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Abstract

The goal of semantic role labelling (SRL) is to
recognise the predicate-argument structure of a
sentence. Recent models have shown that syn-
tactic information can enhance the SRL perfor-
mance, but other syntax-agnostic approaches
achieved reasonable performance. The best
way to encode syntactic information for the
SRL task is still an open question. In this paper,
we propose the Syntax-aware Graph-to-Graph
Transformer (SynG2G-Tr) architecture, which
encodes the syntactic structure with a novel
way to input graph relations as embeddings
directly into the self-attention mechanism of
Transformer. This approach adds a soft bias
towards attention patterns that follow the syn-
tactic structure but also allows the model to use
this information to learn alternative patterns.
We evaluate our model on both dependency-
based and span-based SRL datasets, and
outperform all previous syntax-aware and
syntax-agnostic models in both in-domain and
out-of-domain settings, on the CoNLL 2005
and CoNLL 2009 datasets. Our architecture is
general and can be applied to encode any graph
information for a desired downstream task.

1 Introduction

The semantic role labelling (SRL) task provides
a shallow semantic representation of a sentence
and builds event properties and relations among
relevant words. SRL graphs are defined in both
dependency-based and span-based styles, as
shown in Figure 1. SRL graphs enhance many
NLP tasks including Question Answering (Yih
et al., 2016; Shen and Lapata, 2007), Machine
Translation (Kazemi et al., 2017; Wang et al., 2016),
Natural Language Inference (Zhang et al., 2020).

Traditionally, syntactic structure was regarded
as a pre-requisite for SRL models (Gildea and
Palmer, 2002; Punyakanok et al., 2008), but new
models outperform syntax-aware architectures by
leveraging deep neural network architectures (Cai
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Figure 1: Example of SRL graphs. The upper structure
is in the span-based style, and the lower one is in the
dependency-based style.

et al., 2018; Tan et al., 2017; He et al., 2017;
Marcheggiani et al., 2017) without explicitly
encoding syntactic structure.

However, some recent works (Zhou et al., 2020a;
Strubell et al., 2018; He et al., 2017; Marcheggiani
and Titov, 2017) claim that deep neural network
models could benefit from using syntactic infor-
mation, rather than discarding it. They suggest
that syntax has the potential to improve the SRL
predication by joint learning both syntactic and
semantic structures (Zhou et al., 2020a), training
one self-attention head in Transformer (Vaswani
et al., 2017a) to attend to each token’s syntac-
tic parent (Strubell et al., 2018), or encoding
syntactic structure with graph convolutional
networks (Marcheggiani and Titov, 2017). But the
question remains open as to the most effective way
to incorporate the auxiliary syntactic information
into deep learning architectures for SRL.

Recently Mohammadshahi and Henderson
(2020a) proposed an architecture called Graph-
to-Graph Transformer which allows the input and
output of arbitrary graphs. They first applied it to
transition-based dependency parsing, for condi-
tioning on the partially constructed dependency
graph (Mohammadshahi and Henderson, 2020a),
and then to graph-based syntactic parsing with iter-
ative refinement (Mohammadshahi and Henderson,
2020b), where predicted dependency graphs are iter-
atively corrected. The Graph-to-Graph Transformer
architecture inputs graph relations as embeddings
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incorporated into the self-attention mechanism of
Transformer (Vaswani et al., 2017b), inspired by the
way Shaw et al. (2018) encode sequence order with
relative position embeddings. In this way, it is easy
for the self-attention mechanism to follow relations,
but it can also learn to combine this information in
more useful alternative soft attention patterns.

In this paper, we propose the Syntax-aware
Graph-to-Graph Transformer (SynG2G-Tr) ar-
chitecture for encoding syntactic structure, for
predicting SRL structures. The model conditions
on the sentence’s dependency structure and jointly
predicts both dependency-based and span-based
SRL structures. Our architecture is different from
the original Graph-to-Graph Transformer in the
way in which it encodes the input graph structure.
Inspired by Huang et al. (2020), our self-attention
functions model the interaction of the graph rela-
tions with both the query and key vectors, instead
of just the key. The second novelty is that our model
builds two semantic graphs (dependency-based
and span-based SRL) as the output, which is in a
different domain than the encoded syntactic graph.
For the SRL decoding, we use a joint scorer and
decoder to build dependency-based and span-based
SRL graphs at the same time (Li et al., 2019).

