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Abstract

In this paper, we develop Automatic Speech Recognition (ASR)
systems for multi-genre speech recognition of low-resource
languages where training data is predominantly conversational
speech but test data can be in one of the following genres: news
broadcast, topical broadcast and conversational speech. ASR
for low-resource languages is often developed by adapting a
pre-trained model to a target language. When training data is
predominantly from one genre and limited, the system’s perfor-
mance for other genres suffer. To handle such out-of-domain
scenarios, we employ multitask adaptation by using auxiliary
conversational speech data from other languages in addition to
the target-language data. We aim to (1) improve adaptation
through implicit data augmentation by adding other languages
as auxiliary tasks, and (2) prevent the acoustic model from over-
fitting to the dominant genre in the training set. Pre-trained pa-
rameters are obtained from a multilingual model trained with
data from 18 languages using the Lattice-Free Maximum Mu-
tual Information (LF-MMI) criterion. The adaptation is per-
formed with the LF-MMI criterion. We present results on MA-
TERIAL datasets for three languages: Kazakh and Farsi and
Pashto.

Index Terms: Lattice Free MMI, low-resource speech recogni-
tion, multitask learning

1. Introduction

In the MATERIAL (Machine Translation for English Retrieval
of Information in Any Languageﬂ) program, ASR systems for
low-resource languages are trained on predominantly conver-
sational speech, but tested on speech from multiple genres:
conversational speech (CS), news broadcast (NB) and topical
broadcast (TB). For such tasks, an ASR that generalizes bet-
ter across multiple genres despite the constraints imposed on
the training data is desirable. Owing to the low-resource nature
of the target languages, a common approach is to adapt a pre-
trained model to the target language [1} 2]. Multilingual mod-
elling is a common technique used to boost training resources
for the acoustic model [3} 14} |5, 16]. In the Babel program [7],
multilingual models were trained using data from all languages
in the program [} [9], which proved to be effective on both seen
and unseen languages in training.

In [10, [11], adaptation of pre-trained Lattice Free-
Maximum Mutual Information Criterion (LF-MMI) models
was shown to be effective for ASR on out-of-domain data.
In [12], multilingual models trained with the LF-MMI were
shown to outperform monolingual models on both Babel and

Ihttps://www.iarpa.qgov/index.php/
research-programs/material

Globalphone datasets. In this paper, we show the effective-
ness of adapting such multilingual LF-MMI models to MA-
TERIAL’s multi-genre test condition. Compared to training
monolingual models with LF-MMI, adaptation of multilingual
LF-MMI models perform significantly better across all genres.
Similar to [11], we adapt the multilingual model by adding new
language-specific output layers, even in the case where lan-
guages were seen during multilingual training.

Given a target-language, ASR can be trained by simply
adapting existing language specific layers in the model, or
adding new layers to be trained during adaptation. In the lat-
ter case, typically the learning rate on the pre-trained layers is
a fraction of the learning on newly added layers (e.g. one tenth
of the learning rate of the new layers [10]). Since the amount
of adaptation data is limited (few tens of hours of speech) and
mostly from a single domain (CS), the model tends to adapt well
towards the genre predominant in the training data.

Unlike CS, broadcast speech data for many languages are
available in the open source domain. Thus, to improve the
performance on broadcast data one can further perform semi-
supervised training (SST) [13} 114} [15} [16} [17]. Moreover, as
shown in [16], improving the seed model can provide a con-
siderable boost to the final performance on broadcast data with
SST. Thus, we propose a simple approach using multitask learn-
ing that can provide a better starting point for techniques such as
SST. The goal of applying multitask learning for adaptation (or
transfer learning in the case where the target language is unseen
during multilingual training) is to use auxiliary tasks as compet-
ing objectives to boost the adapted model’s out-of-domain per-
formance. Given the success of multilingual LF-MMI training,
we extend it to target language adaptation as well. In this case,
we consider models pre-trained with multilingual LF-MMI with
18 languages. The model is adapted, also with the LF-MMI
criterion, along with other languages that are not necessarily
our target. We refer to this technique as multitask adaptation
(MTA), while the conventional adaptation of pre-trained models
is referred to as Single Task Adaptation (STA). On MATERIAL
datasets, we show that by replacing STA with MTA, one can
achieve relative improvements in Word Error Rate (WER) of
up to 7.1%. We will release the MTA adaptation code as part of
the Babel multilingual recipe in Pkwrap [18]] to adapt both Kaldi
and Pytorch [[19] acoustic models trained with LF—MMIEI

The rest of the paper is organized as follows: in Sections 2
and 3, multilingual LF-MMI training and our multitask adapta-
tion method are described, respectively. In Section 4, we detail
the proposed approach of multi-task adaptation. In Section 5,
experimental details and results are presented.

