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Abstract We present an efficient and accurate people

detection approach based on deep learning to detect

people attacks and intrusion in video surveillance sce-

narios. Unlike other approaches using background seg-

mentation and pre-processing techniques, which are not

able to distinguish people from other elements in the

scene, we propose WatchNet++ that is a depth-based

and sequential network that localizes people in top-

view depth images by predicting human body joints and

pairwise connections (links) such as head and shoul-

ders. WatchNet++ comprises a set of prediction stages

and up-sampling operations that progressively refine

the predictions of joints and links, leading to more ac-

curate localization results. In order to train the network

with varied and abundant data, we also present a large

synthetic dataset of depth images with human mod-
els that is used to pre-train the network model. Sub-

sequently, domain adaptation to real data is done via

fine-tuning using a real dataset of depth images with

people performing attacks and intrusion.

An extensive evaluation of the proposed approach

is conducted for the detection of attacks in airlocks and

the counting of people in indoors and outdoors, showing

high detection scores and efficiency. The network runs

at 10 and 28 FPS using CPU and GPU, respectively.
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Fig. 1 We propose WatchNet++ which is an efficient and
accurate depth-based network for people detection in video
surveillance applications. It is able to identify people intrusion
by detecting human joints and links with high accuracy.

1 Introduction

In recent years there has been a large deployment of

computer vision systems for people detection and count-

ing in video surveillance and analysis applications [4,6,

12,25,29,31]. Some systems are, for instance, capable of

detecting abnormal behaviors and alerting the teleoper-

ators of potentially dangerous situations. These systems

can be of primary necessity for security in public and

private places such as banks, airports, shopping centers,

and corporate buildings.

In this paper, we study the problem of intruder

detection in building entrances from monocular depth

cameras. More precisely, we focus on the detection of

multiple people in restricted areas where one person is

exclusively allowed at a time. This is a difficult prob-

lem since the video surveillance system must be able to

detect people attacks and trickeries (such as tailgating

and piggybacking to fool the system), see Figure 1.
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Fig. 2 Synthetic Data Generator (SDG). Left: SDG creates a virtual airlock with one or two people performing different
actions to reproduce similar depth images to the Unicity database [10]. Right: Some example images generated by SDG for
training WatchNet++.

To deal with this type of attacks, it is necessary

to have a good visibility of the scene in order to reduce

the degree of body occlusions caused by other people or

elements in the scene. To solve this problem, the camera

is commonly placed in a zenithal position in such a way

that it is much harder to deceive the detection system

when people are exactly below the camera [1,2,7,19,25,

37]. Additionally, the use of overhead cameras allows to

detect upper body parts with greater reliability which

leads to better detection accuracy.

Another aspect related to surveillance systems is the

privacy and data protection regulations. For example,

detection systems based on color cameras have to ap-

ply algorithms and controls to maintain people’s pri-

vacy. This leads to the use of other technologies such as

depth cameras that are a great source of information

for people detection, but when used alone can avoid

this legal inconvenience [3,8,11]. Another advantage of

using depth information versus color is that texture is

removed allowing to compute lighter and more efficient

methods for real-time video surveillance applications.

Aligned to these requirements, we present in this

work a deep-learning approach to detect people effi-

ciently and accurately from top-view depth cameras

(Fig. 1). Particularly, we focus on the problem of detect-

ing people under attack and intrusion in building air-

locks as well as counting people in indoor and outdoor

scenarios. The proposed approach relies on a depth-

based network, named WatchNet++, that sequentially

predicts the location of human body joints and links

as well as the prediction the body center in order to

estimate the number of people in the scene. We use the

head and shoulders as body joints and the links between

them and the body center as body links.

Additionally, we present a synthetic dataset which

is used to pre-train the network model with abundant

data to boost the performance on detection. It has a

large number of artificial depth images with 3D human

models performing different actions inside a virtual air-

lock, see Figure 2. To perform domain adaptation be-

tween synthetic and real data, we fine-tune the network

using a real dataset of depth images including people

attacks and intruders [10]. This approach is very con-

venient for deployment since the pre-trained model can

be adapted to new scenarios (e.g corridors, elevators)

using a relatively small dataset with real depth images.

This work builds on earlier publications [10,35]. How-

ever, this paper presents WatchNet++ which is an ex-

tended and improved version of the WatchNet network

introduced in [35] for people detection in depth images.

Specifically, WatchNet++ has two main novelties over

the original version that make it more accurate and im-

prove its detection performance: the use of a new pre-

diction stage that increases the localization accuracy of

body joints, and the integration and prediction of body

joints and links simultaneously to obtain better detec-

tion results. In addition, we include a more extensive

experimental validation of the method and provide a

comparison with other detection approaches.

The main contributions are:

- An accurate network for people detection that si-

multaneously predicts body joints and links;

- A series of prediction modules that refines the lo-

calization of body joints, links, and centers;

- A synthetic depth image dataset to train the pro-

posed network with abundant data, resulting in bet-

ter detection rates;

- A detection and tracking approach to count people

going through a corridor.

The remainder of the paper is organized as follows:

section 2 presents the related work while section 3 intro-
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duces the synthetic and real datasets used to train the

network. Section 4 describes WatchNet++ and its main

constituents. Experimental validation is conducted in

section 5. Finally, conclusions are provided in section 6.

2 Related Work

To control the access of people to public or private

buildings, video surveillance systems are usually based

on counting the number of people in the scene. Tech-

niques for this can be divided into two main categories:

feature-based and counting-by-detection methods.

