihood of the
HMM state sequence and the feature observation is maxi-
mized. In other words, the approach selects the best match-
ing HMM during testing time. The motivation being that,
as there is no prior knowledge to determine the HMM struc-
ture, treat the number of states for each sign as an hidden
information. Further, for a single sign (or lexical entity)
there can be signer variations. For instance, signers can
sign at different speeds (fast or slow) while varying the
hand movement. Having multiple HMMs per sign could
also potentially handle signer variation. To draw an anal-
ogy to spoken language processing, speech recognition sys-
tems typically handle pronunciation variation (introduced
by speakers) by having multiple pronunciations as well as
by changing minimum duration constraints (Strik and Cuc-
chiarini, 1999). Besides that, we also propose incorporation
of a transition model, similar to silence modeling in speech
recognition (Young et al., 2002), to model portions of vi-
sual signal before and after production of signs.
We investigate the proposed approach by modeling hand
movement information based on skeleton information on



three different datasets, namely, (a) German sign language
DGS corpus consisting of isolated signs collected as part
of EU project DictaSign, (b) Turkish sign language dataset
HospiSign consisting of phrase classes and Chalearn 14
dataset consisting of Italian hand gestures and compare
with the entropy-based k-means approach presented in (Li
et al., 2016) to set the number of HMM states. Our stud-
ies show that the proposed approach consistently outper-
forms the k-mean approach and performs comparable to
the case where the fixed number of HMM states are de-
termined based on the performance on the test set. Fur-
thermore, systems incorporating the transition model yield
improved performances.
The paper is organized as follows. In Section 2., we present
the related work on SLR and HMM modeling. Our pro-
posed approach is explained in Section 3.. Section 4. and
Section 5. presents the experimental setup and the results
and analysis of the experiments, respectively. Conclusions
and future work is given in Section 6..

2. Related Work
In this section, we present several key works on sign lan-
guage recognition focusing on the works that primarily use
HMMs for sign modeling. Interested readers can refer to
more exhaustive surveys covering the sign language recog-
nition literature (Ong and Ranganath, 2005; Cooper et al.,
2011).
Signs include multiple dynamic elements that are per-
formed in parallel. For recognizing signs, and recogniz-
ing sign language in general, one must use methods that
are capable of modeling the temporal and multimodal char-
acteristics of the signs. Among several methods that have
been used in the literature, HMMs have proven successful
in several kinds of SLR systems and have been the baseline
model for modeling signs due to their success in modeling
sequential data and their flexibility to handle multiple par-
allel streams of data.
The initial works in SLR have used HMMs for modeling
and classifying signs (Starner and Pentland, 1995; Vogler
and Metaxas, 1997). In (Starner and Pentland, 1995), the
authors propose a vision based system and used a four-state
left to right HMM with one skip transition for recogni-
tion. In (Vogler and Metaxas, 1997), the authors address
the co-articulation effects in continuous signing and model
the transition movements between signs and the signs them-
selves with different HMM topologies. The experiments in
these initial works present a signer dependent setup as the
data used are from a single user.
Not only the initial works but a large number of recent stud-
ies also use HMMs for sign modeling and classification
(Ong and Ranganath, 2005; Cooper et al., 2011). A large
range of HMM variants have also been used in the litera-
ture. In (Kumar et al., 2017), the authors use coupled HMM
and present a multi sensor fusion framework for isolated
sign recognition. In (Keskin and Akarun, 2009), the au-
thors used an Input-Output HMM (IOHMM) for modeling
signs where the hand shape features are provided as input to
the IOHMM. Parallel HMMs have been used in (Vogler and
Metaxas, 1999; Zaki and Shaheen, 2011) where a separate
HMM is used for modeling right and left hands or different

