
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Implementation of machine learning techniques for
the quasi real-time blind and electric lighting
optimization in a controlled experimental facility
To cite this article: Chantal Basurto et al 2021 J. Phys.: Conf. Ser. 2042 012112

 

View the article online for updates and enhancements.

You may also like
The effect of the daylight zone on lighting
energy savings
K. Mantzourani, L.T. Doulos, A.
Kontadakis et al.

-

A Commercial Building Lighting Demand-
Side Management through Passive Solar
Design
O K Overen, E L Meyer and G Makaka

-

Daylight Design for Urban Residential
Planning in Poland in Regulations and in A
Practice. A Comparison Study of Daylight
Conditions Observed in the Four
Neighbouring Residential Areas
Natalia Sokol and Justyna Martyniuk-
Peczek

-

This content was downloaded from IP address 153.109.180.171 on 25/11/2021 at 16:42

https://doi.org/10.1088/1742-6596/2042/1/012112
https://iopscience.iop.org/article/10.1088/1755-1315/410/1/012099
https://iopscience.iop.org/article/10.1088/1755-1315/410/1/012099
https://iopscience.iop.org/article/10.1088/1755-1315/290/1/012148
https://iopscience.iop.org/article/10.1088/1755-1315/290/1/012148
https://iopscience.iop.org/article/10.1088/1755-1315/290/1/012148
https://iopscience.iop.org/article/10.1088/1757-899X/245/8/082010
https://iopscience.iop.org/article/10.1088/1757-899X/245/8/082010
https://iopscience.iop.org/article/10.1088/1757-899X/245/8/082010
https://iopscience.iop.org/article/10.1088/1757-899X/245/8/082010
https://iopscience.iop.org/article/10.1088/1757-899X/245/8/082010
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv_4Etu5R8mHI3wTgC_tP4TdWzPEY9nuy0KQMwPMI2zpi7iqrV1OMEGJOzlHsM6TkcAfXa79LqodumfpbIEyzpltt3aTD7-aGUoSQwu_u8YZ56f9DiCslyEamiCUt8qFZD3gZwGb-b5Ry2HoGcz5pDtJ28DW5kIrIAw5Pb25OuV9-ERrWlfwXdNOsY75ZGEIpVtcv-DTgZrIsV4wzAAAxNAUsI3F0rvi2jN43vriSj76_uclOyo9G0FK55AyNUK3Cgw63aha-WNb5-PIPylFzIgyOeO2cFIj0o&sig=Cg0ArKJSzDRaaoP_1D81&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/241/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3DDLAds%26utm_campaign%3D241AbstractSubmit


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

CISBAT 2021
Journal of Physics: Conference Series 2042 (2021) 012112

IOP Publishing
doi:10.1088/1742-6596/2042/1/012112

1

 
 
 
Implementation of machine learning techniques for the quasi 
real-time blind and electric lighting optimization in a controlled 
experimental facility 
 

Chantal Basurto1, Roberto Boghetti1, Moreno Colombo2, Michael Papinutto3, 

Julien Nembrini2 and Jérôme H Kämpf1 

 

1 Idiap Research Institute, 1920 Martigny, Switzerland; 2 Human-IST Institute, Université 

de Fribourg, Bd Pérolles 90, 1700 Fribourg, Switzerland, 3 Eye and Brain Mapping Lab 

(iBMLab), Université de Fribourg, Rue P.-A.-de-Faucigny, 1700 Fribourg, Switzerland. 
 

Abstract Machine Learning techniques have been recently investigated as an alternative to the use of physical 

simulations, aiming to improve the response time of daylight and electric lighting performance-predictions. In 

this study, daylight and electric lighting predictor models are derived from daylighting RADIANCE 

simulations, aiming to provide visual comfort to office room occupants, with a reduced use of electric lighting. 
The aim is to integrate an intelligent control scheme, that, implemented on a small embedded 32-bit computer 

(Raspberry Pi), interfaces a KNX system for a quasi-real-time optimization of the building parameters. The 

present research constitutes a step towards the broader goal of achieving a unified approach, in which the 

daylight and electric lighting predictor models would be integrated in a Model Predictive Control. A verification 

of the ML performance is carried-out by comparing the model predictions to data obtained in monitoring 

sessions in autumn, winter and spring 2020-2021, resulting in an average MAPE of 19.3%.  
 