Feature-based counting methods formulate the task

as a regression problem, avoiding people detection, where

image features are exploited to predict the number of

people in the scene. This approach is particularly con-

venient for crowded scenarios such as public events or

demonstrations since the detection of people is very

challenging due to the high degree of occlusion [4,20,23,

38]. However, this kind of methods provides a rough es-

timate about the number of people as well as a weak lo-

calization, represented commonly through density maps.

The second category relies on visual detectors to

localize each person in the image. To cope with occlu-

sions and avoid blind regions, the detectors are mainly

focused on localizing the head and shoulders of people

[1,3,8,14,29,31,37]. This has shown good results, espe-

cially for overhead and depth cameras.

Approaches can also be divided according to whether

they are unsupervised or supervised. In both cases, back-

ground segmentation or modeling techniques such as

Gaussian Mixture Model (GMM) are often exploited to

facilitate the extraction of features and ease the detec-

tion process. People detection approaches based on un-

supervised techniques have shown pretty good efficiency

in real world applications [3,7,11,24,29,37]. In [3], for

instance, a foreground segmentation module is used to

extract head candidates in real time using low-level im-

age processing operations such as edge and blob detec-

tion and connected components analysis. Similarly, a

top-view detection system was proposed for depth im-

ages in [7]. This work uses dynamic background model-

ing to find objects of interest which are then filtered out

via morphological operations to return bounding boxes

around people. In [37] an unsupervised water filling al-

gorithm is used to detect head candidates by finding

local minimum regions in depth data. This method is

accompanied of background modeling via GMM. De-

spite the good results of these methods, especially in

terms of efficiency, they are heavily subject to the qual-

ity of background subtraction and the choice of ad hoc

thresholds. In addition, these methods are unable to

distinguish between humans and other dynamic objects

in the scene (e.g baby carriage), leading to false alarms.

Supervised approaches for detecting people have also

shown remarkable results. They normally require higher

computational costs for both training and testing as

well as a representative dataset with annotations for

supervised learning. These approaches make use of ma-

chine learning algorithms, such as SVM or Boosting, to

compute discriminative classifiers [14,25,31,33,34,39]

In [25], for example, a top-view people detection system

was proposed in challenging scenarios such as tailgat-

ing and piggybacking. This method first searches the

depth map for local maxima to extract potential head

candidates followed by a validation step using a SVM

classifier. In general, this kind of methods yield high de-

tection results but they are dependent on the choice of

hand-crafted feature descriptors such as Histogram of

Oriented Gradients (HOG). Furthermore, some initial

steps such as floor detection [33], background model-

ing [31], and local maxima search in depth maps [25]

are crucial to achieve high detection performance.

Recently, the use of deep networks has shown im-

pressive results for people detection using color cam-

eras [5,17,19,26]. Nevertheless, these methods were trained

and focused mainly on detecting people from frontal

and lateral views, thus showing a low performance for

overhead cameras. By contrast, in [35] was presented

a convolutional network called WatchNet for detect-

ing people in top-view depth images. Since it only uses

depth information its architecture is lighter in compar-

ison to more complex networks [5,26], resulting in an

efficient network that can be deployed in video surveil-

lance applications in real time. WatchNet was trained

with artificial and real depth data for people detection.

In this work, we propose a counting-by-detection

approach for identifying attacks and intrusion in build-

ing entrances (airlocks) based on an improved version

of WatchNet [35]. As novelties, WatchNet++ predicts

body joints and links simultaneously to obtain higher

detection rates, and it introduces a new prediction stage

that provides features maps of higher spatial resolution

to improve the localization accuracy of body joints. The

network is also trained with abundant synthetic data in

order to compute a pre-trained model that can be easily

fine-tuned for different scenarios.

3 Depth Image Datasets

In this section we present the synthetic and real datasets

used to train the network. While the first dataset is used

to initialize the network model, the second one allows

to adapt the network to the real scenario.



4 M. Villamizar, A. Mart́ınez-González, O. Canévet, J-M. Odobez

Fig. 3 Examples of 3D human models.

3.1 Synthetic Dataset

The supervised learning of deep network models re-

quires to have at hand a large and diverse enough dataset

to boost the network performance and prevent overfit-

ting. Yet, the data is sometimes scarce for scenarios

with task-based specifications. In addition, generating

the images’ annotations for supervised learning presents

another inconvenient. This process is usually done man-

ually and requires large amounts of human effort. An

attractive alternative is to work with synthetic data [30,

32]. The benefits of this approach are twofold: 1) syn-

thetic data can be generated automatically according

to a given scenario for a specific problem, and 2) high

quality annotations are generated at no cost.

Thus, to overcome the need for annotated training

data, we present a systematic way to generate artifi-

cial depth images displaying people inside an airlock

and the corresponding annotations (ground truth). We

introduce a Synthetic Data Generator (SDG) built on

Blender1 to render people performing multiple behav-

iors inside a virtual airlock by motion simulation (see

Figure 2). The airlock was designed following the speci-

fications mentioned in the Unicity database [10]. Specif-

ically, the airlock has an area of 2 × 2 meters and the

camera is placed at the center of the airlock at two

different heights: 2.1 and 2.5 meters.