Zhttps://github.com/idiap/pkwrap/tree/master/
egs/multilang/babel/
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Figure 1: (a) illustration of typical adaptation of pre-trained model to a target-language. (b) illustration of the proposed multitask
adaptation with target language as one of the tasks. The target language shares parameters with auxiliary tasks (other languages used

during adaptation).

2. Multilingual LF-MMI

In [12]], a multitask setup to train multilingual acoustic models
with LF-MMI was introduced. The LF-MMI criterion provides
state-of-the-art performance for hybrid ASR systems. LF-MMI
provides a sequence discriminative training criterion, wherein
each sequence (typically, an utterance of speech) is evaluated
by two values: the numerator which computes the probability
of the observation given the groundtruth, and the denomina-
tor which computes the probability over all possible sequences.
The latter is computed with a graph, referred to as the denomi-
nator graph, trained from a phone Language Model (LM) [20].
The phone LM is trained from transcripts in the training data.
In multilingual LF-MMI, the acoustic model shares parameters
across languages, and there is one output layer for each lan-
guage in the training dataset. Each language has its own de-
nominator graph during training.

The performance of multilingual models on the Babel
datasets is well established with standard Time Delay Neu-
ral Networks (TDNN) [21]]. In this paper, we improve the
model capacity of the AM by using the CNN-TDNN-F architec-
ture (Convolutional Neural Networks and Factorized TDNNs)
trained with 18 languages obtained from Babel and MATE-
RIAL datasets (as opposed to only 14 in our previous work),
thereby learning better representations suitable for cross-lingual
learning [22| 123]]. The list of datasets used for trained are given
in Table [I] Note that we only refer to the multitask version
of multilingual training in this paper, where each language in
training has a separate output layer.

We apply transfer learning on this multilingual model to
languages recently considered in the MATERIAL program:
Pashto, Farsi and Kazakh. Out of the three, two languages,
Pashto and Kazakh, overlap with the 18 languages used for mul-
tilingual training. Farsi is treated as an unseen language. The
adaptation is carried out in a fashion similar to [10]. We do not
freeze all the layers in the multilingual model, but fix a learn-
ing rate factor on the pre-trained layers. To adapt to each lan-
guage, a learning rate factor of 0.1 was used. In addition to
the pre-trained layers we also add additional target language-
specific layers. To control the number of model parameters, we
use TDNN-F layers [24]. The LF-MMI criterion is used for
adaptation.

3. Multitask adaptation

In this section, we describe the proposed multitask approach.
To motivate our approach we provide the following reasoning:
in order to improve the AM for low-resource languages, mul-

tilingual modelling is often considered useful. Similarly, when
adapting a well-trained acoustic model to a target language, one
can employ a similar strategy by adapting multiple languages at
the same time despite our interest being in only one of the lan-
guages. As mentioned earlier, we refer to this type of adapta-
tion as Multitask adaptation (MTA). To contrast with MTA, we
will refer to the conventional adaptation of pre-trained models
to a target language as Single Task Adaptation (STA). In Natu-
ral Language Processing tasks, where using pre-trained models
is quite common, MTA of pre-trained models has been shown
to be effective [25]. Figure E] illustrates the difference between
STA and MTA.

Multitask learning [26l 27|] has several well-documented
advantages. Two important advantages that we consider here
are implicit data augmentation and ability to reduce the risk
of overfitting. When adapting pre-trained models to low-
resource languages, we observed that despite heavy regulariza-
tion through high dropout rates, the model performance satu-
rates. To avoid such saturation we use the regularizing effect of
adding new languages. Multitask learning for regularization has
already been applied in different contexts. In LF-MMI train-
ing, it is common to use cross-entropy objective function as an
auxiliary objective. In end-to-end ASR training, using multiple
objective functions has been shown to be useful [28].

In addition, the presence of more data from different lan-
guages is well-known to improve speech models [29, 130, [31].
Thus, we hypothesize that adapting a pre-trained model to mul-
tiple languages instead of just the target language can be more
beneficial to the performance on out-of-domain data. In this
work, we consider four languages for MTA: Kazakh, Farsi,
Pashto and Turkish. The first three are target languages, and
Turkish is included due to its linguistic proximity to Kazakh
(among the Babel datasets used in this work). In order to bal-
ance the trade-off between the adaptation speed and multi-task
adaptation benefits, we do not consider more than four lan-
guages.

4. Experiments

We first evaluate the performance of the improved multilingual
model on four languages from Babel: Tagalog (TGL), Swabhili
(SWA), Zulu (ZUL) and Turkish (TUR). The evaluation setup
for Babel is the same as [12]. Then, we report the results on
three languages in the MATERIAL program: Farsi, Kazakh and
Pashto.