We show empirically that our model outperforms
all previous work that leverages syntactic informa-
tion. In an in-domain setting, the SynG2G-Tr model
achieves 88.93(87.57) F1 score on the CoNLL
2005 dataset given the predicate (end-to-end), and
91.23(88.05) F1 on the CoNLL 2009 dataset given
the predicate (end-to-end). In the out-of-domain
setting, our model reaches 83.21(80.53) F1 score on
the CoNLL 2005 dataset given the predicate (end-
to-end), and 86.43(81.93) F1 scores on the CoNLL
2009 dataset given the predicate (end-to-end).

Our architecture is general and can be used
to encode any graph structure for the desired
downstream task. Our contributions are as follows:

• We propose an improved version of the
Graph-to-Graph Transformer architecture for
conditioning on graph structures.

• We show that this architecture can effectively
condition on the syntactic dependency graph
for predicting both dependency-based and
span-based semantic role labelling graphs.

• We improve the state-of-the-art accuracies on
the CoNLL 2005 (span-based) and CoNLL
2009 (dependency-based) datasets.
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Figure 2: The framework of Syntax-aware Graph-to-
Graph Transformer, applied to the SRL task.

2 Syntax-aware
Graph-to-Graph Transformer

The Syntax-aware Graph-to-Graph Transformer
architecture is illustrated in Figure 2, applied to
the SRL task. The input to the model is tokenised
text (W = (w1, w2, ..., wN )), and these tokens
are considered the nodes of all input and output
graphs. The outputs are the dependency-based
(Gdep) and span-based (Gspan) SRL graphs.
Initially, a syntactic parser predicts the dependency
graph (Gsyn), and Part-of-Speech (PoS) tags
(F = (f1,f2,...,fN )), which can be any syntactic
parser. Then our SynG2G-Tr model encodes
both these sequences (W,F ) and this dependency
graph (Gsyn) into contextualised representations
for the graph nodes, which are used by the decoder
to jointly predict both SRL graphs.

The Syntax-aware Graph-to-Graph Transformer
architecture uses an improved way of inputting
graph relations into the self-attention mechanism
of Transformer (Vaswani et al., 2017b). Unlike the
previously proposed version of Graph-to-Graph
Transformer (Mohammadshahi and Henderson,
2020b), we modify the self-attention mechanism
to have a more comprehensive interaction between
graph relations, queries and keys.

The SynG2G-Tr model can be formalised in



terms of an encoderEsg2g and decoderDsg2g:{
Z=Esg2g(W,F,Gsyn)

Gspan,Gdep=Dsg2g(Z)
(1)

whereZ=(z1,z2,...,zN ) is the sequence of output
value embeddings which is conditioned on input
sequences (W,F ) and dependency graph (Gsyn),
andN is the sequence length.

The dependency graph is defined as:{
Gsyn={(i,j,lin), j=2,...,N−1}
where 1≤ i≤N−1, lin∈Lsyn

(2)

where the graph is the set of tuples (i, j, lin),
meaning that each token wj has the parent as wi
with label lin, where parent could be the ROOT
node (w1). We will discuss the input sequence in
more detail in Section 2.1.

Inspired by Li et al. (2019), we define a
span-based SRL graph as:{

Gspan={(k,<i,j>,lout)}
where 2≤ i,j,k≤N−1, lout∈Lsrl

(3)

where the span-based SRL graph is the set of
predicate-argument tuples (k,< i, j >, lout), k is
the predicate,<i,j> is the argument span starting
from i and ending in j, and lout is the SRL label.
The dependency-based SRL graph is defined in the
same way as Equation 3, with the only difference
that i equals to j in the span argument.

In the remaining paragraphs, we will describe
each element of our architecture in detail, and
propose our baselines.

2.1 Input Embeddings

The input to the embedding layer of the SynG2G-Tr
model contains the sequence of tokenised text (W )
and predicted PoS tags (F ). The input sequence
starts with a ROOT node, followed by the tokenised
sequence, and then we add a SEP token at the end
of the sequence to make it compatible with BERT’s
token representation (Devlin et al., 2019). We sum
several embeddings to build the input sequence rep-
resentations: pre-trained embeddings of BERT (bi),
learned embeddings of PoS tags (fi), and positional
embeddings (oi) to keep the order information:

xi=bi+fi+oi, i=1,2,...,N (4)

where xi is the input embedding of tokenwi.