A challenge in generating synthetic data is to intro-

duce enough variability. We achieve this point by con-

sidering different body shapes and as many body pose

configurations as possible. First, we use 24 3D human

characters created with the modeling software Makehu-

man2. The different characters show variations in phys-

ical features, such as height and weight, and have been

dressed with different clothing outfits to increase shape

variation. Some examples are shown in Figure 3.

We add variability in body pose configurations by

relying on the publicly available motion capture dataset

from CMU labs3. We selected motion sequences of peo-

1 http://www.blender.org
2 http://www.makehuman.org/
3 http://mocap.cs.cmu.edu/

Fig. 4 Motion capture sequence for a 3D human model.
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Fig. 5 Left: Schema of the recording structure (taken
from [10]). Right: Top view of the recording structure de-
picting the position of the Argos and Fotonic sensors.

ple performing diverse actions like walking or jumping.

Figure 4 shows some snapshots for a mocap sequence.

To synthesize depth images along with the required

annotations, our SDG works as follows. At each itera-

tion, we randomly select up to two 3D characters along

with the corresponding number of mocap sequences,

randomly selected. The 3D characters are randomly

placed inside the airlock, in such a way that there is no

collision between them. Subsequently, SDG samples one

every 15 frames from the mocap sequence, performs mo-

tion retargeting and generates the corresponding syn-

thetic depth image along with annotations. This is il-

lustrated in Figure 2 (left). As a result, the synthetic

database has more than 80k images containing up to

two people, observe Figure 2 (right).

3.2 Real Dataset

Data. To fine-tune the network model to the real sce-

nario, as well as evaluating its performance for people

detection, we use the Unicity dataset4 introduced in

[10]. This dataset comprises several recorded sequences

of people passing through a physical airlock giving ac-

cess to a restricted area. The recording structure is

schematized in Figure 5 (left). It is a 200 cm square air-

lock with two distinct heights: low and normal height

4 https://www.idiap.ch/dataset/unicity
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Fig. 6 General scheme of WatchNet++ for people detection. The network comprises a feature extraction module and a series
of prediction stages that sequentially refine the prediction maps for human body joints and links as well as body centers.

Normal         Tailgating         Attack

L
o
w

  
  

  
  

 H
ig

h

Fig. 7 Depth images of the recorded scenarios using the Ar-
gos sensor at two different heights (low and high).

(210 and 250 cm). The sequences were recorded us-

ing two industry-oriented depth sensors: Argos3D-P220

and Fotonic G-series. The position of these sensors is

shown in Figure 5 (right). They are placed in the middle

of the structure, next to each other, facing down.

Specifically, the Unicity dataset consists of 65 video

sequences organized according to three different scenar-

ios. The first one is a normal scenario with a single

person walking and accessing the restricted area; the

second scenario comprises two people trying to fool the

surveillance system (e.g tailgating); in the third sce-

nario, two people enter, and one of them attacks and

forces the other to get into the restricted area. Figure 7

shows some example images of the recorded scenarios.

For training and evaluation, the dataset was split into

33 and 32 sequences respectively, so that a participant

does not appear in both sets. In total, the dataset has

about 58k depth images for both sensors.

Annotations. Every frame in the dataset was anno-

tated manually with the location of body joints (head

and shoulders), the number of people in the airlock,

and the degree of visibility of each person in order to

evaluate the sensitivity of the detection system in ac-

cordance to people visibility. Five levels were defined:

Full: the person is fully visible (body joints are visible);

Partial: the person is partially visible and at least one

body joint (head or shoulder) is visible; Truncated: a

large portion of the person is visible but not any joint

(e.g lower body); Difficult: similar to the truncated la-

bel but it only applies for a small portion of the person

(e.g a leg or a hand). Invisible: the person is not visible

in the airlock.

4 WatchNet++

In this section we describe the architecture and com-

ponents of the proposed network for people detection.

WatchNet++ is inspired by the Convolutional Pose Ma-

chines (CPM) for people pose estimation in color im-

ages [5]. However, our network is a lightweight and ef-

ficient version of CPM thanks to the use of depth data

–instead of color– which allows reducing the number

of convolutional layers and parameters since texture

and color are removed. Besides, WatchNet++ includes

other network characteristics like skip connections use-

ful for multi-resolution analysis and upsampling opera-

tions for increased localization accuracy.

Similar to CPM, WatchNet++ can be thought of as

comprising a feature extraction sub-network and a se-

ries of prediction stages that progressively refine the lo-

calization of human body joints and links in the image.

Figure 6 shows a general view of the proposed network

architecture. The different parts are described below.

4.1 Feature Extraction Sub-network

This sub-network computes discriminative features (F ),

from an input depth image of size W × H, for body

joints and links prediction that will be shared among

the prediction stages. Since we use depth images as in-

put, the complexity of this stage can be reduced com-

pared to [5], and we can therefore deploy a smaller and
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more efficient feature extractor sub-network, contrary

to the original CPM framework that relied on a very

deep network to compute features (VGG-19 [28]).

We propose to use a sub-network composed of 7

convolutional layers (C) with filters’ size of 3 × 3, three

max-pooling operations (X), and one up-sampling op-

eration (U), see Figure 6. All our convolutional layers

use 64 filters to reduce the number of parameters in the

network and speed up the forward pass.

A major design choice we follow and which differs

from [5] is the use of skip connections [22] to combine

features from different resolutions. Specifically, while

the layer C4 with filters’ size of 1 × 1 computes features

at a quarter of the resolution of the input image, the

convolutional layer C5 computes features at an eighth

of the resolution. Then, features from C5 are upsam-

pled and combined with C4 via concatenation. Finally,

layers C6 and C7 compute the output features F .