feature sets such as hand configuration, shape and motion.
Methods other than HMMs have also been used in the liter-
ature, such as Dynamic Time Warping (DTW) (Lichtenauer
et al., 2008), Conditional Random Fields (CRF) (Kong and
Ranganath, 2014), Gaussian Process Dynamical Models
(Gamage et al., 2011), and continuous iterated conditional
modes (Nayak et al., 2012). In (Caridakis et al., 2012), Self
Organizing Maps (SOM) have been used to model the spa-
tial aspect of the signs and Markov models for its temporal
counterpart.
In most of the works on SLR that use HMMs, a left-to-right
HMM structure, with or without skip states has been used.
The number of states of the HMM has generally been fixed
for all the signs/subunits in the dataset. In (Liu et al., 2004),
the authors compare three different HMM topologies with
different number of states, without presenting any model
selection approach: fully connected, left-to-right with skip
states and left-to-right without skip states and conclude that
the left-to-right HMM provides the best performance, con-
firming the popularity of the left-to-right HMMs for SLR.
Only a couple of works in the literature have investigated
a model selection approach for HMMs for SLR. In (Sid-
diqi et al., 2007), the authors present a state splitting al-
gorithm for HMMs. In their experiments on a dataset of
signs from Australian sign language, their proposed ap-
proach is faster and achieves better performance than the
conventional HMM Baum Welch training. In (Matsuo et
al., 2008), the HMM topology is automatically constructed
from an initial topology by modifying it using segments,
which are formed based on the segmentation of hand mo-
tion. In (Wang et al., 2015), low rank approximation is used
to determine the key frames of a sign which guides the se-
lection of the number of states of HMM independently for
each sign. In (Li et al., 2016), an entropy-based k-means
algorithm is used to determine the number of states in an
HMM, where each sign is modeled by one HMM. With this
approach, each sign is represented by an HMM with differ-
ent number of states. Additionally, an artificial bee colony
algorithm is used together with the Baum Welch algorithm
to determine the HMM structure. Their experiments show
that the proposed approach achieves better performance
than a left-to-right HMM structure with fixed number of
states. However, no results have been reported to under-
stand how much of the performance increase comes from
the selection of number of states and from the determina-
tion of the HMM structure through the swarm optimization
algorithm.
When sign based modeling is used, the scalability prob-
lem arises: the number of HMMs that needs to be trained
increase with the increased vocabulary. This problem is
more evident if bi-gram or tri-gram models is to be used for
continuous SLR. As a possible solution to the scalability
problem, one can identify basic subunits of signs, analo-
gous to the phonemes in speech, which would then be used
to constitute all the signs in the vocabulary. Identifying sub-
units decreases the total number of models that needs to be
trained, as the number of subunits is expected to be less
than the number of signs in the vocabulary. In (Vogler
and Metaxas, 1998), an approach based on modeling the
subunits of the signs rather than the whole sign has been



presented and applied to continuous SLR. In (Wang et al.,
2002), the authors present their work on large vocabulary
continuous SLR based on subunit modeling of signs. Par-
allel HMMs have also been used to model subunits of signs
instead of the whole sign words (Theodorakis et al., 2014;
Vogler and Metaxas, 2001).

3. Proposed Approach
The proposed approach consists of two steps: (1) extract-
ing the features based on the skeleton information and (2)
inferring a sign-based hidden Markov model.

3.1. Feature Extraction
Signing takes place in 3D and around the upper body re-
gion. The components of a sign contain manual signals
such as hand shape, hand motion, hand position, and non-
manual signals, such as facial expressions, head motion and
body posture. While the manual signals are the basic com-
ponents that form the signs, several other key body parts
such as the face, shoulders and arms are also important in
the analysis of manual signs in order to understand the rel-
ative position of the hands with respect to the body (Aran,
2008).
For extracting the features, we rely on the tracked 3D co-
ordinates of a human skeleton. The 3D trajectories of the
two hands as well as the other skeleton joints such as head,
neck, shoulders and hips form the basis for our continu-
ous features of hand motion information, in particular hand
position and velocity. While using discretized features is
an option, in the presence of enough training examples,
continuous features outperform discretized features as dis-
cretization results in data loss in most cases (Aran, 2008).
We use three coordinate centers to normalize for the trans-
lation: the head, the shoulders and the hips. The distance
between the neck and the head is used to normalize for the
scale. After normalization, the stack of the continuous hand
motion and position values related to the three coordinate
centers give us the necessary information on the hand tra-
jectory and position with respect to the signer’s body.
For each frame t, we first calculate the 3D normalized po-
sition features for the left and right hands according to each
of the three coordinate centers. First, the x, y, z coordinates
of the hands are recalculated with respect to the coordinate
center. Next, the coordinates are normalized by an estimate
of the head size, which has been calculated as the quarter
of the absolute distance between the y coordinates of neck
and head:

plhnd
t =

lhnd− center

|necky − heady| /4
(1)

prhnd
t =

rhnd− center

|necky − heady| /4
(2)

where lhnd, rhnd, center are vectors containing the
x, y, z coordinates of related joints: left hand, right hand,
respectively and head, right/left shoulder, right/left hip for
the center where the right shoulder/hip center is used to
compute the right hand position vector and the left shoul-
der/hip for the left one; necky, heady are the y coordinate
of the neck and the head joint at time frame t.

The velocity features, vlhnd
t ,vrhnd

t , are then computed by
the difference of the hand position vectors between time t
and t− 2:

vlhnd
t = plhnd

t − plhnd
t−2 (3)

vrhnd
t = prhnd

t − prhnd
t−2 (4)

The resulting feature vector is the stack of plhnd
t , prhnd

t ,
vlhnd
t and vrhnd

t according to the three coordinate centers,
leading to a sequence of F 36 dimensional feature vectors,
where F is the total number of frames and the 36 dimen-
sional feature vector consists of 18 position features (= 3
coordinates × 3 coordinate centers × 2 hands) and 18 ve-
locity features.

Figure 1: The features are extracted using x, y, z coordi-
nates of the skeleton joints of left hand, right hand ac-
cording to three coordinate centers (head, shoulder and hip
joint).

3.2. Sign-based HMM Inference
Given the feature vectors, a sign-based left-to-right HMM
is trained for each sign. The choice of the number of states
used to model each sign is an important issue, which di-
rectly affects the performance of the model. To handle
this problem, we propose the following model selection ap-
proach. The quality of the data segmentation can also affect
the sign-based model. To outperform this issue, we propose
a transition model explained in this section.
The proposed model selection approach assumes that each
sign could have different number of stationary states. Intu-
itively an HMM state can represent a specific position, ori-
entation or shape of the hands depending on the feeding ob-
servation features. Therefore we made the assumption that
the complexity of a sign influences the appropriate num-
ber of states used to model it. To the authors’ knowledge,
no method in the literature today allows to set this number
beforehand. An exhaustive search using cross validation is
not feasible in the sign language domain as the number of
signs in the datasets is typically high. Thus, instead of set-
ting this number beforehand, the proposed model selection
approach selects the appropriate one in an interval of possi-
bilities at the recognition stage. More precisely, an interval
of possible number of states is first chosen, let’s say Nmin

to Nmax. Then, for all n in the defined range, a left-to-
right HMM with n states is trained for each sign. Then at
the recognition stage, the model leading to the maximum



likelihood is chosen as the appropriate one (see Figure 2).
Thus S · (Nmax − Nmin + 1) models are tested, in com-
parison to S in the first approach, where S is the number of
signs in the dataset.

Sign1Nmin

Sign1(Nmin+1)

...
Sign1Nmax

Sign2Nmin

...

Figure 2: Recognition Network of the proposed model se-
lection approach.

Moreover, the exact start and end of a sign is not perfectly
defined, especially in a continuous context where each sign
is being followed by other signs. In the isolated context,
the segmentation is not necessarily optimized leading to the
same problem. Thus in both cases, there is some transition
phase at the beginning and at the end of the performed sign.
This period can represent the absence of movement or even
some slight insignificant movement. To prevent this being
taken into account in modeling the sign, we propose to add
a transition model, common to each sign, before and af-
ter each sign-based HMM. For preserving the continuity of
the entire model, we modeled it as a three-state left-to-right
HMM with one-state-skip (see Fig.3 for the structure).

1 2 3

Figure 3: Structure of the transition model.

4. Experimental Setup
We validated the proposed approach on the isolated sign
language recognition and gesture recognition tasks. To do
so, three datasets were used: the Chalearn14, the DGS and
the HospiSign datasets. In this section, the description of
the datasets used for evaluating our proposed approach is
given as well as the setup of the presented systems.

