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ABSTRACT

We present a novel method for semantic text document analysis which in addition to localizing text it
labels the text in user-defined semantic categories. More precisely, it consists of a fully-convolutional
and sequential network that we apply to the particular case of slide analysis to detect title, bullets
and standard text. Our contributions are twofold: (1) A multi-scale network consisting of a series of
stages that sequentially refine the prediction of text and semantic labels (text, title, bullet); (2) A syn-
thetic database of slide images with text and semantic annotation that is used to train the network with
abundant data and wide variability in text appearance, slide layouts, and noise such as compression
artifacts. We evaluate our method on a collection of real slide images collected from multiple confer-
ences, and show that it is able to localize text with an accuracy of 95%, and to classify titles and bullets
with accuracies of 94% and 85% respectively. In addition, we show that our method is competitive on
scene and born-digital image datasets, such as ICDAR 2011, where it achieves an accuracy of 91.1%.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction
Text localization in images has been an active field of re-

search in the computer vision community for decades, includ-
ing in the last years where people have extended the more tradi-
tional document analysis cases to other complex situations like
localizing text in natural images [10, 11, 28] as well as oriented
text [27]. This is a difficult task in which progresses have been
relying on generating challenging datasets like artificial text in
real world images [7] or slide datasets [24]. Text localization
has many useful real-world applications and is a preliminary
step to optical character recognition engines.

Besides localization, many applications require to recognize
the semantic category associated with the text. For instance,
in scene analysis, localized text needs to be classified as street
name, street number, or directions for cars or pedestrians. In
other applications such as business card digitizing, in addition
to detecting text, we also need to recognize the semantic cate-
gory of the text such as name, company, position, etc.

In this paper, we are interested in automatic text localization
and semantic classification of presentation slides: we aim at
detecting text and recognizing the title, the bullets and standard
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text (i.e. semantic information), so as to improve the indexa-
tion for better retrieval once uploaded to a website, for instance,
through ontology analysis (i.e. detecting the main topics of the
document). Fig. 1 shows an example of the proposed method in
which the network detects text regions and provides a semantic
label for each of them (e.g. title, bullet and standard text).

1.1. Related Work

Text localization has been addressed in many different ways
according to the task definition. Early efforts were focused on
the detection of characters or character components such as
Maximally Stable Extremal Regions (MSER) [3, 16], Stroke-
width Transform (SWT) [6] and text-like blocks [2]. How-
ever, these approaches typically involve complex and time-
consuming pipelines which include many useful heuristics to
provide text candidates. Additionally, these approaches are sub-
optimal because they require tuning individually every pipeline
component, which results in a difficult and tedious process [10].

In recent years, thanks to very deep and end-to-end trainable
networks for object detection [8, 13, 17], works have addressed
text localization as an object-like detection problem, relying on
a single and fully-convolutional network to regress the coordi-
nates of boxes containing text [7, 11]. They have shown good
results both in accuracy and efficiency (i.e. complex pipelines
are discarded), although requiring a good initialization.
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Fig. 1. We propose a Semantic Text Segmentation Network (STSN) that apart from localizing text in slide images with high accuracy also
classifies text regions in different semantic categories such as title (magenta), bullets (yellow) or standard text lines (red). The STSN also
predicts text borders (green) and background (blue). The network is trained with both synthetic and real data (slide images).
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Other works have also proposed deep networks for text de-
tection via image segmentation [28, 24] given the recent success
of deep learning for semantic category segmentation [8, 14, 26]
This kind of methods commonly use pyramidal architectures to
provide more accurate segmentation results [18]. The network
output is then text blocks or regions represented using pixel-
wise maps. This results in a more natural way of localizing text
than using bounding boxes. Nevertheless, most of the works
only used two class memberships (text and background) since
they mainly rely on an object localization paradigm. A notable
exception is [24], in which the network also included text bor-
ders as an extra class in order to split blocks of text into multi-
ple text lines, which is a common problem in text segmentation.
This yielded better text detection scores.