The main reason for this particular configuration is

to increase the robustness and accuracy of the network

to detect people at multiple scales. This is an important

aspect in video surveillance systems since the height at

which the camera is located varies depending on the

room, and depth measures have a different semantic

nature than color images. This is the case of the Unic-

ity dataset whose depth images were recorded at two

different sensor’s heights.

4.2 Prediction Sub-networks

The proposed network has a series of prediction sub-

networks where each one provides a set of feature maps

(seven maps) encoding the location of the body center,

body joints (head and shoulders) and the prediction of

body links (coupling the body center and joints). The

prediction stages are applied sequentially in combina-

tion with the extracted features (F ) in order to refine

the preceding predictions (see Figure 6). This results in

enhanced prediction maps and better detection scores.

Unlike [5,35], whose prediction maps are computed

at the same resolution, in this work we propose two

types of prediction sub-networks. The first one is an

efficient sub-network introduced in [35] that is com-

posed by four convolutional layers with filters of dif-

ferent sizes, keeping low the numbers of filters. This

sub-network is computed particularly for the predic-

tion stages P1 and P2, see Figure 6. The first convolu-

tional layer (C1) has filters of size of 5 × 5 in order to

capture larger image spatial context and to encode the

spatial relationships among the body joints and links.

This spatial/feature co-occurrence has been shown to

play an important role to refine the network output pre-

dictions. The final layer (C4) provides prediction maps

of size of W/4 ×H/4 × 7.

Image                    Head               L. Shoulder         R. Shoulder

Center                 H. Link                 L.S. Link              R.S. Link

Fig. 8 Ground-truth annotation masks for an image. Body
center, joints and links represented in color for better clarity.

The second prediction sub-network is computed for

the last prediction stage (P3). It has a similar archi-

tecture as P1 and P2, but with the novelty that there

are three additional convolutional layers (C5 - C7) and

two up-sampling operations with the aim of providing

feature maps to higher spatial resolution (W ×H × 7).

This allows to compute enhanced feature maps (C7)

and thus obtaining more accurate results for the local-

ization of body joints and links in the image. The use

of up-sampling layers has shown pretty good results in

the past for accurate image segmentation [22,27].

Another difference with [35], which only uses body

joints, is that we use and predict body joints and links

together to encode pairwise relationships between them

to obtain better predictions about the body center used

for people detection (see Fig. 8). This idea comes from

[5], but instead of having two network branches which

results in computational overhead, we use a single branch

to predict body joints and links, keeping efficiency and

reducing the number of network parameters.

4.3 Training Loss and Ground Truth Masks

The training loss for WatchNet is calculated as a lin-

ear combination of partial losses across the network.

We define the global loss by L = 1
N

∑N
i=1 Li, where

N is the number of prediction stages and Li is the

loss for the prediction stage Pi. Specifically, the par-

tial loss for a prediction stage i is defined as the mean

squared distance between the prediction maps provided

by stage i and the ground-truth annotation masks. For

every training image the ground truth is a stack of

seven annotations masks encoding the true locations

of the body joints, the body center, and the links be-

tween them. Figure 8 illustrates the ground truth for a

training image. These masks are computed online dur-

ing training. Gaussian blobs are placed to encode the

position of the joints and the body center, while line

segments are added to encode the links between joints

and the center. This center is computed online as the

mean point among joints (head and shoulders).
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Fig. 9 Some example images with the output of WatchNet++ for people detection in depth images. The network predicts
the location of body joints and links as well as the body center, all depicted by blue, green, red and yellow spots respectively.
The system also estimates the number of people (P) inside the airlock based on counting the number of body centers.

4.4 General Settings

All our convolutional layers are computed in combina-

tion with batch normalization [15] and Rectified Lin-

ear Units (ReLU), showing good experimental results

and faster training. Note that WatchNet++ is a fully-

convolutional network involving only convolution lay-

ers. This reduces the number of parameters and enables

the network to be independent of the size of the input

image [22]. The network weights are initialized using

the Xavier’s initialization [13]. We use Adam [16] as

optimizer with default settings.

4.5 Counting People in Images

At test time, our learned WatchNet++ is applied to

each image to compute predictions. We remove predic-

tions whose confidence level is below a threshold β. The

choice of β is done accordingly to the user needs (e.g

high recall vs high precision).

We use the number of predicted body centers to

count the number of people inside the airlock. This

choice has shown to be robust in cases when other body

joints (e.g head) lie outside the scene [35].

5 Experiments

This section evaluates WatchNet++ for the task of count-

ing people and detecting attacks in building access rooms.

Fig. 9 shows some example images.

5.1 Datasets

In this paper we use three datasets to train and evaluate

the network for people detection in depth images.

Synthetic Dataset: We use the synthetic dataset de-

scribed in Sec. 3.1 to pre-train the network with a large

number of artificial depth images (80k images) contain-

ing up to two people performing different actions.

Unicity Dataset: To adapt the network to real depth

images, we fine-tune the network with the Unicity dataset

described in Sec. 3.2 and introduced originally in [10].

This dataset is also used to evaluate the network to

detect attacks and intruders in airlocks in which only

one person is allowed. Images with two people in the

room are considered as alarms (positive samples). The

dataset has 33 video sequences for training and 32 se-

quences for testing. Each sequence was recorded by two

different depth sensors: Argos and Fotonic.