Assamese Bengali Cantonese Haitian
Kazhak Kurmanji Kurdish Lao Lithuanian
Pashto Somali* Swabhili Tagalog
Tamil Telugu Tok Pisin Turkish
Vietnamese Zulu

Table 1: Babel [7] and MATERIAL (marked with *) datasets
used for multilingual training. The language names are sorted
in alphabetical order.

Layer Parameter
CNN-1 64 filters
CNN-2 64 filters
CNN-3 128 filters + height subsampling
CNN-4 128 filters
CNN-5 256 filters + height subsampling
CNN-6 256 filters
TDNN-F 1536 dim, 256 dim BN

TDNN-F x 7 1563 dim + 0.66 bypass scale

Bottleneck layer 512 dimension

Table 2: Description of the architecture of the multilingual
CNN-TDNN-F model. The architecture is a modifica-
tion of a similar model found in standard Kaldi recipes
(egs/librispeech/s5/local/chain/tuning/

run_cnn_tdnn_Jla.sh ). (dim: dimension, BN: bottleneck)

4.1. Model training

The multilingual model was trained with the 18 languages given
in Table[T] For all Babel datasets, only conversational speech
data was used for training. We trained a 14-layer CNN-TDNN-
F (Convolutional Neural Network followed by Factorized Time-
delay Neural Networks [24]). The model architecture is given
in Table 2] We used hybrid LF-MMI to train the model, with
a weight of 1/18 for each language. The model takes as input
40 dimensional MFCC features and online i-vectors ([32, 33]]).
Three-fold speed-perturbation was applied to the training data.

To generate alignments for training, a HMM/GMM system
was trained with PLP+pitch (a concatenation of Perceptual Lin-
ear Prediction and pitch) features using the standard recipe for
Babel datasets in Kaldi [34]. The lexicon provided with the
dataset was used. The alignments generated were used to create
supervision lattices for LF-MMI training. The acoustic model
was trained for 6 epochs with an exponentially decaying learn-
ing rate schedule with an initial learning rate of 0.001 and final
learning rate of 0.0001. A dropout schedule with the following
parameters was used: from 20% to 50% of the iterations, the
dropout was increased from 0.0 to 0.25, and then was gradu-
ally decreased to 0.0 for the rest of the iterations. A continuous
version of a dropout was used [34]. We used Kaldi for all our
experiments.

4.2. Performance on Babel

The performance of the multilingual model on four languages is
presented in Table[3] WERs are reported on dev10h test set. We
also refer to performance reported in [35] to compare with our

System TGL SWA TUR ZUL
Monolingual TDNN [12] 453 387 472 535
BLSTM [335] 463 383 - 61.1

Multilingual models

TDNN (14 languages) [12] 422 336 439 508
CNN-TDNN-F (18 languages) 394 312 40.8 485

Table 3: Comparison of performance of multilingual LF-MMI
models on four languages in the Babel dataset. Word Error
Rates (WER) on deviOh are reported. We also compare our
results with [35] as reference to other multilingual models with
similar datasets.

Parameter Pashto  Kazakh  Farsi
Training data (h) 78.4 49.8 36.3
Test data (CS, NB, TB) (h) 16.4 11.2 9.5
Vocabulary 239k 580k 1.7M
LM (words) 816k 184M 1.3B
LM Perplexity (3-gram) 560 789 786

Table 4: Statistics of the MATERIAL test sets for Pashto, Kazakh
and Farsi. Train and test data duration are computed after seg-
mentation. The segmentation is taken from groundtruth. LM
perplexities are calculated with the LM trained on all text avail-
able for the language and evaluated on only broadcast data
transcripts.

baseline monolingual systems. As reported in [12]], the multi-
lingual model trained with 14 languages is significantly better
than the monolingual LF-MMI system. Relative improvements
of up to 13.6% (SWA) was achieved. From the results with the
CNN-TDNN-F model, it is clear that the multilingual training
can further benefit with increased model capacity. The CNN-
TDNN-F model improves further by 6.6% for TGL, 7.1% for
SWA.

4.3. MATERIAL datasets

We consider three MATERIAL datasets: Kazakh, Pashto and
Farsi. The first two languages are also part of the Babel datasets
used for multilingual training while Farsi is an unseen language.