1.2. Motivations & Contributions

Contrary to the above approaches, our first main contribution
is a new method to perform semantic text segmentation. To this
end, we propose a multi-scale, fully-convolutional, and sequen-
tial network that localizes text and predicts its semantic mem-
bership. In particular, the proposed network, called Semantic
Text Segmentation Network (STSN), is focused on the prob-
lem of both detecting and classifying text on slide images. This
also includes predicting text borders and background for bet-
ter line identification, as shown in Fig. 1. STSN uses a feature
pyramid network as feature extractor [12, 18], but we introduce
a multi-scale prediction cascade that progressively refines and
disambiguate the semantic text predictions in a bottom-up fash-
ion, which results in more accurate text prediction maps. The
STSN obtains an accuracy of 95% for detecting any type of text
in slides, and accuracies of 94% and 85% for detecting particu-
larly titles and bullets. STSN also shows competitive results in
ICDAR dataset where it reaches an accuracy of 91.1%.

Note that achieving such classification is not trivial since, for
instance, the main difference between bullets and standard text
lines is a bullet symbol preceding text. Also, lines which do not
start with a bullet symbol still need to be classified as a bullet
line when it is the continuation of a text line preceded by a bullet
symbol. In other words, the information about the presence of
the bullet symbol needs to be propagated to other multiple lines.
Another challenge of working with slides is the detection of text
at very different sizes. Titles, for example, tend to have large
sizes but text in footnotes or slide numbers is usually small.
In addition, slides can also contain difficult backgrounds and
text with compression artifacts (e.g. JPEG compression). This

Fig. 2. Examples of slide images used for training STSN. 1st-2nd
rows: Real slides acquired from several conferences. 3rd-4th rows:
Artificial slide images containing titles, bullets and multi-line text
blocks. Bottom row: Slide annotations (ground-truth masks).

is usual in text associated with figures, diagrams and plots that
have been imported and inserted into the slides.

Our second contribution is the use of synthetic and real slides
for training the network (see Fig. 1 and Fig. 2). Synthetic slide
images are created artificially to reduce the cost of human anno-
tation (i.e. text annotations are computed automatically) and to
train the network with abundant data. Real slides are used for
fine tuning the text segmentation network. These slides were
acquired from several conferences and talks and manually an-
notated. Other recent works have also proposed synthetic text
datasets [7, 24]. However, they are mainly focused on localiz-
ing single words [7] or computing artificial slides, but without
semantic annotation [24].

The rest of this article is organized as follows: section 2 intro-
duces the slide datasets, while section 3 describes the proposed
STSN network and its main constituents. It is evaluated and
compared in section 4. Conclusions are provided in section 5.

2. Slide Datasets
This section presents the datasets used to train the STSN.

Synthetic slides: Computing synthetic data enlarges the size of
the training data and has shown to improve deep network learn-
ing [7, 15]. We followed this approach and designed a system-
atic framework to create artificial slides containing multi-line
titles, bullets and text with different layouts, see Figure 2.
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Fig. 3. General scheme of the Semantic Text Segmentation Network (STSN) whose blocks refer to small stacks of convolutional layers.
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Table 1. Configuration of STSN for every block (B) in the network (see Figure 3). Each cell provides the number of convolutional fil-
ters (NF), filter size (FS) and layer operation. Note that blocks Bi, Ti and Pi for i ∈ {4, 5, 6} have the same configurations.