2.2 Self-attention Mechanism

Encoding graph information into Transformer-
based architectures is possible by inputting graph
relations directly to the self-attention mechanism,
as proposed by Mohammadshahi and Henderson
(2020a,b), and inspired by Shaw et al. (2018) for
relative position relations. Recently, Huang et al.
(2020) proposed an improved way of inputting
relative position relations for the input sequence
of BERT (Devlin et al., 2019) by changing the
self-attention functions. We propose a new version
of the Graph-to-Graph Transformer architecture
(Mohammadshahi and Henderson, 2020a,b) which
incorporates these new self-attention functions.

The Transformer architecture consists of a stack
of self-attention layers with multiple attention
heads. We modify the attention mechanism of
each head in each layer to input the dependency
graph. These attention scores αij are calculated as
a Softmax function over eij values:

eij =
1√
d

[
(xiW

Q+rijW
R)(xjW

K+rijW
R)T

−(rijW
R)(rijW

R)T
]

(5)

where WQ,WK ∈ Rdx×d are learned query and
key matrices. rij is a one-hot vector specifying
both the label and direction of the dependency
relation between token i and token j (idlabel if i→j,
idlabel+ |Lsyn| if j← i , or NONE, where |Lsyn| is
the label set size). WR∈R2|Lsyn|+1×d is a matrix
of learned relation embeddings. d is the attention
head size, and dx is the hidden size.

For better implementation, we re-formulate
Equation 5 as below to calculate all terms in parallel:

eij =
1√
d

[
xiW

Q(xjW
K)T +xiW

Q(rijW
R)T

+rijW
R(xjW

K)T
]

(6)

The output of the attention function is the value
embedding (vi), which we calculate as:1

vi=
∑
j

αij(xjW
V ) (7)

1Mohammadshahi and Henderson (2020a,b) also incorpo-
rate the relation information rij into this value function, but
in preliminary experiments, we found no advantage to doing
so, so we also simplify the value function as shown.



By applying Equation 5, graph information is
incorporated into the attention mechanism of
Transformer with a soft bias, meaning the model
can still use this encoded graph information to learn
other structures.

2.3 Scorer and Training
Scorer: Inspired by Zhou et al. (2020a), we first
define span representation (sij) as the difference be-
tween right and left end-points of the span<i,j>:

sij = ~srj− ~sli (8)

where ~srj is defined as [ ~zj+1; ~zj ], and ~sli is calcu-
lated as [ ~zi; ~zi+1]. ~zi is computed by dividing the
output representation of Transformer (zi) in half.

Argument (aij) and predicate (pk) representa-
tions are defined as:

aij =ReLU(W 1
srlsij+b

1
srl)

pk=zk
(9)

where W 1
srl and b1srl are learned parameters, and

ReLU(.) is the Rectified Linear Unit function.
We predict semantic roles as defined in Zhou

et al. (2020a):

Φl(p,a)=W 3
srl(LN(W 2

srl[aij ;pk]+b
2
srl))+b3srl

(10)

where LN(.) is the layer normalisation function,
and W 2

srl, W
3
srl, b

2
srl, and b3srl are learned param-

eters. The semantic role score for a specific label
lout is defined as:

Φl(p,a,lout)=[Φl(p,a)]lout (11)

Since the number of predicate-argument pairs is
O(n3), we apply the pruning method proposed
in Li et al. (2019); He et al. (2018a) by defining
separate scorers for argument and predicate
candidates (Φa and Φp), and pruning all but the
top-ranked arguments and predicates based on their
corresponding scores.

Training: The model is trained to optimise the
probability P (ŷ|W,F,Gsyn) of predicate-argument
pairs, conditioned on input sequence (W ), PoS
tags (F ), and predicated dependency graph (Gsyn).
This objective can be factorised as:

J(θ)=
∑
y∈Γ

−logPθ(y|W,F,Gsyn)

=
∑

〈p,a,lout〉∈Γ

−log exp(Φ(p,a,lout))∑
l̂∈Lsrl

exp(Φ(p,a,l̂))

(12)

where Φ(p,a,lout) is defined as Φp(p) + Φa(a) +
Φl(p,a,lout), and θ is model parameters. Γ is the
set of predicate-argument-relation tuples for all
possible predicate-argument pairs and either the
correct relation or NONE.

2.4 Decoders
Since we define a uniform representation for both
types of SRL, we use a single dynamic programming
algorithm with a non-overlapping constraint (Pun-
yakanok et al., 2008) to find predicated graphs.

