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Temporal Envelope and Fine Structure Cues for
Dysarthric Speech Detection Using CNNs

Ina Kodrasi, Senior Member, IEEE

Abstract—Deep learning-based techniques for automatic
dysarthric speech detection have recently attracted interest in
the research community. State-of-the-art techniques typically
learn neurotypical and dysarthric discriminative representations
by processing time-frequency input representations such as the
magnitude spectrum of the short-time Fourier transform (STFT).
Although these techniques are expected to leverage perceptual
dysarthric cues, representations such as the magnitude spectrum
of the STFT do not necessarily convey perceptual aspects of
complex sounds. Inspired by the temporal processing mechanisms
of the human auditory system, in this paper we factor signals into
the product of a slowly varying envelope and a rapidly varying
fine structure. Separately exploiting the different perceptual cues
present in the envelope (i.e., phonetic information, stress, and
voicing) and fine structure (i.e., pitch, vowel quality, and breath-
iness), two discriminative representations are learned through a
convolutional neural network and used for automatic dysarthric
speech detection. Experimental results show that processing
both the envelope and fine structure representations yields a
considerably better dysarthric speech detection performance
than processing only the envelope, fine structure, or magnitude
spectrum of the STFT representation.

Index Terms—temporal envelope, temporal fine structure,
dysarthria, Parkinson’s disease, convolutional neural network

I. INTRODUCTION

Neurological disorders such as Parkinson’s disease (PD)
can cause dysarthria, resulting in disrupted speech production
across different dimensions. To detect and manage dysarthria,
clinicians exploit perceptual assessments typically involving
evaluation by ear of clinical-perceptual signs of dysarthric
speech, e.g., articulation deficiencies, vowel quality changes,
pitch variation, breathiness, or rhythm disruptions [1]. These
perceptual evaluations are subject to the expertise of the
clinician and can be time-consuming [2]. To complement
the perceptual assessment of clinicians, objective dysarthric
speech processing techniques have been proposed. Such tech-
niques can assist clinicians by automatically detecting the
presence of dysarthria [3]–[5] or by automatically evaluating
the patient’s intelligibility and dysarthria severity [6]–[9].

Typical automatic dysarthric speech detection techniques are
based on handcrafting acoustic features aiming to characterize
the clinical-perceptual signs of dysarthria [10]–[18]. Acoustic
features such as jitter, shimmer, or fundamental frequency
have been used to quantify impacted phonation [10]–[12].
Acoustic features such as Mel frequency cepstral coefficients
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and spectro-temporal sparsity measures have been used to
quantify articulation deficiencies [12]–[16]. Further, the enve-
lope modulation spectrum and durational measures of vocalic
and intervocalic segments have been used to quantify rhythm
disruptions [17]–[19]. Although successful results have been
reported using handcrafted features, such features may fail to
characterize more abstract but similarly important perceptual
dysarthric cues. Consequently, there has been a growing inter-
est in the research community to develop deep learning-based
automatic dysarthric speech detection techniques [20]–[26].

In [20], raw neurotypical and dysarthric speech segments
have been used to train a long short-term memory Siamese net-
works that learns discriminative representations. Raw speech
segments have also been used in [21], where convolutional
neural networks (CNNs) have been trained instead. Given the
limited amount of pathological training data, contributions ex-
ploiting raw speech segments are seldom. Instead, mainstream
techniques rely on processing the magnitude spectrum of time-
frequency representations such as the Mel spectogram [23]–
[25], the continuous wavelet transform [22], or the short-time
Fourier transform (STFT) [22], [23], [26]. Although these
techniques are expected to leverage perceptual dysarthric cues,
such representations do not necessarily convey perceptual
aspects of complex sounds [27].