B Operation NF FS B Operation NF FS B Operation NF FS
L1 Conv+ReLU 16 7x7 R1 Conv+ReLU 8 13x13 P1 Conv+ReLU 8 7x7

Conv+ReLU 16 1x1 Conv+ReLU 8 1x1 Conv+Softmax 5 13x13
L2 Conv+ReLU 32 5x5 R2 Conv+ReLU 12 9x9 P2 Conv+ReLU 8 5x5

Conv+ReLU 32 1x1 Conv+ReLU 12 1x1 Conv+Softmax 5 9x9
L3 Conv+ReLU 48 3x3 R3 Conv+ReLU 16 5x5 P3 Conv+ReLU 12 3x3

Conv+ReLU 48 1x1 Conv+ReLU 16 1x1 Conv+Softmax 5 5x5
L4 Conv+ReLU 64 3x3 R4 Conv+ReLU 64 3x3 P4 Conv+ReLU 16 3x3
L5 Conv+ReLU 64 1x1 R5 Conv+ReLU 128 1x3 P5 Conv+Softmax 5 3x3
L6 R6 Conv+ReLU 64 1x1 P6
S1 Conv+ReLU 64 1x1 S2 Conv+ReLU 64 1x1

Artificial slides were computed from 2115 empty presenta-
tion templates downloaded from Internet. Vertical and horizon-
tal mirror images were computed to obtain 8460 templates. Al-
though a large portion of these slides have homogeneous back-
ground, many other slides have difficult patterns and drawings.

To obtain realistic and challenging images, we generated
slides with large variability in position and text appearance.
While title areas were drawn from uniform distributions to ap-
pear mainly in the top and center areas of slides, bullet lines and
standard text were placed randomly, but avoiding overlap with
other text areas. With regard to text shape and appearance, ran-
dom text size, font and color were used per slide component.
Each text line contains multiple and random words and num-
bers. In detail, we used 5714 text fonts and 32 different sym-
bols for bullet lines. In addition, random crops from plots and
landscapes images were added to resemble slide figures. Ran-
dom image blurring and JPEG compression were also applied
to get more realistic effects.

An annotation file was attached to every slide image. It con-
tains the location of all text lines and their semantic labels: title,
bullet or standard text. From these annotations, the training sys-
tem can compute online the annotation masks (i.e. targets) seen
in Figure 2 (bottom row). For the computation of title, bul-
let and text masks, we used bounding boxes around text lines.
These boxes were tighten to get rid of the borders by reducing
the text line height and width by 16% of the text height [24].
The annotation mask is then an array of size M × N × 5 where
M and N denote the size of the image and 5 is the number of
feature maps: text, title, bullet, background and text border.

Ultimately, we generated 100k slide images for training and
1k images for test and validation, respectively. All slides were

created with a size of 768 × 480 pixels. About 10% of slides
were empty slides (i.e. with only background but no text), act-
ing as negative samples.
Real slides: To adapt the STSN trained with synthetic data to
real images, we collected a dataset of slides from medical pre-
sentations. In detail, 1053 images of 1920 × 1200 pixels were
gathered where 414 images are used for training and 639 for
evaluation. These slides were resized to 768×480 during train-
ing and testing. The corresponding text boxes and semantics
were manually annotated. This database is challenging given
that many slides have highly textured and diverse backgrounds
as well as figures, tables and logos. In addition, the text appears
in various sizes as well as image artifacts as a consequence of
image compression. Refer to the Fig. 2 to see some examples.

3. Semantic Text Segmentation Network (STSN)

This section describes the architecture and the computational
aspects of the STSN. Figure 3 shows a general view of the pro-
posed architecture and Table 1 presents more detailed informa-
tion about the network configuration.
Architecture overview: We propose a novel network that com-
prises two modules for semantic text segmentation, as shown in
Figure 3 (b, c). The first module uses a modified U-shape net-
work (a.k.a. UNet) to extract text features at several resolutions
and get a precise segmentation. UNets have shown remark-
able results for object and text segmentation since the network
combines features from multiple scales and performs the final
segmentation at the image-level resolution [14, 18]. This fea-
ture module is also similar to feature pyramid networks used to
improve object detection at multiple scales [12].
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Fig. 4. Output of the network prediction blocks for a synthetic slide. All images are resized to 768 × 480 for better visualization.
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The second module is a series of blocks that sequentially re-
fines semantic text predictions using the features extracted by
the first module and the predictions computed at lower resolu-
tions, see Fig. 3 (c). This module is inspired from the Con-
volutional Pose Machines (CPM) network used for articulated
human pose estimation [1, 15], but applied to multiple scales in
order to refine predictions in a bottom-up fashion.