2.5 Baselines
Previous works proposed several approaches to
use syntax information for the SRL task (Strubell
et al., 2018; Roth and Lapata, 2016; Marcheggiani
and Titov, 2017; He et al., 2019). As baselines, we
define a syntax-agnostic BERT-based model, and
an alternative method to encode the syntactic graph.
Proposed baselines are as follows:

BERT: For this model, we use BERT (Devlin
et al., 2019) as the encoder to build contextualised
representations of tokens, and use the same scorer
function and decoder as defined in Sections 2.3 and
2.4. This model is syntax-agnostic.

BERT+SynEmb: In this model, we add infor-
mation about the syntactic graph to the embedding
layer of the BERT model:{

xi=bi+fi+di+riWemb

i=1,2,...,N
(13)

where bi, fi, and di are the same as Equation 4. ri
is the one-hot vector representing the dependency
label for dependent i, and Wemb∈R(|Lsyn|+1)×d is
the learned label embeddings matrix. The scorer and
decoder are the same as Section 2.3 and Section 2.4.

2.6 Dependency Parser
The dependency parser jointly predicts a sequence
of PoS tags and the dependency graph as follows:

A=Esyn(W )

F =Dpos(A)

Gsyn=Dsyn(A)

(14)

where Esyn is the BERT encoder, A is the output
contextualised token representations, and Dpos is
the decoder for PoS tags. Dsyn is a joint scorer and
decoder for dependency and constituency graphs
based on Head-driven phrase structure grammar



(HPSG) (Zhou and Zhao, 2019). We choose this
decoder since it achieved state-of-the-art results in
the dependency parsing task. More details about
the architecture of decoders can be found in Zhou
and Zhao (2019).

3 Experimental Setup

Our models are evaluated on two kinds of SRL
graphs, dependency-based and span-based. For
dependency-based graphs, we test our models on
the CoNLL 2009 dataset (Hajič et al., 2009). For
span-based SRL, we evaluate them on the CoNLL
2005 dataset (Carreras and Màrquez, 2005). For
predicate disambiguation, we follow previous
work (Roth and Lapata, 2016).

We define two strategies for SRL evaluation, end-
to-end, and pre-defined predicate. For the former
setting, our models jointly predict both predicates
and their relations with predicted arguments. For the
latter setting, predicates are defined in the dataset.

3.1 Datasets

CoNLL 2005: In this shared task (Carreras and
Màrquez, 2005), the focus was on verbal predicates
in English. The training data includes sections 2-21
of the Wall Street Journal (WSJ) dataset. Section
24 is considered as the development set. Section
23 is used for the in-domain test set, and 3 sections
of the Brown corpus are used for the out-of-domain
dataset.

CoNLL 2009: This shared task (Hajič et al.,
2009) focused on the dependency-based SRL and
is created by merging PropBank and NomBank
treebanks. We evaluated our models on the English
dataset with the same split as the CoNLL 2005
dataset.

3.2 Hyper-parameters Setting

Our models are initialised with BERT-large
model (Devlin et al., 2019), specifically bert-large-
whole-word-masking2. The implementation is
based on Pytorch3 framework, and HugginFace
repository (Wolf et al., 2020). All hyper-parameters
are specified in Appendix A.

Since the BERT tokeniser (Wu et al., 2016) dif-
fers from the one that was used to tokenise the SRL
corpora, we apply BERT’s wordpiece tokeniser to

2https://github.com/google-research/
bert

3https://pytorch.org/

Model
Development Test

UAS LAS PoS UAS LAS PoS

Syntactic parser 96.72 94.83 96.81 96.85 95.24 97.41

Table 1: Labelled and unlabelled attachment scores
of the dependency parser on WSJ Penn Treebank,
alongside with the PoS tagging accuracy.