Email: chantal.basurto@idiap.ch 

 
1. Introduction 

The use of shading and electric lighting automation systems is considered as an energy efficient strategy to 

optimize the building performance, both for energy savings and an improved occupant’s comfort. An 

adequate regulation of the daylit interior environment implicates an in-sync adjustment of the blinds 

position according to outdoor sky conditions. The latter should be ideally performed in regards to 

occupants’ comfort and energy performance, using Key Performance Indicators (KPIs) such as the work-

plane illuminance (WPI) as well as the daylight glare probability (DGP) [1]. However, the efficiency of an 

automated control system not only depends on implementing an integrated approach by considering energy 

and occupants comfort aspects [2], but also in terms of the technical aspects integration. As for instance, 

the use of HDR imaging techniques  has been recently investigated for blinds control [3], [4]. However, its 

implementation implies the use of invasive devices where privacy and space issues are involved. Such 

research, preceded the development of a more sophisticated concealed device, featuring a dual function as 

sky luminance sensor as well as blinds controller [5]. The optimal shading position for daylight provision 

and glare risk, is determined by performing a lighting simulation according to outdoor sky conditions, its 

accurate estimation of the indoor WPI, indicates the device’s reliability for daylight control [6]. However, 

due to the time required to perform the lighting computation, the process involved on the blind’s adjustment 

can take up to 10 minutes. The latter, represents a disadvantage for an adequate synchronization of the 

blinds in regards to outdoor conditions, especially on situations of dynamic sky conditions variations. On 

the other hand, due to their characteristic noise, a constant adjustment of automatic blind’s might cause 
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distractions or disturb the occupants. In this study, machine learning techniques (ML) based on daylighting 

RADIANCE simulations [7], are employed as surrogate models to assess the impact of blind positions on 

WPI and glare on the occupant’s eye. A control strategy is implemented in an experimental office setting 

[8], using a system prototype based on a small embedded 32-bit computer (Raspberry Pi), which interfaces 

a KNX system to control electric light dimming and blinds position according to current outdoor sky 

conditions. The strategy presented aims to achieve a quasi-real time optimization of the building 

parameters, in a time-interval that can be tolerable for the occupants. Hence, a decision could be taken 

forthwith in the case of glare protection, or every five minutes in the case of daylight sufficiency. This paper 

further presents a verification of the ML model to predict one specific KPI in a real office setting: the WPI. 

2.Methods 
2.1 Room Description 
The case study is located in the city of Fribourg, Switzerland (Lat. 46.8° N, Long. 7.16° E, 610 m above 

sea level). It consists of two experimental modules of identical characteristics, with dimensions of 6.23 m 

long by 3.23 m front, and 3.11 m height each. Both modules count with south and north facing windows, 

and a proportion window to wall ratio (WWR) of 46% (Figure 1 and 2). The 3D model of the modules in 

Sketchup format was employed to perform the simulations in which this study is based. The properties of 

interior materials were measured on-site using special equipment, and were later assigned to the virtual 

model aiming to achieve the most accurate representation of the existing situation. A Chromameter Minolta 

CR-2020 was employed to measure the reflectance properties of walls, floor and ceiling, while a glossmeter 

Minolta GM-060 (characterized at 60° incident angle), was used to measure the specularity of interior 

materials. The measured surfaces reflectance: floor 16%, white ceiling 80%, white wall at module-R1 

(62%), white and light-beige walls at module-R2 (58% and 51% respectively). The glazing transmittance 

(75%), was determined using a CRI illuminance meter Minolta CL-70F. In regards to the electric lighting, 

two box-cases containing three ceiling recessed linear LED lamps of 24 W are installed at both sides of 

each module. The windows are equipped with two distinct horizontal blinds, which properties were also 

measured using the equipment previously described (Figure 3). Both windows of module-R1 and south of 

R2, are equipped with curved white venetian blinds of 80 mm width (S-80), and 69% reflectance. The north 

window of module-R2, is equipped with metallic blinds of a sinuous profile design, 90 mm width and 23% 

reflectance (L-90). Their geometry was also virtually reproduced in order to generate their BSDF data using 

the RADIANCE program genBSDF [9]. 