Actually, both network modules are designed to propagate
features upwards (from low to high resolutions). This charac-
teristic is suited for semantic analysis since the classification of
text, title and bullets is done mainly at lower resolutions where
the size of the convolutional filters covers large portions of the
slide image. At these resolutions, filters encode spatial and fea-
ture relationships allowing to distinguish between title, text and
bullet areas. This is shown in the prediction map at level 6 (see
P6 in Figure 3) where the network detects semantic text re-
gions with good accuracy. Subsequently, these predictions are
enhanced in upper levels to detect finer details such as lines and
text borders (breaking large text regions into text lines). This
sequential approach improves the accuracy of the semantic text
segmentation task, observe the predictions maps P5 and P1.

Next, we describe both network modules in further detail.
Feature module: The feature extraction module is based on an
U-shape network [18] with 6 levels of depth, see Fig. 3 (b). It
computes text features at multiple resolutions which is appro-
priate because text can appear in images at varying sizes.

In our implementation, the feature module has two types of
blocks (stacks of convolutional layers): left feature blocks for
top-down connections, and right feature blocks for bottom-up
ones. The first type is focused on computing text features from
images which in conjunction to max-pooling operations allows
to obtain features at several resolutions. Each block has only
two convolutional layers and a small number of filters (and fea-
ture maps) due to the simpler task, compared to more generic
object recognition methods, and to keep efficiency.

The second type of blocks was designed to compute more
discriminative text features. At lower resolutions (see R4, R5
and R6 in Table 1), they have three convolutional layers and a
larger number of rectangular filters to capture horizontal pat-
terns such as text lines and words [9, 11]. Note that the input
to these blocks is the concatenation of features from left feature
blocks, via skip blocks containing 1 × 1 convolutional layers
(S 1 and S 2), and text features coming from lower resolutions.
This approach allows combining and processing efficiently fea-
tures from different scales and propagates features from coarser
to finer resolutions for refinement (R3, R2 and R1). This con-
trasts to the method presented in [24] in which four different
UNets are applied in parallel to cope with text size variations,
therefore increasing the computational cost and the number of
network parameters since the stacks of convolutional layers are
replicated several times.

Prediction module: It consists of a set of prediction blocks (P)
that progressively refines the prediction of semantic text classes
as well as background and text borders, see Fig. 3 (c). As stated
earlier, this idea comes from the CPM network [1, 15] which
gradually estimates the location of human body joints through
a series of prediction stages, but it differs in two main aspects.
The first one is that the refinement of semantic text predictions
is done at different feature resolution levels, instead of a single
and low resolution in the CPM approach. With this novel ap-
proach, the network performs image segmentation from coarser
to finer resolution levels. At low levels the network is focused
on general aspects of the slide such as recognizing chunks of
text and discerning between title, standard text, bullets and
background. This is possible because the filters cover large
areas of the input image which allows to capture geometrical
and appearance relationships between semantic classes. Later,
in next prediction blocks, these initial hypotheses are refined
and enhanced to detect finer details such as lines and edges and
produce more accurate segmentation results. This is seen in
Figure 4 displaying the output of the prediction blocks.

The second difference lies in using different features at mul-
tiple resolutions as inputs to the prediction blocks. This allows
to integrate features from different scales and to produce more
precise prediction maps. By contrast, the CPM network shares
the same features computed at low resolution [1].

Finally, Table 1 shows that each prediction block has two
convolutional layers, the second one using Softmax.
General settings: All convolutional layers (41 layers), ex-
cept the last prediction layers, comprise batch normaliza-
tion and Rectified Linear Units (ReLU), showing good ex-
perimental results and faster training. Note that STSN is a
fully-convolutional network involving only convolutional lay-
ers. This reduces the number of parameters and makes the net-
work independent of the size of the input image [7, 11, 13, 14].
Training: The sequential and incremental nature of the STSN
across scales allows to introduce partial losses to add interme-
diate supervision during training. This idea has shown good
results in other works, especially for dealing with the problem
of vanishing gradients in deep networks [20]. The use of partial
losses also enforces the STSN to learn text features at different
scales, allowing the refinement of semantic text estimations.