MIVIA Dataset: This dataset was proposed in [9]. It

contains 17 videos sequences of multiple people walking

in indoor and outdoor corridors. The sequences were ac-

quired using an overhead depth sensor (Kinect) at fixed

height. The goal in this dataset is to count people cross-

ing a virtual line in different directions. This dataset is

used to test WatchNet++ in another scenario where

the task of detecting people is crucial.

5.2 Evaluation Protocol

We follow the evaluation protocol presented in [10] to

measure the performance of the network for detecting
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attacks and intrusion (alarms). We compute the re-

call (R), precision (P) and F-measure (F) rates. For

evaluation the dataset considers four levels of difficulty

defined according to the degree of visibility of people

inside the airlock (see Sec. 3.2). Level 1 comprises all

images where people’s joints are full visible (head and

shoulders). In level 2 at least one body joint is visible

(e.g a shoulder is visible). Level 1 is thus a subset of

level 2. Similarly, level 3 contains level 2 plus all those

images where a portion of people is visible, but not their

joints. Finally, level 4 is all the images in the test set

including difficult cases (e.g a leg is visible only). For

all the levels, we include images of the empty airlock to

count for negative samples.

To measure the localization accuracy of the body

joints in the image, we use the Percentage of Correct

Keypoints (PCK) metric [36]. It works as follows: a de-

tected joint is considered correct if the Euclidean dis-

tance between the predicted and the true joint is within

a certain threshold (radius). Here, we consider radius of

1, 3, 5, and 10 pixels. For every threshold case we com-

pute the recall, the precision and the F-measure rates.

Rates at lower thresholds (e.g 1 and 3 pixels) indicate

more accurate localization results.

We repeated the training and testing phases five

times in order to consider randomness in the network

computation. Average detection rates are reported.

5.3 Default Settings

Unless otherwise stated, WatchNet++ is trained with

the synthetic dataset for 50k iterations and is fine-tuned

with the real training data for 5k iterations. We use

three prediction stages in the network and a batch of

five samples for training. The network is trained and

tested using the Argos depth data (17k training images

and 11k testing images). Image resolution is set to 120×
160 pixels and the depth image values are normalized in

the range between 0 and 1 by dividing the depth values

by a distance of 3000 millimeters. To remove noise from

depth maps, we resort to inpainting with a filter size of

5. To select β, we run the network in the training set

for varying detection thresholds and take the one that

achieves the highest F-measure score.

5.4 Network Architecture

In Table 1 we compare the proposed WatchNet++ with

its preceding version (WatchNet [35]) according to the

two introduced innovations: the use of body links and

prediction maps of higher spatial resolution. The com-

parison is done in terms of the localization accuracy of

the body joints (head and shoulders) for varying radius

and the rates for detecting alarms (two people in the

room) for the different evaluation levels. We see that

Alarm Detection Rates Localization Accuracy

Level R P F Rad. R P F

WatchNet WatchNet

L-1 96.5 99.6 98.1 R-1 13.7 14.0 14.4
L-2 94.2 99.8 96.9 R-3 30.6 31.9 31.2
L-3 81.5 99.7 89.7 R-5 64.3 66.9 65.5
L-4 61.3 99.7 75.9 R-10 85.3 88.8 87.0

WatchNet++ [w/o links] WatchNet++ [w/o links]

L-1 96.6 99.9 98.2 R-1 33.3 33.5 33.4
L-2 93.9 99.2 96.5 R-3 53.1 53.3 53.2
L-3 82.6 98.7 89.9 R-5 75.6 76.0 75.8
L-4 62.2 98.8 76.4 R-10 88.5 88.9 88.7

WatchNet++ WatchNet++

L-1 97.4 100 98.7 R-1 34.0 34.6 34.3
L-2 95.5 99.5 97.5 R-3 53.4 54.8 54.1
L-3 82.9 99.3 90.3 R-5 75.3 77.2 76.3
L-4 62.3 99.3 76.6 R-10 88.0 90.3 89.1

Table 1 Left: Alarm detection rates provided by the net-
works in the Unicity database. The evaluation is done using
the recall (R), precision (P) and F-measure (F). Rigth: Lo-
calization accuracy of body joints (head and shoulders).

WatchNet++ obtains better detections rates, particu-

larly for recall which corresponds to detect true alarms.

On the other hand, WatchNet attains high precision,

but its accuracy for predicting the body joints is low,

especially for low distance thresholds (radius of 1 and 3

pixels). This is because the prediction maps provided by

the network have a low resolution of 30x40 pixels, while

WatchNet++ returns maps with the same resolution of

the input image (120x160 pixels). This is achieved by in-

corporating up-sampling and convolutional operations

in the last prediction stage (see Fig. 6). The result is

therefore more accurate prediction maps encoding the

position of the body joints.

Besides, the table reports the scores for the four

evaluation levels mentioned above. Note that the pro-

posed network achieves almost perfect rates for levels

1 and 2 which contain at least one visible body joint.

The scores degrade for levels 3 and 4 since people are

not fully visible. Figure 9 shows some example images

with the output of WatchNet++. The last column has

failure examples with wrong body joint predictions (e.g

two detected left shoulders for a person) and a case

where three body centers are detected.

Table 1 also shows the impact of using body links

in WatchNet++. Note that the network without using

links obtains lower rates. This proofs that the links are

complementary features that contribute to improve the

prediction of body joints and its center.