4.1. Chalearn14 Dataset
The Chalearn14 dataset contains the data used in the
Chalearn 2014 challenge, which includes a vocabulary of
20 Italian cultural/anthropological gestures (Escalera et al.,
2013). The users are recorded in front of a Kinect, perform-
ing natural communicative gestures and speaking in fluent
Italian. Each sign has been repeated several times by each
user. We have used the skeletal joint coordinates provided
in the dataset. The dataset is publicly available1.

1http://gesture.chalearn.org/mmdata#
Track3

4.2. DGS Dataset
The DGS dataset contains 40 signs from German Sign Lan-
guage (DGS). The dataset includes data from 14 non-native
right-handed signers, where each sign is repeated approx-
imately 5 times by each person. There are a total of 3186
signs in the dataset. The DGS is a challenging dataset as the
signs performed by the non-native signers contain a large
variety. The dataset has been recorded with a Kinect cam-
era and the 3D coordinates of a human skeleton has been
tracked using the OpenNI framework. The resulting skele-
tal joint coordinates has been shared with us by the authors
of (Ong et al., 2012), which we used as the basis for feature
extraction. More information about the DGS dataset can be
found in (Ong et al., 2012).

4.3. HospiSign Dataset
The HospiSign dataset is a subset of the BosphorusSign
dataset (Camgöz et al., 2016a), containing 33 phrase classes
from Turkish Sign Language (TSL) related to the health do-
main. The HospiSign subset includes 6 signers, with each
sign being repeated approximately 6 times (Camgöz et al.,
2016b). The dataset is publicly available by request from
the authors2. The dataset has been recorded with a Kinect
camera. We have used the skeletal joint coordinates that are
provided in the dataset as the basis for our feature extrac-
tion.

4.4. Systems
In this section, we present three systems, namely, (a) pro-
posed model selection based system, denoted as msHMM,
(b) a system where the number of states are varied, denoted
as sdHMM and best performing system is selected on the
test set and (c) a system where the number of states is set us-
ing k-means, denoted as kmHMM systems. We also present
corresponding tr-msHMM, tr-sdHMM and tr-kmHMM sys-
tems that incorporate transition models at the beginning and
end of the sign.
For all presented systems, we used the position and veloc-
ity features of both hands as input features. The resulting
feature vector is of size 36, see Section 3.1. for details.
Moreover we used the leave-one-signer-out cross valida-
tion to report signer independent accuracy in the DGS and
HospiSign studies. For the Chalearn14 case, we kept the
given data segmentation of the challenge. The performance
accuracy used in this paper is the ratio of the number of
correct recognized sign on the total number of signs. All
the HMMs have been trained with the HTK toolkit (Young
et al., 2002). In all cases, each HMM state emission distri-
bution is modeled with a single multivariate Gaussian with
diagonal covariance matrix. To set the appropriate range
of states, we assume that the minimum duration constraint
of a sign is half a second. Any HMM architecture used
should be able to model a sign that is at least 0.5 seconds.
This assumption allows us to determine how much station-
ary states we need: with a 25fps frame rate (common to
all the datasets in this study), half a second corresponds to
12.5 frames, rounded of to a maximum of 13 states since
we used a left-to-right HMM structure.

2https://www.cmpe.boun.edu.tr/pilab/
BosphorusSign/home_en.html

http://gesture.chalearn.org/mmdata##Track3
http://gesture.chalearn.org/mmdata##Track3
https://www.cmpe.boun.edu.tr/pilab/BosphorusSign/home_en.html
https://www.cmpe.boun.edu.tr/pilab/BosphorusSign/home_en.html


(A) The msHMM system stands for our proposed model
selection approach (see Section 3.), where N is different
for each sign and is not fixed beforehand. Only an interval
of possibilities from Nmin to Nmax has to be defined. The
range tried was from 3 to 13 (according to the minimum
duration constraint explained above).
(B) In most of the HMM existing studies (see Section 2.),
the number of states N is common to all the sign. For
the sake of comparison, the sdHMM system represents this
standard approach, i.e. each sign was modeled with a N
states left-to-right HMM, for all N between 3 and 13 (ac-
cording to the duration constraint presented above). The
system corresponding to the number of states that yield the
best performance on the test serves as a baseline system.
We refer to this system as pseudo-oracle system.
(C) To validate the proposed model selection model, we im-
plemented the entropy-based k-means algorithm presented
in (Li et al., 2016). This system is referred as the kmHMM
system. For fair comparison, k was taken into the same
range as the msHMM, i.e. between 3 to 13.
The tr-msHMM, tr-sdHMM, tr-kmHMM systems are a
combination of the transition model and the msHMM,
sdHMM, kmHMM systems respectively. More precisely,
we added the transition model, trN , before and after each
sign-based model. Since by adding the three states tran-
sition model we increase the number of state of the sign-
based model by at least four states (two states before and
after each model, see Fig. 3), we decided to adapt the range
of possibilities, leading to 3 to 9. Figure 4 depicts the recog-
nition network of the sdHMM and kmHMM systems, while
Figure 5 the msHMM system.