Thus, the training loss of STSN is calculated as a linear com-
bination of partial losses, L = 1

6
∑6

i=1 Li, where Li is the loss
for the prediction block i which in turn is defined as the Mean
Squared Error (MSE) between the prediction map provided by
this block (Pi) and the ground truth (annotation mask) in the
training dataset, observe Figure 2 (bottom row).

The STSN is trained for 50k iterations using the synthetic
dataset and for 2k iterations to fine tune the network with real
slides. The size of mini-batches is 8 samples. To optimize the
network, we use Adam optimizer with default settings.
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Fig. 5. Different network architectures for text detection: VGG-like network [19], UNet [18], multi-scale UNet [24].
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Table 2. Evaluation of the networks on the synthetic and real slide datasets, in terms of the recall (R), precision (P) and harmonic mean (H)
rates. “Real slide dataset [Fine Tuning]” denotes the rates on the real data after the networks having been fine tuned with real slides.

VGG-like UNet Multi-UNet [24] STSN [P1] STSN
R P H R P H R P H R P H R P H

Syntethic Slide Dataset
Text 0.59 0.63 0.61 0.81 0.75 0.78 0.84 0.83 0.84 0.88 0.85 0.86 0.88 0.92 0.90
Title 0.61 0.43 0.51 0.75 0.53 0.62 0.85 0.76 0.81 0.90 0.82 0.86 0.94 0.91 0.93
Bullet 0.53 0.44 0.48 0.30 0.86 0.44 0.59 0.94 0.72 0.79 0.90 0.84 0.83 0.90 0.87

Real Slide Dataset
Text 0.54 0.63 0.58 0.66 0.64 0.65 0.60 0.63 0.61 0.59 0.59 0.59 0.58 0.63 0.61
Title 0.54 0.59 0.56 0.63 0.73 0.68 0.87 0.73 0.80 0.77 0.81 0.79 0.79 0.85 0.82
Bullet 0.50 0.26 0.34 0.18 0.30 0.23 0.40 0.53 0.45 0.54 0.50 0.52 0.67 0.52 0.58

Real Slide Dataset [Fine Tuning]
Text 0.74 0.85 0.79 0.92 0.94 0.93 0.92 0.95 0.93 0.91 0.96 0.93 0.94 0.96 0.95
Title 0.82 0.77 0.80 0.82 0.86 0.84 0.93 0.93 0.93 0.93 0.93 0.93 0.95 0.92 0.94
Bullet 0.66 0.47 0.55 0.49 0.68 0.57 0.84 0.75 0.79 0.90 0.73 0.81 0.89 0.81 0.85

Post-processing: When the network is tested on an input im-
age, a set of post-processing steps are applied to the network
output so as to enhance the quality of the text and to extract the
bounding boxes (Figure 1). The first one consists of threshold-
ing the prediction maps associated to title, bullet, and standard
text to generate text areas (lines) and to discard poor predic-
tions. A threshold of 0.2 was set experimentally. Then, small
text regions are removed either if the retrieved text line height
is below 1.5% of the image height or the area of the text region
is lower than 0.1% of the image size. These steps are soft rules
devoted to remove spurious unlikely text areas.

Sometimes, text line predictions present ambiguity about the
class membership. This occurs mainly for hard cases where
STSN predicts bullet and standard text for the same line, given
the similarity between these text categories. In those cases, the
text line is assigned to the class with larger area in the text line.

Ultimately, bounding boxes are computed for the predicted
title, bullet, and standard text lines. These boxes are enlarged
to consider the reduction of borders done during training.