Within the cochlea, speech signals are filtered into a series
of narrowband signals with a slowly varying envelope imposed
on a rapidly oscillating carrier, i.e., the temporal fine structure.
The relative importance of the temporal envelope and fine
structure to speech perception has been the subject of a
wide range of literature for decades, with particular focus on
the importance of these cues for speech intelligibility in the
presence of interference and the effects of hearing loss on
the processing of these cues in the auditory nerve [28]–[31].
Furthermore, processing the temporal envelope and/or fine
structure has been crucial for applications such as automatic
speech recognition or speech enhancement [32]–[34]. The
importance of fine structure cues for dysarthric speech as-
sessment has been recently demonstrated in [35], where these
cues have been extracted using a single frequency filtering
representation and exploited in an i-vector based dysarthria
detection system. Although the relative importance of the
temporal envelope and fine structure for speech perception is
still debated (cf., [36]), it is established that envelope signals
contain phonetic information as well as stress and voicing
information, whereas fine structure signals are important for
pitch perception and vowel quality [27], [28].

Inspired by these temporal processing mechanisms of the
human auditory system, in this paper we propose a deep
learning-based dysarthric speech detection technique which



VOL. XX, NO. XX, XXXX XX 2

separately processes the temporal envelope and fine structure
signals. Two discriminative representations separately learned
from the temporal envelope and fine structure using CNNs
are then exploited for automatic dysarthric speech detection.
To the best of our knowledge, the extraction of temporal fine
structure signals through an auditory-inspired filter bank and
their use in deep learning-based approaches has never been
investigated.

Experimental results in Section IV show that the temporal
envelope contains more cues for dysarthric speech detection
than the temporal fine structure. Further, it is shown that the
proposed approach which exploits cues from both signals to
learn two discriminative representations provides a consider-
able performance increase as opposed to learning a single dis-
criminative representation from inputs where dysarthric cues
are partially lost or intermingled (such as in the magnitude
spectrum of the STFT representation).

II. TEMPORAL ENVELOPE AND FINE STRUCTURE
DYSARTHRIC SPEECH DETECTION

In the following, the proposed temporal envelope and fine
structure (TEFS)-based dysarthric speech detection system
is described. Section II-A presents the computation of the
temporal envelope and fine structure representations, whereas
Section II-B presents the used CNN.

A. Temporal envelope and fine structure representations

We denote the speech signal of a neurotypical or dysarthric
speaker by s(n), with n being the time index. When a clinician
listens to this signal to conduct their perceptual assessment, the
cochlea processes the signal through frequency analysis and
temporal envelope and fine structure decomposition. To mimic
cochlear frequency analysis, we use a bank of K band-pass
filters to split the signal s(n) into K complementary frequency
bands of equal width along the human basiliar membrane [28].
Let sc(k, n) denote the subband signal at the output of the k-th
band-pass filter, with k = 1, . . . ,K. The subband temporal
envelope and fine structure signals are computed through the
analytic representation of sc(k, n), i.e.,

sa(k, n) = sc(k, n) + jH{sc(k, n)}, (1)

where H{sc(k, n)} denotes the Hilbert transform of sc(k, n).
Based on (1), the subband temporal envelope and fine structure
signals ec(k, n) and fc(k, n) can be computed as

ec(k, n) =
√
s2c(k, n) +H2{sc(k, n)}, (2)

fc(k, n) = cos
[
arctan

(
H{sc(k,n)}

sc(k,n)

)]
. (3)

These signals are then averaged within time frames of length
Lw to create the temporal envelope and fine structure repre-
sentations Ec(k, l) and Fc(k, l), l = 1, . . . , L, with L being
the total number of time frames in s(n). To further emphasize
these representations, log scaling is applied to obtain the final
envelope and fine structure representations E(k, l) and F (k, l).
Since Ec(k, l) > 0 (cf. (2)), the final envelope representation
is obtained as E(k, l) = log10 Ec(k, l). Since −1 ≤ Fc(k, l) ≤
1 (cf. (3)), the final fine structure representation is obtained
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Fig. 1. Different representations of the exemplary utterance globo: (a) time
domain signal s(n), (b) magnitude spectrum of the STFT using Lw = 6 ms,
(c) envelope E(k, l) using K = 32 and Lw = 6ms, and (d) fine structure
F (k, l) using K = 32 and Lw = 6ms.

as F (k, l) = sgn{Fc(k, l)} log10 |Fc(k, l)| such that zero-
crossings are preserved.