Model
WSJ Brown

P R F1 P R F1

End-to-End
He et al. (2017) 85.0 84.3 84.6 74.9 72.4 73.6
He et al. (2018a) 81.2 83.9 82.5 69.7 71.9 70.8
Li et al. (2019) - - 83.0 - - -
Strubell et al. (2018) 85.53 84.45 84.99 75.8 73.54 74.66
+Pre-training
He et al. (2018a) 84.8 87.2 86.0 73.9 78.4 76.1
Li et al. (2019) 85.2 87.5 86.3 74.7 78.1 76.4
Strubell et al. (2018) 87.13 86.67 86.9 79.02 77.49 78.25
BERT 86.4 87.79 87.08 78.76 80.06 79.40
BERT+SynEmb 86.46 88.02 87.23 79.2 80.98 80.08
SynG2G-Tr 86.86 88.3 87.57 80.01 81.07 80.53
Pre-defined predicate
Tan et al. (2017) 84.5 85.2 84.8 73.5 74.6 74.1
He et al. (2018a) - - 83.9 - - 73.7
Ouchi et al. (2018) 84.7 82.3 83.5 76.0 70.4 73.1
Strubell et al. (2018) 86.02 86.05 86.04 76.65 76.44 76.54
+Pre-training
He et al. (2018a) - - 87.4 - - 80.4
Ouchi et al. (2018) 88.2 87.0 87.6 79.9 77.5 78.7
Li et al. (2019) 87.9 87.5 87.7 80.6 80.4 80.5
BERT 88.67 88.36 88.52 83.84 82.09 82.56
BERT+SynEmb 88.97 88.34 88.65 83.48 82.18 82.82
SynG2G-Tr 89.11 88.74 88.93 83.93 82.50 83.21

Table 2: Comparing our models with previous state-of-
the-art results on CoNLL 2005 (span-based) test sets.

each word in the SRL corpus, and input all the result-
ing sub-words to the model. For decoding, we use
the contextualised embedding of the first sub-word
of each word as its encoded representation4. For in-
putting the dependency graph, the relation between
two words is specified as a relationship between
their respective first sub-words, and we define a
new relationship between the non-first sub-words
of each word and its corresponding first sub-word.

4 Results and Discussion

First, we report SRL results on CoNLL 2005,
and CoNLL 2009 datasets in both in-domain and
out-of-domain settings5. Then, we analyse the
distribution of errors made by the SynG2G-Tr and

4Preliminary results show that using the embedding of the
first sub-word achieves better or similar results than the last
sub-word or averaging embeddings

5We exclude Zhou et al. (2020a); Cai and Lapata (2019)
and Zhou et al. (2020b) from Table 2, and Table 3 because
they trained syntactic (constituency and dependency) and SRL
graphs jointly, while we use predicted syntactic graph, and
don’t combine constituency parsing to our approach. Zhou
et al. (2020b) also used language modelling loss, and a huge
amount of additional unlabelled corpora in the training time.

https://github.com/google-research/bert
https://github.com/google-research/bert
https://pytorch.org/


baselines, alongside storage and time complexities.
Finally, we do an ablation study to understand the
model better. The accuracy of the dependency
parser is shown in Table 1.

4.1 CoNLL 2005 Results
Span-based SRL results are shown in Table 2.
In the end-to-end setting, the SynG2G-Tr and
BERT+SynEmb models outperform previous
work with an F1 relative error reduction (RER) of
5.11%/2.52% for the in-domain dataset, respec-
tively. Additionally, for the out-of-domain dataset,
SynG2G-Tr and BERT+SynEmb models reach a
better performance than previous works with an
RER of 10.48%/8.41%. The better performance
of the SynG2G-Tr model shows that injecting the
graph information into the attention mechanism is
more effective than adding it to the input embedding
layer. Also, Both SynG2G-Tr and BERT+SynEmb
models outperform syntax-agnostic BERT baseline,
which demonstrates that encoding syntax is still
beneficial even for the strong baseline that already
outperforms previous works.

In the pre-defined predicate set-up, our SynG2G-
Tr model again results in better performance than
previous work, with 10% RER in the in-domain
dataset. For the out-of-domain dataset, SynG2G-Tr
and BERT+SynEmb models achieve 13.9%/11.89%
RER compared to previous works, respectively.
Better performance of the SynG2G-Tr model
confirms the effectiveness of our model in encoding
the dependency graph that provides global and
between-edge views of the sentence.

4.2 CoNLL 2009 Results
Dependency-based SRL results are shown in
Table 3. First, we consider the end-to-end setting.
In in-domain data, the SynG2G-Tr model achieves
better performance compared to previous works,
and our baselines, while the BERT+SynEmb model
does not improve the performance compared to
syntax-agnostic BERT baseline. For out-of-domain
data, both SynG2G-Tr and BERT+SynEmb models
achieve better performance compared to the BERT
baseline and outperform previous works with
29.96%/27.79% RER. The improvement of the
SynG2G-Tr model, especially in out-of-domain
data again shows the effectiveness and generality
of the model.