tr

Sign1

...
Sign40

tr

Figure 4: Recognition Network of the tr-sdHMM and the
tr-kmHMM system.

trNmin

...

trNmax

Sign1Nmin

...
Sign40Nmin

...

Sign1Nmax

...
Sign40Nmax

trNmin

...

trNmax

Figure 5: Recognition network of the tr-msHMM system.

5. Results and Analysis
First the recognition results of the systems (see Section
4.4.) for the Chalearn14, DGS and HospiSign datasets are
presented. Next, we contrast the performances obtained by
our approach with the existing studies reported on those

datasets to demonstrate that the results obtained by our sys-
tems are competitive.

5.1. Comparison of Systems
Figures 6 presents the recognition accuracy of all the
signer-independent systems without transition model. We
can observe that the proposed approach (msHMM) consis-
tently outperforms the approach of setting number of states
based on k-means (kmHMM). Furthermore, we can also ob-
serve that msHMM system yields performance comparable
to pseudo-oracle system, i.e. sdHMM system with fixed
number of states yielding the best performance on the test
data.
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Figure 6: Recognition accuracy of the sdHMM, the
msHMM and the kmHMM systems.

Figures 7 presents the recognition accuracy of all the sys-
tems containing the transition model. We can observe that
the recognition performance of all the systems consider-
ably improve. As the transition model is common to all
signs, the improvement can be attributed to the modeling
of sign-independent irrelevant information at the beginning
and end of the visual signal. When comparing tr-msHMM,
tr-kmHMM and tr-sdHMM systems, the trend remains the
same, i.e. tr-msHMM system is better than tr-kmHMM sys-
tem and is comparable to the pseudo-oracle tr-sdHMM sys-
tem.
For the sake of completeness, Table 1 summarizes the
recognition accuracy with standard deviation for all the sys-
tems.

Chalearn14 DGS HospiSign
msHMM 59.1 59.2 ± 9.6 91.5 ± 7.0
sdHMM (# state) 60.2 (12) 58.7 ± 11.5 (11) 91.4 ± 6.0 (13)
kmHMM 57.2 55.5 ± 10.5 67.9 ± 4.4
tr-msHMM 60.2 63.1 ± 10.3 91.2 ± 6.5
tr-sdHMM (# state) 61.5 (6) 62.3 ± 9.8 (5) 92.2 ± 4.9 (8)
tr-kmHMM 57.9 60.9 ± 9.5 86.1 ± 6.3

Table 1: Recognition accuracy of the systems on the
Chalearn14, DGS and HospiSign dataset. sdHMM (# state)
and tr-sdHMM (# state) denote pseudo-oracle systems.

Figure 8 shows the histogram of number of states of the
HMMs selected during recognition phase of tr-msHMM
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Figure 7: Recognition accuracy of the tr-sdHMM, the tr-
msHMM and the tr-kmHMM systems.

system for Chalearn14, DGS and HospiSign. As ex-
pected, it can be observed that HMMs with different num-
ber of states are selected at run time. In the case of DGS
and HospiSign models, the histogram is skewed towards
higher number of states. However, it is not the case for
Chalearn14. One possible reason for that could be that
Chalearn14 has simple gestures (hand up and down move-
ment) in a ”wild” (or uncontrolled) environment.

Figure 8: Histogram of the selected number of states during
the recognition process using the tr-msHMM systems.