Fig. 1(a) depicts an exemplary utterance s(n) from the
database described in Section III-A. The temporal envelope
and fine structure representations E(k, l) and F (k, l) for this
utterance computed using K = 32 and Lw = 6 ms are
depicted in Figs. 1(c) and 1(d). These representations convey
different perceptual cues, with the envelope representation
conveying phonetic information as well as stress and voicing
information and the fine structure representation conveying
pitch and vowel quality information. For completeness, the
commonly used (logarithm of the) magnitude spectrum of the
STFT representation of s(n) using Lw = 6 ms is depicted in
Fig. 1(b), where these different perceptual cues are either par-
tially lost or intermingled.1 This perceptual information loss
occurs not only because the phase of the STFT is disregarded,
but also because the STFT uses uniform filter banks which do
not approximate well auditory frequency analysis.

B. Convolutional neural network

Once a signal representation is computed, the CNN depicted
in the block diagram in Fig. 2 can be trained for automatic
dysarthric speech detection as in [22], [26]. The CNN receives
as input (K × B)–dimensional neurotypical and dysarthric
speech representations (envelope, fine structure, STFT, or any
other time-frequency representation), with B being a user-
defined number of time frames. Through alternating between
convolutional and pooling layers, the CNN is expected to
extract robust discriminative representations of neurotypical
and dysarthric speech. These extracted representations are
then exploited in fully-connected layers (FCLs) trained to
decide whether the (K×B)–dimensional input representation
corresponds to a neurotypical or dysarthric speaker. While this

1It should be noted that the STFT representation results in a trade-off
between spectral and temporal resolution. Hence, although the same window
length Lw = 6 ms is used to compute the STFT, the number of STFT
subbands differs from the number of subbands used in the envelope and fine
structure representations.
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Fig. 2. Block diagram of the baseline CNN-based dysarthric speech detection
system from [22].
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Fig. 3. Block diagram of the proposed temporal envelope and fine structure-
based dysarthric speech detection system.

approach can be used on the individual envelope and fine
structure representations described in Section II-A, it is sub-
optimal since only the cues available in one representation
would be exploited (cf. Section IV).

To exploit cues available in both the temporal envelope and
fine structure representations, we propose to use the TEFS-
based dysarthric speech detection system depicted in Fig. 3.
As shown in this figure, we use individual convolutional
and pooling layers that operate on the envelope and fine
structure representations. Two discriminative representations
are extracted and jointly exploited in FCLs trained to detect
dysarthric speech. As shown in Section IV, such an approach
yields a considerably better performance than using the system
depicted in Fig. 2 on the individual envelope, fine structure,
or magnitude of the STFT representations.

III. MATERIAL AND METHOD

A. Database

We consider Spanish recordings of 50 PD patients and
50 neurotypical speakers from the PC-GITA database [37].
The database is well balanced in terms of age and gender
and the recordings are captured in a sound proof booth at a
sampling frequency of 44.1 kHz. For the results presented
in the following, we use recordings of 24 different words
and of a phonetically balanced text downsampled to 16 kHz.
The average length of the available speech material for each
speaker is 32.1 s.

B. Proposed TEFS-based network

The proposed TEFS-based dysarthric speech detection sys-
tem depicted in Fig. 3 operates on segments of envelope and
fine structure representations. For the results presented in this
paper, these segments are computed as follows.

TABLE I
ARCHITECTURE OF THE PROPOSED TEFS-BASED DYSARTHRIC SPEECH

DETECTION TECHNIQUE. BN REFERS TO BATCH NORMALIZATION.