4. Experiments

The presented method is validated in two different scenarios.
The first scenario is focused on semantic text localization in
slides (i.e. our main topic), whereas the second one is for text
localization in standard benchmarks.

4.1. Semantic Text Localization

Evaluation protocol: Results are evaluated using the DetEval
evaluation protocol [23] that measures the overlapping between
the predicted text boxes and ground-truth ones. DetEval returns
the recall, the precision, and the harmonic mean rates.
Tested models: Our STSN is compared against other conven-
tional architectures to validate the proposed network combining
the multi-scale feature and prediction modules. Figure 5 shows

the evaluated architectures, which all use the same block config-
urations as the STSN to be consistent with features and to focus
on evaluating the network structure. All networks are learned
and evaluated with the same training and testing settings.

The first network is a VGG-like network [19] consisting of
convolutional and max-pooling layers. In this network, the text
prediction is done at low resolution (i.e. 96 × 60). The second
network is an UNet network [18] including further convolu-
tional layers and upsampling operations. The final prediction is
done at the image resolution (i.e. 768×480). The third network
is a multi-scale UNet having three UNets working in parallel to
detect text at varying sizes. The final prediction is computed by
concatenating and processing the predictions from all UNets.
This network is similar to the network introduced in [24]. The
fourth network is the proposed STSN without using the predic-
tion module. That is, the network only predicts text at level 1
(P1) whereas blocks P2 to P6 are removed.
Results: Table 2 shows the detection rates for the synthetic and
real datasets. Here, instead of reporting the rates for the stan-
dard text category, we computed the detection rates for all type
of text in the slides (i.e. without semantic information). This
was done combining the detections for the three disjoint text se-
mantic categories. We see that in all cases STSN obtains better
scores than the other network architectures, especially for titles
and bullets. The exception is the harmonic mean score for the
text category without fine tuning. Our method is exceeded by
the UNet architectures. Yet, STSN obtains a larger rate for bul-
lets and outperform all networks after fine tuning. This shows
that the progressive refinement of features contributes to distin-
guish the different text categories, and the importance of fine
tuning with real data to close the gap between data domains.

VGG-like network yields low detection rates since the text
prediction is done at low resolution (similar case for the
CPM [22]), whereas the UNet provides better scores because



6

Table 3. Detection rates of the STSN prediction blocks (P6 to P2, see Figure 3).
Prediction 6 Prediction 5 Prediction 4 Prediction 3 Prediction 2

R P H R P H R P H R P H R P H
Text 0.25 0.35 0.29 0.56 0.72 0.63 0.77 0.88 0.82 0.85 0.89 0.87 0.92 0.95 0.94
Title 0.38 0.49 0.43 0.84 0.88 0.86 0.92 0.91 0.92 0.94 0.92 0.93 0.95 0.93 0.94
Bullet 0.31 0.19 0.24 0.63 0.37 0.47 0.83 0.50 0.63 0.86 0.57 0.68 0.90 0.74 0.81

Fig. 6. Output of STSN on real and synthetic slides indicated via
bounding boxes on slides and semantic prediction maps.

it uses a larger resolution for semantic text prediction. Simi-
larly, the Multi-UNet [24] shows very remarkable results, but
at the expense of a more complex and inefficient method since
it computes three UNets in parallel, replicating blocks and fea-
tures. Conversely, STSN uses a single UNet to compute multi-
ple prediction maps. As a consequence, the network needs less
parameters (see Table 1). We also see that the use of the predic-
tion module is beneficial for the prediction of all text categories.