5.2. Comparison to Existing Studies
In this section, we contrast the performances obtained on
DGS dataset and HospiSign dataset to existing studies re-
ported on these datasets. These studies have used the same
protocols as we have. In the case of Chalearn14, the eval-
uation is based on Jaccard index that involves joint evalua-
tion of segmentation and recognition of gestures (Escalera

et al., 2015). A fair comparison is not feasible, as it is diffi-
cult to separate the contribution of segmentation errors and
recognition errors of the systems reported in (Escalera et
al., 2015). Thus, we do not contrast for Chalearn14.

5.2.1. DGS Dataset
Table 2 compares performance with our models with two
other works on the DGS dataset. In (Ong et al., 2012), the
authors use a multi-class sequential pattern tree with boost-
ing for classifying signs, using binary features based on the
hand motion and location information. In (Cooper et al.,
2012), the authors propose a subunit based approach using
a Sequential Pattern Boosting classifier, where the subunits
are extracted based on the different modalities that make up
a sign, i.e. shape, location, motion, and hand arrangement.
It is important to note that the dataset used in (Cooper et
al., 2012) contains signs from one extra signer, which we
do not have access to in our dataset. Based on the reported
signer independent performance of 49.4% in (Cooper et al.,
2012), we calculated the accuracy range for the remaining
14 users (assuming that the accuracy on the 15th user could
take a value between 0% and 100%). This calculation gives
us a range of [45.7, 52.9], which is still lower than the per-
formance achieved the proposed tr-msHMM system.

Method Signer Indep. (%)
Sequential Pattern Trees
(Ong et al., 2012) 55.4

Boosted Subunits
(Cooper et al., 2012) 49.4

tr-msHMM system 63.1

Table 2: Comparison of our systems with existing studies
for the DGS dataset

5.2.2. HospiSign Dataset
Table 3 compares the performance of our system with the
performance reported in (Camgöz et al., 2016a). Briefly,
in (Camgöz et al., 2016a), various manual features such as
hand shape, hand position and hand movement were ex-
tracted and temporal modeling using either dynamic time
warping (DTW) or temporal templates was performed. In
the case of using DTW, the signs were classified using
k-Nearest Neighbours (k-NN). We contrast to the system
where only hand movement information is modeled. We
also trained a tr-msHMM system that uses the same hand
movement and hand joint feature as in (Camgöz et al.,
2016a). In both cases, we can observe that the proposed
tr-msHMM system yields performance close to the best re-
ported system.

6. Conclusion
This paper presented a model selection approach where,
each sign is modeled by a set of HMMs with different num-
ber of states during training and the best matching model is
automatically selected during recognition based on maxi-
mum likelihood criteria. We also investigated the use of a
transition model taking inspiration from silence modeling
in speech processing. Our investigations on sign language
recognition and gesture recognition tasks on three different



Method Signer Indep. (%)
Hand Joint and Movement Distances
(Camgöz et al., 2016a) 93.8 ± 6.36

tr-msHMM system 91.2 ± 6.5
tr-msHMM system using the same
”Hand Joint and Movement Distances”
features as (Camgöz et al., 2016a)

91.6 ± 6.07

Table 3: Comparison of our systems with existing studies
for the HospiSign dataset

datasets show that the proposed model selection approach
yields better systems than the approach of presetting the
number of HMM states and yields systems competitive to
the best performing systems with fixed number of HMM
states determined on the test set. Furthermore, incorpora-
tion of a transition model to model portion of visual signal
before and after the production of each sign helps in im-
proving the performance of systems.
It is worth mentioning that, although the investigations
were carried out on isolated signs, gestures and phrases, the
approach can be extended to continuous sign language pro-
cessing. As (elucidated in Section 1), the different HMMs
for each sign serve a similar role as multiple pronunciations
for each word in speech recognition systems. The decoder
can handle that. The present work focused on modeling
hand movement information. It is worth mentioning that
the model selection approach can be adopted when model-
ing both hand movement and hand shape information (Tor-
nay et al., 2019). Also, the model selection approach could
potentially be exploited for hand movement subunits ex-
traction (Tornay and Magimai.-Doss, 2019). Our future
work will pursue investigation of the proposed model selec-
tion for modeling hand movement and hand shape informa-
tion and for subunits extraction in the context of continuous
sign language processing.
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