Layers Envelope or fine structure branch

Input (K ×B)-dimensional envelope
Conv2D+ReLU+BN in=1, out=64, kernel=(2, 2), stride=(1, 1)
MaxPool2D in=64, out=64, kernel=(2, 2), stride=(2, 2)
Conv2D+ReLU+BN in=64, out=64, kernel=(3, 3), stride=(1, 1)
MaxPool2D in=64, out=64, kernel=(2, 2), stride=(2, 2)
Dropout probability = 0.5
FCL+ReLU in=8448, out=128
FCL+Softmax in=128, out=2

We design band-pass filters spanning the range from 80 Hz
to 7200 Hz, with cut-off frequencies spaced in equal steps
along the cochlear frequency map [28], [38]. The number of
filters used is K = 32. After band-pass filtering the input
signal, the envelope and fine structure representations are
computed as described in Section II-A using Lw = 6 ms.
Finally, (K × B)-dimensional segments using B = 50 and a
50% overlap are extracted and used as inputs to the system.
Table I summarizes the architecture of the proposed system,
which has approximately 1 million trainable parameters. As
shown in this table, the same architecture (adapted from [22])
is used for both the envelope and fine structure branches.

C. Baseline networks

To analyze the individual cues available for dysarthric
speech detection in the envelope and fine structure representa-
tions, the baseline CNN depicted in Fig. 2 is separately trained
on the envelope and fine structure representations computed as
described in Section III-B. To further demonstrate the advan-
tages of the proposed approach, we have also trained such a
baseline CNN on the magnitude of the STFT representation.

The STFT is computed using a weighted overlap-add frame-
work with a Hanning analysis window without overlap. As
previously mentioned, the STFT yields a trade-off between
spectral and temporal resolution. For a fair comparison, we
consider an STFT analysis window length Lw = 3.875 ms,
such that the same spectral dimension (i.e., K = 32) is
obtained as for the envelope and fine structure representations.
After computing the STFT, (K × B)-dimensional segments
using B = 50 and a 50% overlap are extracted and used as
inputs to the system.

Two architectures A1 and A2 are considered for these
baseline networks. For A1, the same architecture as the one
presented in Table I for the individual envelope or fine struc-
ture branches is used. After the dropout layer, a FCL (with an
input dimension of 4224 and output dimension of 2) followed
by the softmax function is used. Such an architecture has
approximately 45 thousand trainable parameters. Since A1 has
a considerably lower number of parameters than the proposed
system in Table I, we also consider the deeper architecture
A2 shown in Table II. This architecture has approximately
1 million trainable parameters, comparable to the proposed
system in Table I (cf. Section III-B).
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TABLE II
ARCHITECTURE A2 FOR THE BASELINE SYSTEMS. BN REFERS TO BATCH

NORMALIZATION.

Layers

Input (K ×B)-dimensional envelope
Conv2D+ReLU+BN in=1, out=64, kernel=(2, 2), stride=(1, 1)
MaxPool2D in=64, out=64, kernel=(2, 2), stride=(2, 2)
Conv2D+ReLU+BN in=64, out=64, kernel=(3, 3), stride=(1, 1)
MaxPool2D in=64, out=64, kernel=(2, 2), stride=(2, 2)
Conv2D+ReLU+BN in=64, out=64, kernel=(4, 4), stride=(1, 1)
MaxPool2D in=64, out=64, kernel=(2, 2), stride=(2, 2)
Dropout probability = 0.5
FCL+ReLU in=256, out=4096
FCL+Softmax in=4096, out=2

D. Training and evaluation

The evaluation strategy is a speaker-independent stratified
10-fold cross-validation, ensuring that each fold is balanced in
terms of gender and in terms of the number of neurotypical
and PD speakers. In each training fold, a development set
with the same size as the test set is used for early-stopping.
Z-score normalization is applied to all input representations
and networks are trained using the stochastic gradient descent
algorithm and the cross-entropy loss. The batch size is 128
and the initial learning rate is 0.01. The learning rate is
halved if the loss on the development set has not decreased
for 5 consecutive iterations. Training is stopped when the
learning rate has decreased beyond 10−6 or after 100 epochs.
The trained models output a prediction score for each of the
(K × B)–dimensional segments and the final decision for
an unseen speaker is made by applying soft voting on these
segment-level prediction scores.