Language model for each dataset is trained as follows: for
each language text obtained from web-crawl is available for
language model. The web-crawl text is cleaned (punctuation
and out-of-language word) and a 3-gram model is trained with
SRILM [36] along with the training transcripts. We use Kneser-
Ney smoothing with parameters 0, 1 and 2. This consistently
gave us the best trade-off between language model perplexity
and size. This language model is used for decoding NB and TB
audio. For CS, we interpolate the LM with a 3-gram LM trained
only with training transcripts. An interpolation weight of 0.9 on
the latter is used [37]. The vocabulary for each language is cho-
sen based on the web crawl text and training transcripts. While
all words in the training transcripts are included, only words
that appear at least 5 times in the web crawl are chosen as a
part of the vocabulary. Graphemic lexicon was used for all the



System

Seen languages

Unseen language

Pashto Kazakh Farsi
CS NB TB CS NB TB CS NB TB
(a) Monolingual TDNN-F 472 470 548 443 294 362 50.7 56.6 49.7
(b) Monolingual CNN-TDNNF 469 442 513 39.7 259 309 432 424 489
(¢c) STA 419 436 48.1 39.2 234 266 37.0 36.6 4l1.1
(d MTA 41.8 405 454 389 219 254 369 353 40.1
(e) Fusion (c+d) 40.8 40.7 452 37.6 21.6 247 353 338 386

Table 5: Comparison of performance of adaptation with multilingual LF-MMI models to three MATERIAL datasets. Word Error Rates
(WER) are reported. CS: Conversational speech, NB: News Broadcast, TB: Topical Broadcast, STA: Single task adaptation, MTA:

Multitask adaptation

three languages. All words in Kazakh were lower-cased. The
statistics of training data is given in Table[d]

Two experiments were performed on the MATERIAL lan-
guages: (1) STA (adaptation of the multilingual CNN-TDNN-F
model to the target language), and (2) MTA (multitask adapta-
tion of the same pre-trained model to several target languages,
simultaneously). We also used Babel Turkish as an additional
language for MTA. The adaptation was carried out by setting
a learning rate factor of 0.1 on the pre-trained layers. Addi-
tional 9 layers of TDNN-F was added to adapt to each target
language. All but the first TDNN-F component had a context
of 3. The first TDNN-F layer takes as input the output of the
bottleneck layer of the multilingual model. The same network
architecture was used for both STA and MTA. Each output layer
in MTA had a learning rate factor of 0.25 (i.e. all languages
were weighted equally). An exponentially decaying learning
rate schedule was used with initial learning rate of 0.001 and
final learning rate of 0.0005. A different dropout schedule was
used during adaptation: dropout rate was kept to 0.0 for the first
5% of the iterations, then increased to 0.25 until 60% of the
iterations, followed by reduction to 0.0 until the final iteration.

4.4. Performance on MATERIAL datasets

The results are presented in Table 5] First we compare the re-
sults of monolingual systems with systems adapted from the
multilingual model. Considerable improvements are observed
for all 3 languages. The benefits of adapting a multilingual
model with STA is shown by relative improvements obtained up
to 15.9% (Farsi, TB) compared to the best monolingual system.
All systems performed the worst on the TB compared to other
genres owing to the difficulty of the genre (mostly in terms of
acoustic conditions and vocabulary). Adapting any of the three
target languages provides significant performance boost for all
genres.

With MTA, improvements in the broadcast genre (i.e. NB
and TB) were observed for all languages. The results demon-
strate that MTA can be beneficial compared to STA for out-
of-domain data. Note that for both STA and MTA the same
model configuration is used. Relative improvements ranging
from 2.5% (TB in Farsi) to 7.1% (NB in Pashto) are observed
for the broadcast genre. For in-domain data (CS), we only ob-
served marginal gain in performance. However, to verify if
the acoustic model trained with MTA is different to that ob-
tained with STA, we performed a simple system fusion exper-

iment. Improvements observed on 8 out of the 9 subsets sug-
gest that MTA learns representations different to that learnt with
STA. Even though the difference between STA and MTA per-
formances are negligible for the CS genre, the fusion of the two
systems provided relative improvements between 2.4% (Pashto)
and 4.4% (Farsi). For NB in Pashto, there is a slight degrada-
tion in performance (from 40.5% to 40.7%) suggesting that the
acoustic representation obtained with MTA can sometimes be
considerably better for broadcast data than that obtained with
STA.

5. Summary

We presented results on four Babel languages with multilingual
LF-MMI training. We showed that multilingual LF-MMI scales
well with increased model capacity, and with the number of
languages used during training. We demonstrated the useful-
ness of such pre-trained models for multi-genre speech recog-
nition on the MATERIAL dataset for three languages: Pashto,
Kazakh and Farsi. Consistent improvements were obtained for
both seen and unseen languages. To further improve the per-
formance on broadcast data we proposed multitask adaptation.
Relative improvements ranging between 2.5% and 7.1% were
obtained compared to the conventional adaptation on news and
topical broadcast.
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