Now, consider the pre-defined predicate set-up.
The SynG2G-Tr model again reaches better
performance than the BERT+SynEmb model in

Model
WSJ Brown

P R F1 P R F1

End-to-End
Li et al. (2019) - - 85.1 - - -
+Pre-training
He et al. (2018b) 83.9 82.7 83.3 - - -
Cai et al. (2018) 84.7 85.2 85.0 - - 72.5
Li et al. (2019) 84.5 86.1 85.3 74.6 73.8 74.2
BERT 85.37 89.23 87.26 79.12 83.22 81.12
BERT+SynEmb 84.74 89.79 87.19 78.83 84.07 81.37
SynG2G-Tr 86.38 89.78 88.05 80.35 83.57 81.93
Pre-defined predicate
Kasai et al. (2019) 89.0 88.2 88.6 78.0 77.2 77.6
+Pre-training
He et al. (2018b) 89.7 89.3 89.5 81.9 76.9 79.3
Cai et al. (2018) 89.9 89.2 89.6 79.8 78.3 79.0
Li et al. (2019) 89.6 91.2 90.4 81.7 81.4 81.5
Kasai et al. (2019) 90.3 90.0 90.2 81.0 80.5 80.8
Lyu et al. (2019) - - 90.99 - - 82.18
Chen et al. (2019) 90.74 91.38 91.06 82.66 82.78 82.72
BERT 90.13 91.24 90.68 85.11 86.33 85.72
BERT+SynEmb 90.97 91.17 91.07 86.14 86.25 86.20
SynG2G-Tr 91.31 91.16 91.23 86.40 86.47 86.43

Table 3: Comparing our models with previous state-of-
the-art results on CoNLL 2009 (dependency-based) test
sets.

both in-domain and out-of-domain datasets. For
out-of-domain dataset, the SynG2G-Tr model
substantially improves previous state-of-the-art
models with 21.47% RER, which demonstrates the
benefit of encoding the graph structure directly in
the attention mechanism.

Finally, we confirm that encoding the syn-
tactic graph into the attention mechanism of
Transformer (SynG2G-Tr) is more effective than
using it in the embedding layer (BERT+SynEmb)
since it provides the global and interdependence
information when each token captures information
in the attention mechanism.

4.3 Ablation Study

In Table 4, we analyse the interaction of the
dependency graph with key and query vectors
in the attention mechanism, as defined in Equa-
tion 6. Excluding the key interaction results in a
similar attention score mechanism as defined in
Mohammadshahi and Henderson (2020b). This
SynG2G-Tr-key model achieves similar results
compared to the SynG2G-Tr model on the WSJ test
dataset, but the SynG2G-Tr model outperforms it
on the development set, and both types of out-of-
domain datasets, confirming that key interaction
is a critical part of the SynG2G-Tr model.

Then, we exclude both key and value interactions,
which results in the BERT baseline. The SynG2G-
Tr-key model achieves better performance compared
to the BERT model in all settings, which demon-



Model
CoNLL 2005 CoNLL 2009

Dev WSJ Brown Dev WSJ Brown

End-to-End
BERT 86.65 87.08 79.40 86.40 87.26 81.12
SynG2G-Tr -key 86.82 87.27 80.33 86.85 87.50 81.51
SynG2G-Tr 87.08 87.57 80.53 87.13 88.05 81.93
Given pred.
BERT 87.93 88.52 82.56 90.16 90.68 85.72
SynG2G-Tr -key 88.03 88.91 82.90 90.31 91.22 86.28
SynG2G-Tr 88.17 88.93 83.21 90.66 91.23 86.43

Table 4: Model comparison of SynG2G-Tr model, and
other variants on in-domain and out-of-domain SRL
evaluations sets based on F1 score.

strates the impact of query interaction in the modi-
fied attention mechanism of the SynG2G-Tr model.

So, we conclude that both key and query
interactions with dependency graph relations are
critical parts of the SynG2G-Tr model.

4.4 Error Analysis

As shown in Figure 3, we analyse the improvement
derived from each method by measuring the F1
score based on the sentence length, and dependency
length for the SynG2G-Tr model, and other base-
lines on CoNLL 2009 end-to-end setting, which is
the harder situation than the given predicate setup6.