  
Figure 1. Exterior view of the CELLS modules, 

perspective from the south facade. 

Figure 2. Interior views of CELLS modules R1 (left) and R2 

(right), from the back of the room towards the south window.  

Due to the characteristic dual window opening of the modules, the evaluation included the combination of 

all possible blind positions at both north and south facades. In order to do that, twelve positions of each 

blind’s variant were created from an open (zero tilt) to a fully closed position (80°). In addition, four 

reference cases were considered: 1) both windows with blinds fully retracted, 2) both windows with blinds 

deployed (0° tilt, horizontal position), plus two cases where the north and south blinds are alternatively set 

in an open or closed position (See Section 2.5).  
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2.2 On-site monitoring and virtual model calibration  
The correspondence between the measured work plane illuminance (WPI), and that obtained by the way of 

simulations was compared in order to assess the representability of the existing situation by the virtual 

model (Section 3.1). In order to do that, WPI measurements were obtained using two Hagner detectors 

(SD2, V-Lambda spectral response), which were placed at the center of the room at 0.80 m height (See 

Figure 4). Several sets of data were obtained in monitoring sessions carried out in Autumn, Winter and 

Spring between 2020 and 2021, in both modules.  The monitoring process was executed automatically using 

a KNX system, for which all the different blind combinations were measured in routines that lasted about 

10 minutes. In each session, north and south blinds positions were combined, one was set to a fix position 

while the other was progressively adjusted, from retracted (fully open), to deployed (from 0° tilt to fully 

closed 80°); while the WPI was simultaneously measured and recorded. The global and diffuse horizontal 

irradiance (W/m2), were recorded using a Delta-T, SPN1 pyranometer installed on the top of the facilities, 

which was later used to reproduce the existing luminous situation in the simulations.  

   

 

Figure 3. View of exterior blinds L-90 installed on 

module-R2, north window (left), and S-80 on both south 

windows as well as on the north window in R1 (right).  

Figure 4. Top view of the CELLS floor plan, showing 

the schematic on-site monitoring layout, employed for 

the calibration and validation processes. 

2.3 Data acquisition: simulation methods and key performance indicators (KPIs) 
A database was first produced for the training of the predictor model, for which two KPI’s were considered 

in order to assess the daylight performance inside the modules. First, the WPI, was obtained as a base for 

the estimation of the electric lighting requirements, which would be compensated from the daylight 

provision using a minimum threshold of 300 lx. The predictor model is derived from year-round simulations 

obtained with the use of the RADIANCE matrix multiplication methods [10]. In order to do that, 

measurement points were placed at the height of a table desk (0.80 m), covering an area of 36 dm2 (0.6 by 

0.6 m), corresponding to the occupant’s working area. Then the estimation of the risk of glare was based 

on the daylight glare probability index (DGP), which indicates the probability that the room occupants 

would experience discomfort glare situations issued from daylight [1]. In order to do that, HDR 180° fisheye 

images were generated in a straight view direction from the sitting position of the occupant (Figure 4), 

while the glare prediction was obtained using the RADIANCE program evalglare. The main simulation 

parameters are: -ab 6, -ad 16384, -lw 1e-4; -pj 0.7, -dc 1, -dt 0, -st 1, -ss 0.  The definition of the sky model 

was generated according to the Reinhart sky subdivision in 5185 sky patches (MF:6). 

2.4 Machine Learning models for the daylighting performance prediction 

Following a previous study [7], where four diverse statistical and algorithmic approaches were tested in 

order to find the most suitable model for a similar case study, ‘gradient boosting machine’ was chosen as 

function approximator. As the XGBoost, implementation of gradient boosting used in the previous study 

resulted in an excessive RAM usage for a Raspberry Pi, a lighter implementation, namely LightGBM [11], 

was used instead. Two models – one for WPI and one for DGP - were created using the same workflow. 