5.5 Training Data

The detection performance evaluation of WatchNet++

according to the size of the training data is shown in

Table 2.The network was trained with different train-

ing subsets of the Unicity dataset. Synthetic data is

discarded in this experiment. We see that the rates in-

creases as the number of training images gets larger.
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Alarm Detection Rates Localization Accuracy

Level R P F Rad. R P F

Real Dataset[1k images] Real Dataset[1k images]

L-1 83.2 96.9 89.5 R-1 25.3 27.0 26.1
L-2 86.3 95.9 90.8 R-3 40.7 42.8 41.7
L-3 76.0 94.2 84.1 R-5 63.2 66.5 64.8
L-4 59.6 94.6 73.1 R-10 80.3 84.5 82.4

Real Dataset [3k images] Real Dataset [3k images]

L-1 88.0 98.3 92.9 R-1 27.0 29.7 28.3
L-2 88.5 98.2 93.1 R-3 43.9 47.7 45.7
L-3 76.6 98.2 86.0 R-5 65.8 71.5 68.5
L-4 58.2 98.2 73.1 R-10 80.6 87.6 83.9

Real Dataset [10k images] Real Dataset [10k images]

L-1 89.0 98.2 93.4 R-1 29.0 31.3 31.1
L-2 90.7 97.3 93.9 R-3 45.6 48.3 46.9
L-3 79.6 96.7 87.3 R-5 68.0 72.1 70.0
L-4 61.2 96.9 75.0 R-10 82.8 87.8 85.2

Real Dataset [17k images] Real Dataset [17k images]

L-1 92.3 98.9 95.5 R-1 30.2 32.6 31.4
L-2 92.5 98.2 95.3 R-3 46.7 49.3 48.0
L-3 81.1 97.6 88.6 R-5 68.9 72.6 70.7
L-4 61.8 97.7 75.7 R-10 83.2 87.8 85.4

Table 2 Alarm detection rates and body joint localization
accuracy of WatchNet++ according to the size of the real
training data (Unicity dataset) and without using synthetic
data for pretraining the network.

Alarm Detection Rates Localization Accuracy

R P F R P F

Real Dataset Real Dataset

L-1 92.3 98.9 95.5 R-1 30.2 32.6 31.4
L-2 92.5 98.2 95.3 R-3 46.7 49.3 48.0
L-3 81.1 97.6 88.6 R-5 68.9 72.6 70.7
L-4 61.8 97.7 75.7 R-10 83.2 87.8 85.4

Synthetic Dataset Synthetic Dataset

L-1 79.9 98.8 88.3 R-1 15.0 20.4 17.3
L-2 77.5 96.2 85.8 R-3 25.8 31.8 28.5
L-3 61.3 94.5 74.4 R-5 41.1 50.7 45.4
L-4 47.8 94.8 63.6 R-10 55.5 68.5 61.3

Synthetic + Real Datasets Synthetic + Real Datasets

L-1 97.4 100.0 98.7 R-1 34.0 34.6 34.3
L-2 95.5 99.5 97.5 R-3 53.4 54.8 54.1
L-3 82.9 99.3 90.3 R-5 75.3 77.2 76.3
L-4 62.3 99.3 76.6 R-10 88.0 90.3 89.1

Table 3 Detection performance of WatchNet++ in terms of
the use of synthetic and real data for training.

However, the best achieved performance is limited be-

cause the relative small number of images for training

the network (17k images).

To enlarge the training data, we resort to the syn-

thetic dataset which contains depth images with peo-

ple inside a virtual airlock. Table 3 reports the rates for

training the network using only synthetic data (80k im-

ages). We see that the detection rates and accuracy are

substantially inferior to those obtained by the network

using the real dataset. This is because there is a gap

between the real and synthetic data domains caused by

sensor noise and variations in the simulated scenario.

To overcome this problem WatchNet++ is initially

trained with the synthetic data for 50k iterations and

then fine-tuned (for 5k iterations) to adapt the net-

work model to the real domain. The table shows the

rates after fine-tuning the network. Note that the use

of synthetic and real images significantly improves the

Alarm Detection Rates Localization Accuracy

Level R P F Rad. R P F

1 Prediction Stage 1 Prediction Stage

L-1 96.1 99.5 97.8 R-1 33.3 33.8 33.6
L-2 92.6 99.6 96.0 R-3 52.2 53.5 52.9
L-3 81.9 99.5 89.8 R-5 74.2 76.0 75.1
L-4 61.5 99.5 76.1 R-10 86.8 88.9 87.8

3 Prediction Stages 3 Prediction Stages

L-1 97.4 100.0 98.7 R-1 34.0 34.6 34.3
L-2 95.5 99.5 97.5 R-3 53.4 54.8 54.1
L-3 82.9 99.3 90.3 R-5 75.3 77.2 76.3
L-4 62.3 99.3 76.6 R-10 88.0 90.3 89.1

5 Prediction Stages 5 Prediction Stages

L-1 97.7 100.0 98.8 R-1 34.2 34.2 34.2
L-2 95.6 99.8 97.7 R-3 54.1 54.9 54.5
L-3 85.3 99.8 92.0 R-5 76.2 77.4 76.8
L-4 64.7 99.8 78.5 R-10 88.1 89.5 88.8

Table 4 Network performance according to the number of
prediction stages.