In the left figure, we compute the F1 score
based on the sentence length. The SynG2G-Tr and
BERT+SynEmb models achieve better performance
on all sentence lengths (except 20-29) compared
to the BERT baseline, confirming that syntax could
still benefit SRL models even for this powerful
baseline. Also, The SynG2G-Tr model reaches
better results in all sentence lengths, which confirms
the effectiveness of the model in encoding the graph
structure.

In the right figure, we measure the F1 score based
on the dependency length, meaning the distance
between the argument and predicate in the input
sentence. Again, the SynG2G-Tr model performs
better on all dependency lengths, which shows the
benefit of encoding the dependency graph in the
attention mechanism.

4.5 Complexity Analysis

In this section, we analyse the added parameters
and run-time complexity of the SynG2G-Tr model,
and baselines. Consider a Transformer model with
m self-attention layers, |Lsyn| as the number of

6F1 score numbers and CoNLL 2005 analysis are provided
in Appendix B.

Model
Parameter size

General BERT-large

BERT Θ 340M
BERT+SynEmb +(|Lsyn|+1)dx +49K
SynG2G-Tr +(2|Lsyn|+1)md +145K

Table 5: Amount of additional parameters for the
SynG2G-Tr model and other alternatives.

Model
Run-time

Train(sec/epoch) Dev(sec)

BERT 637 12
BERT+SynEmb 909 21
SynG2G-Tr 1010 24

Table 6: Run-time performance of the SynG2G-Tr
model and other alternative models. All models are
trained with GeForce RTX 3090.

dependency labels, and a batch of size b with a
maximum sequence length ofN .

The number of parameters for the SynG2G-Tr
model and baselines is calculated in Table 5. For
the BERT+SynEmb baseline, the number of added
parameters is (|Lsyn|+1)dx, since the graph infor-
mation is added to the input embedding layer. For
the SynG2G-Tr model, we share the relation embed-
dings across multiple attention heads in each layer,
so the number of added parameters is computed
as (2|Lsyn| + 1)md. The number of additional
parameters is negligible compared to the baseline
model (BERT-large), which has 340M parameters.

The run-time performance of our models is
shown in Table 6. The time complexity of the
self-attention mechanism for the Transformer archi-
tecture is calculated asO(bmn2d). Two new terms
in Equation 6 for the modified attention mechanism
add a time complexity ofO(bmn2d), which doesn’t
change the total time complexity. Also, each term
in Equation 6 can be calculated in parallel during
training, which keeps the speed the same as for the
BERT+SynEmb model. The difference between the
BERT and BERT+SynEmb baselines can be consid-
ered as the time required to parse the dependency
graph, and create the relation vectors ri, which could
be moved to pre-processing for the training time.

5 Related Work

Semantic role labelling was introduced by Gildea
and Jurafsky (2000). In early works, most
approaches focus on developing rich linguistic



Figure 3: Error analysis of SynG2G-Tr, and baseline models on the development set of CoNLL 2009 dataset.

features as an input to their model (Pradhan et al.,
2005; Surdeanu et al., 2007; Johansson and Nugues,
2008; Toutanova et al., 2008). Then Sutton and
McCallum (2005) jointly modelled SRL and
syntactic parsing. Lewis et al. (2015) also jointly
modelled SRL and CCG parsing.

With the remarkable success of deep neural
networks, a series of these models have been
proposed for SRL task (FitzGerald et al., 2015; He
et al., 2018b, 2017; Cai et al., 2017; Qin et al., 2017;
Zhang et al., 2016; Henderson et al., 2013). More
recent models are syntax-agnostic that achieve con-
siderable results (Peters et al., 2018; He et al., 2018a;
Zhou and Xu, 2015; Marcheggiani et al., 2017; He
et al., 2017; Tan et al., 2017). However, there are
several approaches that use syntactic information to
improve the performance (Roth and Lapata, 2016;
Marcheggiani and Titov, 2017; Strubell et al., 2018;
Li et al., 2018; He et al., 2019). Marcheggiani
and Titov (2017) encodes the predicted syntactic
structure with GCN network, and outperforms
previous models in dependency-based SRL. Roth
and Lapata (2016) uses syntactic information by
embedding dependency path. Strubell et al. (2018)
incorporates dependency graph by training one
attention head of Transformer to attend to syntactic
parents for each token in a multi-task setting.
Additionally, some works focus on joint learning
of both SRL and syntax (Zhou et al., 2020a,b;
Strubell et al., 2018; Cai and Lapata, 2019). Zhou
et al. (2020a) defines a Transformer-based model
to learn dependency-based, and span-based SRL,
dependency and constituency syntactic graphs, and
POS tags in multi-task fashion. Zhou et al. (2020b)
also adds language modelling task to their previous
model to build a structure-aware BERT model.