The model’s inputs were equivalent to those used in the previous work: blind angle given in degrees, solar 

radiation data in W/m2, altitude, Sin and Cosine azimuth of the sun position; and Boolean values to indicate 

blinds deployment. The models were trained on 95% of the data, while the remaining 5% was held out as 

a test set. In order to find the best hyperparameters, an adapted version of stratified K-fold was used, where 
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the target values were grouped in 20 bins – a number chosen according to Sturge’s rule [12]. The list of 

hyperparameters is given as follows, with the values ordered as WPI and DGP for module-R1, and WPI 

and DGP for module-R2: maximum depth of {10, 12, -1 (no limit), 11}; number of leaves of {60, 90, 140, 

50}; learning rate of {0.09, 0.06, 0.06, 0.09}. In all the models, the minimum data in leaf was set to 20, and 

bagging and feature fractions to 1. With regards to module-R1 and R2, the WPI models had a mean absolute 

error (MAE) on the test set of 2.28 lx and 1.60 lx respectively, while the MAEs of the DGP models were 

0.00058 and 0.00067. In all considered cases, the R2 was 0.99. 
  
2.4.1 Electric Lighting performance prediction. A dimming system is employed in this study aiming to 

achieve a reduction of the electric lighting consumption in the modules. The dimming position was 

estimated as a compensation of the WPI provided by the daylight, using a minimum threshold of 300 lx. 

The estimation of the electric lighting was based on on-site illuminance measurements obtained in module-

R1 in dark outdoor conditions (illuminance with electric lights off � 0 lx), using three photometric sensors 

placed on a desk (Figure 4). Then the prediction of the electric lighting power for a certain dimming position 

was obtained using a simple polynomial regression based on the measured illuminance. The necessary 

electric light compensation of WPI to reach 300 lx is determined from the daylight predictor model. 
 
2.5 Implementation of an intelligent control system  
Aiming to provide an adequate interior visual environment with a reduced lighting energy consumption, an 

intelligent lighting control strategy is implemented in the office setting, which scheme is shown in Figure 

5. The daylight and electric lighting predictor models are used to optimize the room settings (blind position 

and electric lighting intensity), by a continuous estimation of the KPIs (WPI and DGP), based on monitored 

sky conditions. New specifications of the room settings are then provided, which are physically applied to 

the office environment through a KNX system. Such process is run on a small embedded 32-bit computer 

(Raspberry Pi 3B), in order to reduce the amount of energy required to optimize the room setup. The strategy 

of the optimization process consists on maintaining an adequate visual comfort with a reduced risk of glare 

for the occupants (<= 0.35 DGP, ‘imperceptible’)[1], while maximizing the daylight provision indoors. If 

the WPI resulting from such optimization is still lower than the established 300 lx threshold, the latter would 

be achieved by the compensation from electric lighting. The electric lighting predictor model is then 

employed to find the minimum intensity of electric lighting required to reach the illuminance threshold. 

The blinds position would be instantaneously adjusted, only when necessary to prevent the DGP from 

exceeding the 0.35 limit, otherwise a time interval of five minutes is considered between every adjustment. 

Such interval represents a balance choice for blinds operation in office environments, in order to achieve 

an efficient performance as well as to avoid the blinds constant movement which could cause distraction to 

the occupants. In the schema describing the control strategy (Figure 5), the denotation BN and BS refers to  
 

 

 
Figure 5. Intelligent control scheme for a quasi-real time optimization of building parameters to achieve visual 

comfort and a reduced use of electric lighting. 
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a deployed position of north and south blinds respectively. The ‘0’ value represents the minimum tilt angle 

of the slats (horizontal position, 0°), while a value of 100 indicates the maximum (fully closed, 

approximately 80° from horizontal position), a value of -1 indicates the blinds completely retracted (fully 

open). The m_dgp (BN, BS), indicates the implementation of the predictor model to compute the DGP 

based on the opening angle of north and south blinds (BN, BS), as well as on the sky conditions obtained 

from the SPN1 pyranometer. Then, m_ill (BN, BS, EL) computes the WPI based on the positioning of the 

blinds (BN and BS), as well as on the intensity of the ‘electric lighting’ (EL). Due to the unavailability of 

appropriate equipment to verify the glare KPI (a.k.a. the DGP), this paper focuses on the verification of ML 

predictions vs on-site measurements for WPI. DGP verification is considered as future work.  
 