The baseline CNNs trained on the envelope, fine structure,
or STFT representations are randomly initialized. The con-
volutional layers of the proposed TEFS-based technique are
initialized with the convolutional layers of trained baseline
systems, with the upper branch network in Fig. 3 initialized
with the baseline architecture A1 trained on the envelope rep-
resentation and the lower branch network in Fig. 3 initialized
with the baseline architecture A1 trained on the fine structure
representation.

Dysarthric speech detection performance is evaluated in
terms of the area under ROC curve (AUC) and classification
accuracy for a decision threshold of 0.5. To reduce the impact
of initialization on the final model parameters, we have trained
all networks with 5 different random seeds. To reduce the
impact of the speaker split into training and testing folds, we
have repeated this training procedure for 5 different splits
of speakers. Hence, we have trained 250 models for each
considered network, i.e., 5 models for each of the 10 folds
obtained using 5 different fold splits. The reported perfor-
mance measures are the mean and standard deviation of the
performance obtained across these different models.

IV. RESULTS

Table III presents the performance obtained using the base-
line CNNs trained on different input representations and using
the proposed TEFS-based technique.

TABLE III
PERFORMANCE USING THE BASELINE SYSTEMS TRAINED ON THE STFT,

ENVELOPE, AND FINE STRUCTURE REPRESENTATIONS AND USING THE
PROPOSED TEFS-BASED TECHNIQUE.

Network AUC Accuracy [%]

A1 - Magnitude of STFT 0.76± 0.14 69.52± 14.04
A2 - Magnitude of STFT 0.79± 0.14 69.76± 13.71
A1 - Envelope 0.83± 0.14 73.80± 11.75
A2 - Envelope 0.81± 0.13 70.50± 11.42
A1 - Fine structure 0.72± 0.15 65.68± 12.38
A2 - Fine structure 0.66± 0.15 61.40± 13.36
TEFS 0.93 ± 0.08 85.72 ± 10.38

It can be observed that using A2 for any of the baseline
systems typically yields a lower performance than using A1.
Such a result can be explained by the considerably larger
number of parameters in A2 in comparison to A1, resulting
in overfitting and poor generalization performance for A2.
Further, it can be observed that out of the considered baseline
systems, using the envelope representation outperforms using
the magnitude spectrum of the STFT or the fine structure
representation. These results show that the envelope of a signal
contains more cues for dysarthric speech detection than its
fine structure. Further, these results confirm the advantages of
using these auditory-inspired representations for CNN-based
dysarthric speech detection.

Finally, Table III shows that the proposed TEFS-based tech-
nique yields a better performance than all considered baseline
systems for both performance measures, with an AUC of 0.93
an accuracy score of 85.72%. These results show that although
dysarthric cues can be more prominent in the envelope than
in the fine structure, exploiting both representations is very
beneficial for deep learning-based dysarthric speech detection.

V. CONCLUSION

In this paper we have proposed a deep learning-based
dysarthric speech detection technique inspired by the temporal
processing mechanisms of the human auditory system. The
proposed technique relies on decomposing speech signals into
their envelope and fine structure counterparts, each containing
different perceptual cues for dysarthric speech detection. By
separately processing the envelope and fine structure through
individual convolutional and pooling layers, two discriminative
representations are learned and jointly exploited for dysarthric
speech detection. Experimental results on a Spanish database
of neurotypical and PD speakers have shown that the en-
velope representation contains more discriminative cues than
the fine structure representation. Further, experimental results
have shown that exploiting both envelope and fine structure
representations yields a considerably better dysarthric speech
detection performance than exploiting only the envelope, fine
structure, or STFT representation. In the future, we plan to
investigate how the incorporation of more complex auditory
models affects the extracted discriminative representations and
the final performance of the system. Further, we plan to
investigate different architectures for processing the temporal
envelope and fine structure cues.
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