Our work is different from previous works, since
we propose an alternative way of encoding graph

structure, which can encode both sequences and
graphs in one general encoder, and the syntactic
information is directly added to the attention
mechanism with a soft bias that helps the model
learn any structure.

6 Conclusion

In this paper, we propose the Syntax-aware Graph-
to-Graph Transformer architecture, effectively
incorporating syntactic information by inputting the
predicted syntactic dependency graph to the self-
attention mechanism of Transformer (Vaswani et al.,
2017b). Our mechanism for inputting graph relation
embeddings differs from the original Graph-to-
Graph Transformer (Mohammadshahi and Hender-
son, 2020a) in that it models the complete interac-
tion between the dependency relation, query vector
and key vector. Also, it excludes the graph inter-
action with value vectors while keeping the perfor-
mance. We have evaluated our model on the CoNLL
2005 (span-based) and CoNLL 2009 (dependency-
based) SRL datasets and achieved state-of-the-art re-
sults on both in-domain and out-of-domain datasets.
We showed that our model adds a negligible number
of parameters relative to the BERT baseline. We
also demonstrated the effectiveness of our models
based on sentence length and dependency length.

Our model is an alternative way of encoding the
graph structure into the Transformer-based models
and can be applied to any NLP task which requires
encoding the graph structure.
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Appendix A Hyper-parameters Setting

We apply different optimisers for pre-trained parameters and randomly initialised ones. We use bucket
batching, grouping sentences by their lengths to the same batch to speed up the model. Early stopping
is used to mitigate over-fitting. In pre-defined predicate setting, we use different dynamic programming
decoders to find SRL graphs, since predicates are not necessarily the same in dependency-based and
span-based SRL graphs. Here is the list of hyper-parameters for SynG2G-Tr model:

Component Specification
Optimiser BertAdam

Base Learning rate 1.5e-3
BERT Learning rate 1e-5
Adam Betas(b1,b2) (0.9,0.999)

Adam Epsilon 1e-5
Weight Decay 0.01

Max-Grad-Norm 1
Warm-up 0.001

Self-Attention
No. Layers 24
No. Heads 16

Embedding size 1024
Max Position Embedding 512

Component Specification
Feed-Forward layers (SRL)

Span Hidden size 512
Label Hidden size 250

Feed-Forward layers (PoS)
Hidden size 250

Pruning (SRL)
λverb 0.6
λspan 0.6

Max No. Span 300
Max No. Verb 30

Epoch 100

Table 1: Hyper-parameters for training SynG2G-Tr and baselines.

For the dependency parser, we apply the same hyper-parameters as Zhou and Zhao (2019). We use the
base learning rate of 2e−3, and BERT learning rate of 1.5e−5.

Appendix B Error Analysis

B.A Sentence Length

Model 0-9 10-19 20-29 30-39 40+

BERT 86.93 87.51 87.02 86.39 84.28
BERT+SynEmb 87.57 87.78 86.73 86.84 84.47
SynG2G-Tr 89.47 87.98 87.48 87.27 85.29

Table 2: F1 scores based on the sentence length for the SynG2G-Tr model, and baselines on the development set of
CoNLL 2009 dataset.

B.B Dependency Length

Model 1 2 3 4 5 6+

BERT 87.08 88.17 84.92 83.33 82.27 77.66
BERT+SynEmb 87.46 87.97 85.31 82.57 83.98 78.74
SynG2G-Tr 88.02 88.33 86.56 83.35 85.83 79.19

Table 3: F1 scores based on the dependency length for the SynG2G-Tr model, and baselines on the development set
of CoNLL 2009 dataset.



B.C Sentence Length on span-based SRL

Figure 4: Error analysis of the SynG2G-Tr model, and other alternative models on the development set of CoNLL
2005 dataset.

Model 0-9 10-19 20-29 30-39 40+

BERT 88.54 89.99 86.89 87.18 82.20
BERT+SynEmb 88.34 89.71 87.23 86.77 83.04
SynG2G-Tr 91.98 89.80 86.66 87.47 84.2

Table 4: F1 scores based on the sentence length for the SynG2G-Tr model, and baselines on the development set of
CoNLL 2005 dataset.