 

3. Results and Discussion  
3.1 Virtual Model calibration: on-site monitoring vs RADIANCE simulations  
As described in Section 2.2, the representability of the existing situation by the virtual model was assessed 

by comparing monitored and simulated WPI. A resulting R2 of 0.96 was reported for both modules R1 and 

R2. Regarding the inaccuracy’s analysis, a MAE of 19 lx and MAPE of 24% was reported for module-R1, 

as well as a MAE of 64 lx and 23% MAPE for module-R2.  

 

3.2 Machine Learning model verification: on-site monitoring vs ML prediction  
In a second step, the monitored WPI obtained during the sessions described in Section 2.2 were compared 

to ML predictions generated for the exact date and blind conditions as the monitored ones. As a result, a 

MAE of 35 lx, and 44% MAPE was reported for module-R1; while for module-R2, 142 lx and 41% was 

reported for MAE and MAPE respectively.  
 

3.3 Machine Learning model verification: on-site monitoring vs ML prediction  
The performance of the LightGBM was assessed by comparing the WPI model estimations with monitored 

data obtained for this specific purpose in two new sessions in Spring 2021. In such case, a MAE of 36 lx 

and MAPE of 19.28% was reported for module-R1, while 97 lx and 19.4% respectively, were reported for 

module-R2. An illustration of the discrepancies between the WPI model predictions and the true values is 

shown in Figure 6. The entire data set is shown as a heatmap (Figure 6 left), showing the absolute percentage 

error as a function of blinds positions and time of day. Interestingly, regular patterns for cases with increased 

errors appear, from which four selected situations are highlighted in red.  In cases 1 and 4, which correspond 

to the relevant range of 300 lx for our application, an average underprediction of 54% by the ML model 

was observed, which would signify an overestimation of the electric lighting needs, resulting in less energy 

savings. In case 2, for a true value of 2730 lx the ML model overpredicts by 109%, while in case 3 for a  
 

 
Figure 6. ML predictions against true values for WPI in module-R2, displayed in a heatmap (left) and scatter plot 

(right). Four false predictions are highlighted in red and numbered to be identified in the map according to time 

and blind setting. The combinations of North and South blind positions are indicated as x-axis in the heatmap (left). 
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true value below 20 lx, it overpredicts by 75%. In both cases 2 and 3, the errors are not impacting the 

outcomes of our algorithm regarding both the visual comfort and the required illuminance on the workplane. 

A limited portion of the data set below 1500 lx is shown as a scatter plot (Figure 6 right), while the 

illuminance threshold representing the relevant range for our application (300 lx) is shown in a zoomed 

display. We notice that in both scatter plots, an underprediction of the ML model can be observed for close 

to 100% of the dataset analyzed in this study. The overpredictions on the relevant range, correspond to an 

average of 10 lx, which is negligible. The latter would signify a small increase on energy consumption, yet, 

not having an impact on visual comfort, as the requirements of the norms for minimum WPI can always be 

guaranteed. 
 

4. Conclusions 
In this study, Machine Learning techniques were employed as surrogate models in order to achieve a quasi-

real time optimization of the building parameters. A control strategy was implemented in a small embedded 

32-bit computer that interfaces a KNX system to control blinds and electric lighting according to outdoor 

sky conditions. The ML model performance was assessed by comparing the WPI predictions with on-site 

measurements obtained in different monitoring sessions. The results report an average MAPE of 19.3%, 

indicating that the selected model LightGBM can estimate WPI to a satisfactory level of accuracy for our 

application. Therefore, daylight and electric lighting predictor models can be confidently employed in real 

environments, selecting the best blinds and dimming lighting settings to provide visual comfort with a 

reasonable reduction in the use of electric lighting while guaranteeing satisfaction of illuminance norms. 
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