Alarm Detection Rates Localization Accuracy

Level R P F Rad. R P F

Baseline Baseline

L-1 97.0 55.0 70.0 R-3 - - -
L-2 96.0 74.0 84.0 R-5 - - -
L-3 88.0 79.0 83.0 R-10 - - -
L-4 72.0 81.0 76.0 R-15 - - -

FCN FCN

L-1 92.7 99.0 95.7 R-1 15.4 15.5 15.5
L-2 85.3 98.5 91.4 R-3 32.3 34.9 33.6
L-3 71.2 98.4 82.6 R-5 63.5 68.7 66.0
L-4 53.9 98.4 69.7 R-10 82.8 89.5 86.0

UNet UNet

L-1 96.6 99.6 98.1 R-1 32.0 32.3 32.1
L-2 93.7 99.7 96.6 R-3 51.5 51.8 51.6
L-3 81.8 99.5 89.8 R-5 74.6 75.2 74.9
L-4 61.5 99.5 76.0 R-10 88.7 89.3 89.0

WatchNet++ WatchNet++

L-1 97.4 100 98.7 R-1 34.0 34.6 34.3
L-2 95.5 99.5 97.5 R-3 53.4 54.8 54.1
L-3 82.9 99.3 90.3 R-5 75.3 77.2 76.3
L-4 62.3 99.3 76.6 R-10 88.0 90.3 89.1

Table 5 Comparison of WatchNet++ against a baseline
method and two popular network architectures.

results, especially the recall rate that corresponds to

the detection of attacks and intrusion.

5.6 Prediction Stages

The performance of WatchNet++ in terms of the num-

ber of prediction stages is shown in Table 4. The larger

the number of prediction stages, the higher the detec-

tion scores and accuracy. Using five stages the network

obtains the best results. However, it is at the expense

of a larger number of model parameters. In this work,

we use three stages as a compromise between detection

performance and the network model size.

5.7 Detection Approaches

The proposed WatchNet++ is compared against other

approaches in Table 5. The first approach is the baseline

provided with the Unicity dataset [10]. This approach is

based on background subtraction which thresholds the

estimated volume inside the airlock: when the volume is

larger than a predefined threshold, the method classifies
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Fig. 10 Implemented network architectures. Left: Fully-Convolutional Network (FCN). Right: U-shape Network (UNet).

the depth image as an alarm. The volume is estimated

by simply summing up all the pixels of B − I, where

B is the depth map of the empty airlock, and I the

current depth image. The second approach is a Fully-

Convolutional Network (FCN) commonly used for im-

age recognition tasks [18,28]. In this work, the network

consists of 7 convolutional layers, two max-pooling op-

erations, and a final convolutional layer for predicting

the body joints and links, see Figure 10 (left). Similar

to WatchNet++, this network uses 64 filters per layer

and a filter size of 3 × 3 to keep efficiency.

The third approach is an U-shape network (UNet)

which is a popular network architecture for semantic

segmentation [21,22,27]. UNet comprises down- and up-

sampling operations to extract and combine shallow

and deep features at multiple resolutions. The output is

also a set of prediction maps with the same resolution

of the input image. Figure 10 (right) shows the imple-

mented UNet using 14 convolutional layers, three max-

pooling and three up-sampling operations, and two skip

connections (C9 and C11) using a filter size of 1×1. To

maintain efficiency the number of convolutional filters
varies according to the resolution level.

Looking at Table 5, we see that the baseline method

achieves very high recall scores for all evaluation levels,

but it obtains low precision due to high rates of false

positives. Since this method uses background subtrac-

tion, it does not provide the localization of people (body

joints) in the image. On the other hand, FCN does de-

tect people but obtains lower results than the other

networks because FCN does not use the prediction re-

finement to increase the alarm detection rates, and be-

cause FCN yields prediction maps at low resolution (up-

sampling is not applied) what results in low localization

accuracy. Conversely, UNet returns more accurate pre-

diction maps and thus higher localization rates, showing

that up-sampling features is beneficial for people local-

ization. WatchNet++ obtains better scores than UNet

and achieves the best alarm detection rates and local-

ization accuracy. This is a consequence of using several

predictions stages to enhance the prediction maps.

Alarm Detection Rates Localization Accuracy

Level R P F Rad. R P F

WatchNet WatchNet

L-1 97.2 95.4 96.3 R-1 16.2 17.1 16.7
L-2 93.1 94.1 93.6 R-3 34.2 31.8 32.9
L-3 87.0 92.7 89.8 R-5 66.7 62.2 64.4
L-4 72.1 92.9 81.2 R-10 87.2 81.3 84.1

WatchNet++ WatchNet++

L-1 98.3 94.9 96.6 R-1 33.9 36.6 35.2
L-2 93.8 93.9 93.9 R-3 44.4 41.0 42.6
L-3 88.3 93.1 90.6 R-5 75.9 70.0 72.8
L-4 73.7 93.3 82.3 R-10 88.8 81.9 85.2

Table 6 Performance comparison using the Fotonic sensor.

5.8 Fotonic sensor

WatchNet++ is also compared against WatchNet us-

ing the Fotonic depth sensor. The results are shown in

Table 6. We see again that the proposed network out-

performs the original version both in alarm detection

scores and the accuracy for localizing the body joints.