Fig. 6 shows the output of STSN for real and synthetic slides
and failure cases (two bottom rows). Note that STSN is able to
simultaneously localize text and perform semantic text segmen-
tation with high accuracy. Particularly noteworthy is the detec-
tion of text in complex backgrounds and with large variations in
the size of text. The failure cases correspond to an unusual title
position in the slide (third row) that STSN identifies as regular
text, and the wrong detection of multiple vertical edges as text
(fourth row). Note that the STSN classifies this erroneous text
as title given its size and proximity to the true title.
Fine tuning: Table 2 also provides the rates computed on the
real slide dataset after having fine tuned the networks. We ob-
serve again that the STSN outperforms other networks and that
fine tuning improves significantly the detection scores. This
shows that while synthetic data are helpful for training the net-
work, it is still necessary to perform fine tuning with real data

Table 4. Text localization scores on ICDAR 2011 and 2013 dataset.
ICDAR 2011 ICDAR 2013

Scores R P H R P H
Chen et al. [4] 0.89 0.92 0.90 – – –
Cho et al. [5] 0.91 0.95 0.93 0.79 0.86 0.82
Jadeberg et al. [10] 0.68 0.88 0.77 0.68 0.88 0.77
Gupta et al. [7] 0.75 0.91 0.82 0.75 0.92 0.83
Liao et al. [11] 0.82 0.89 0.86 0.83 0.89 0.86
Tian et al. [21] – – – 0.76 0.85 0.80
Wu et al. [24] 0.95 0.91 0.93 0.78 0.91 0.84
Yin et al. [25] 0.87 0.94 0.90 – – –
Zhang et al. [27] 0.76 0.84 0.80 0.74 0.88 0.80
STSN 0.88 0.94 0.91 0.78 0.86 0.81

to adapt the network to the real domain.
Prediction refinement: Table 3 shows the detection scores on
real slides for the different predictions maps provided by STSN.
Prediction rates for level 1 (P1) are given in Table 2. The de-
tection scores are improved as the resolution increases.

4.2. Text Localization

Our main goal is to detect text in presentation slides (i.e. not
text in the wild) and to extract the semantic of the text. How-
ever, to assess the detection performance of our STSN, we eval-
uated it on the standard ICDAR datasets which consist of digital
images (ICDAR 2011) and text in the wild (ICDAR 2013).
Training: Since ICDAR does not have semantic text annota-
tions, STSN is trained for text detection only. Specifically, it is
trained for 50k iterations using the synthetic slide dataset, and
for 10k iterations to fine tune the network using the correspond-
ing ICDAR training data and artificial slides. Data augmen-
tation is done to enlarge the training data with random image
crops and rotations between ±15 degrees.
Results: Table 4 shows the results of our STSN and a compar-
ison with other works in the state of the art. On ICDAR 2011
STSN reached a hmean of 0.91 (the best being 0.93), and of
0.81 on ICDAR 2013 (the best being 0.86). The main failure
cases of our system are single digits or letters as well as ro-
tated text and low contrasted text, which are all very seldom
in presentation slides. This explains why STSN does not reach
state-of-the-art performances, but still remains competitive.

Figure 7 shows some example images with the output of the
STSN on the ICDAR dataset. We see that STSN is able to de-
tect text in born-digital images as well as text in the wild under
different and challenging imaging conditions.

5. Conclusion
We presented a Semantic Text Segmentation Network

(STSN) to simultaneously detect text and to classify the detec-
tions in semantic categories. We have shown that our novel ar-
chitecture which includes our proposed multi-scale prediction
cascade is able to sequentially refine the semantic text predic-
tions, thus achieving better performance for difficult semantic
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Fig. 7. Illustration of STSN output on ICDAR 2011 (top rows) and ICDAR 2013 (bottom rows).

classes like bullets; fine tuning on a target dataset was also
achieving better performance. We have shown that although the
STSN was conceived for our purpose (presentation slides), it is
competitive with other works on the standard ICDAR dataset
for detecting text in scene and born-digital images. Future
work includes the study of novel architectures such as hour-
glass blocks to refine even more the semantic text predictions,
the use of temporal information to exploit the layout consis-
tency between slides from the same talk, and the prediction of
other semantic categories.
Acknowledgments: The work was supported by Innosuisse,
the Swiss innovation agency, through the VIEW-2 (Visibility
Improvement for Events Webcasting) project.
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