5.9 Counting People

Unlike previous experiments testing the network to de-

tect people attacks and intrusion, WatchNet++ is tested

here to measure the flow of people in indoor and out-

door corridors. In particular, the task consists on count-

ing the number of persons crossing a virtual line placed

in the scene. This is illustrated in Figure 11 that shows

the output of WatchNet++ for detecting people and

tracking them in two video sequences of the MIVIA

dataset [9]. The second and fourth rows depict the pre-

diction of body joints and links as well as the body cen-

ters and the number of estimated people in the scene.

The first and third rows show the trajectories of people

crossing the virtual line (indicated by a black line). The

current number of persons who have gone through the

scene is shown at top-left of the frame.

For this task, WatchNet++ is run at every video

frame to detect the body joints and its center. In par-

allel, a simple tracker is executed to track every person

in the scene. This tracker is based on matching new

detected body centers with the current set of tracklets

using the minimum distance. A person passage is de-

tected when the tracklet intercepts the virtual line. For

this approach, it is essential that WatchNet++ detects

the persons in most of the frames (i.e high recall rate) in
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Fig. 11 People counting results using WatchNet++ for indoor and outdoor scenarios in the MIVIA dataset.

People Counting Rates

Indoors Outdoors

Method Train data TP FN FP R P F TP FN FP R P F

Method [9] – 408 7 0 98.3 100 99.1 520 33 0 94.0 100 96.9
WatchNet++ Synthetic 409 6 0 98.6 100 99.3 435 118 0 78.7 100 88.1
WatchNet++ Synth.+Unicity 408 7 0 98.3 100 99.1 493 60 0 89.2 100 94.3
WatchNet++ Synth.+MIVIA 377 0 0 100 100 100 487 5 0 99.0 100 99.5

Table 7 People counting performance in MIVIA dataset for indoor and outdoor scenarios.

order to have continuous tracklets. To consider missed

detections, we use an elapsed period of 11 frames for

tracklet recovery. Otherwise, such tracklet is deleted.

For evaluation, we use the MIVIA dataset [9] that

has 8 indoor videos and 9 outdoor videos with 415

and 553 people passages respectively. The performance

is measured using true positives (TP), false negatives

(FN), false positives (FP), recall (R), precision (P) and

F-measure (F) rates. TP corresponds to the transits of
persons that are correctly detected by the method, FP

is the number of falsely detected passages of persons,

and FN is the number the passages of persons missed

by the method.

Table 7 reports the performances for the method

presented in [9] and WatchNet++ using different train-

ing data. In [9], a simple approach was proposed which

does not detect and track people in the video sequences.

It consists of two steps: foreground detection via back-

ground subtraction and people counting based on a cell

grid that interprets the results of the foreground de-

tection step. This method is very efficient and yields

high performance rates in both scenarios. However, it

depends of the quality of the foreground detection re-

sults and some ad-hoc parameters. By contrast, Watch-

Net++ does detect people everywhere in the depth im-

age and counts the number of people passages using

the tracking system. We see that when the network is

trained with synthetic data only, the performance is

high in indoors (F-measure of 99.3%) but low in out-

doors (88.1%). This is caused mainly to the sensor noise

that in outdoors degrades largely the quality of depth

data. If the network is then fine-tuned with real depth

images from the Unicity dataset [10], the performance

in outdoors achieves an F-measure of 94.1%, reducing

by half the number of false negatives.

Better results are obtained if WatchNet++ is fine-

tuned with data from the MIVIA dataset. To this end,

the dataset is split into a small training set consisting of

two sequences and a testing set having the remaining 15

sequences. For training, we chose the sequences D I S 1

and D O S 1 which correspond to an indoor and an out-

door sequence having a single person per frame. About

2600 depth images were manually annotated with the

position of heads and shoulders. The network was fine-

tuned for 2k iterations. Observe that the WatchNet++

attains almost perfect recognition rates in both scenar-

ios since the network is well adapted to the environment

conditions and sensor noise. Note also that the true

positive values are lower than previous results since the

dataset was split to fine tune the network, resulting in

a smaller number of people crossing the corridor in the

test set.

Some example results are shown in Figure 11 in

which we see that WatchNet++ is able to localize peo-

ple in every image and track them during the video se-

quences. Some failure cases are depicted in Figure 12. In

the first and second columns, the network does not de-

tect a person for some frames and the associated track-
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Fig. 12 Some failure cases in the people counting approach.

let is thus deleted. It is due to undefined depth values

around shoulders and back (sensor noise). In the third

column the problems comes from occlusion of the per-

son. The network predicts then just one body center.

5.10 Efficiency

The proposed network has similar real-time performance

as its predecessor [35] for detecting people in depth im-

ages since both networks share the same feature ex-

traction module and similar prediction modules. Specif-

ically, WatchNet++ runs in 10 and 28 FPS using CPU

and GPU cards respectively.

6 Conclusion

In this work we presented a video surveillance system

which is able to detect people attacks and intrusion

in access rooms as well as counting people in corri-

dors for motion analysis. The proposed approach con-

sists of a deep network, called WatchNet++, which

is an improved version of WatchNet [35]. Our system

demonstrated very good results in the Unicity [10] and

MIVIA [9] datasets created specifically for the above

problems. WatchNet++ also showed superior perfor-

mance to other network architectures and approaches

based on foreground detection. The use of synthetic and

real data demonstrated to be beneficial to enlarge the

training data and obtain better detection results. This

work also proved that using body links, up-sampling

convolutional operations, and a cascade of prediction

stages the proposed network returns more accurate pre-

dictions maps encoding the location of body joints.
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