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Abstract 

The maturity of automatic speech recognition (ASR) systems 
at controller working positions is currently a highly relevant 
technological topic in air traffic control (ATC). However, 
ATC service providers are less interested in pure word error 
rate (WER). They want to see benefits of ASR applications for 
ATC. Such applications transform recognized word sequences 
into semantic meanings, i.e., a number of related concepts 
such as callsign, type, value, unit, etc., which are combined to 
form commands. Digitized concepts or recognized commands 
can enter ATC systems based on an ontology for utterance 
annotation agreed between European ATC stakeholders. 
Command recognition (CR) has already been performed in 
approach control. However, spoken utterances of tower 
controllers are longer, include more free speech, and contain 
other command types than in approach. An automatic CR rate 
of 95.8% is achievable on perfect word recognition, i.e., 
manually transcribed audio recordings (gold transcriptions), 
taken from Lithuanian controllers in a multiple remote tower 
environment. This paper presents CR results for various 
speech-to-text models with different WERs on tower 
utterances. Although WERs were around 9%, we achieve CR 
rates of 85%. CR rates only slightly decrease with higher 
WERs, which enables to bring ASR applications closer to 
operational ATC environment. 

Index Terms: speech recognition, speech understanding, 
command recognition rate, air traffic control, tower utterances 

1. Introduction 

Automatic speech recognition (ASR) in air traffic control 
(ATC) existed decades ago [1],[2]. However, it got more 
powerful in the last decade due to improved computing power 
for model training and accelerating digitization in the ATC 
domain. Normally, the step that follows ASR is language 
understanding – in ATC, also called as spoken instruction 
understanding [3]. Different projects have shown possible 
applications [4] such as runway incursion detection [5], 
decision support input [6], radar label maintenance [7],[8], 
etc., which ultimately results in benefits such as workload 
reduction for air traffic controllers [9]. For language 
understanding, multiple words are analyzed to extract the 
semantic meaning (concept extraction) of utterances, which 
includes the extractions of ATC concepts, such as callsigns, 
command types, command values, units, conditions, etc. The 
extraction of these ATC concepts is supported by machine 
learning algorithms [10]. The ATC concepts can be annotated 

by applying the rules of an ontology, agreed by 14 European 
air navigation service and system providers [11]. Concept 
extraction has already been applied to ATC utterances from 
the approach domain and to manually transcribed (gold) ATC 
utterances from the tower domain [12]. Our approach in this 
paper is among the first applications to apply command 
recognition on partly erroneous recognized speech text from 
the tower domain1. With this approach, we investigate the 
effect of using unsupervised data for training a robust acoustic 
model for the ATC domain. The improvement of word error 
rate (WER) and the partly dependent enhancement of 
command recognition rate (CRR) are important steps to 
achieve higher technology readiness levels because the ATC 
end users are interested in low error rates on semantic level. 
The next section presents related work on language modeling, 
transcription rules, and the annotation ontology. Section 3 
describes the ATC concept extraction to recognize commands 
as well as trials for data acquisition and analysis. The 
recognition experiments and results are shown in section 4. 
Section 5 concludes and gives an outlook on future work. 

2. Related Work 

2.1. Language Modeling 

Several LM adaptation or interpolation techniques were 
proposed for mapping the language model (LM) to the specific 
domain, e.g., linear interpolation, Bayesian interpolation and 
count merging. Bayesian interpolation was introduced in [13]. 
[14] and [15] showed that count merging with two data 
sources is a specific style of maximizing a posteriori (MAP) 
adaptation. [16] shows the theoretical connections between the 
mentioned LM interpolation techniques. 

2.2. Transcription Rules and Annotation Ontology 

Different transcription rules for ATC utterances have been 
defined and used for existing audio corpora [17]-[20] such as: 

 Spelled letters – not pronounced using the International 
Civil Aviation Organization (ICAO) alphabet such as 
alfa, bravo, etc. – e.g., “~k~l~m”/“KLM”/“K L M”, 

 Truncated/broken word parts, e.g., “luf=”/“luf*”/“luf-” 
if “lufthansa” was not uttered fully till the end, 

 Non-understandable words (“[unk]” / “[UNKNOWN]”) 
and human noise/thinking loud (“[hes]” / “[HNOISE]”), 

 Non-English words, e.g., “<FL></FL>” / “[NE][/NE]”. 
                                                                 
 
1 For funding information please refer to [38],[11],[30]. 



Also, for the annotation of semantic meanings of the ATC 
transcriptions different ontologies or rule sets exist. An early 
ontology developed by NATS for the terminal environment 
comprised of callsign, standard type, non-standard type, value, 
and type unit [21]. Similarly, the ontology introduced by the 
AcListant® project [22] proposed to use four different 
elements: callsign, type, value, and unit of a command 
[23],[24]. A further approach suggested to use keywords like 
callsign, flightlevel, altimeter for the corresponding values 
[25]. Another proposition was to have ten class labels for 
annotation of word sequences such as callsign, fix, number, 
etc. [26],[27]. The AcListant® ontology was enhanced during 
the MALORCA project [28] in which various command types 
for “information”, “reports”, and “expects” were added next to 
conditional clearances [29]. This ontology has been further 
enhanced for en-route and tower commands during the CWP 
HMI project [11]. Furthermore, the ontology with more than 
100 different command types has been agreed between major 
European partners from the air traffic management (ATM) 
domain including air navigation service providers, ATM 
system providers, and the coordinating partner DLR. The 
HAAWAII project [30] further enhanced the ontology for pilot 
utterances including their requests and reports. Also, other 
European ASR projects such as HMI Interaction modes for 
Approach control, HMI Interaction Modes for Airport Tower, 
and Safety and Artificial Intelligence Speech Recognition 
continuously contribute to the improvement of the ontology. 
The global scheme for each instruction to annotate ATC 
utterances is shown in Figure 1. Each ATC utterance can 
contain multiple instructions. 

 

Figure 1: Elements of an air traffic control instruction 
including the ATC concepts ‘callsign’, ‘command’ 

with sub-elements, and optional ‘conditions’. 

The callsign is a mandatory element for each instruction 
and might be NO_CALLSIGN if not uttered. This is followed 
by a mandatory command and may be followed by optional 
conditions. The command again can have a speaker (PILOT or 
empty for default air traffic controller), a reason 
(REPORTING, REQUEST or empty), a type (REDUCE, 
DESCEND, VACATE, CONTACT_FREQUENCY, 
CLEARED VIA, etc.), one or multiple values (“200”, “A B 
D1”, “118.300”, etc.), a unit (FL, ft, kt, none, etc.), and a 
qualifier (RIGHT, OR_LESS, etc.). The conditions have a 
conjunction and a requirement (“UNTIL 4 NM FINAL”, 
“WHEN AIRBORNE”, etc.). An ontology for annotations 
supports different purposes. It is needed as an interface to 
enable interoperability of different ASR applications with 
ATC systems. It is also necessary for evaluating automatically 
recognized commands against manual (gold) annotations. The 
name “command recognition rate” (CRR), taken from [6] has 
historical reasons. According to Figure 1, the term “instruction 
error rate” would be correct. For the calculation of the CRR, 
each command, for example consisting of the ATC concepts 
callsign, type, value, qualifier, condition, etc. is considered as 
one (big) word to compute the Levenshtein distance [31]. This 
means that a recognized command is correct only if all 
concepts (command parts) are correct, i.e., “DLH7HT 
HEADING 360 LEFT” and “DLH7HT HEADING 360 none” 
are not equal and would be counted as a full command 
recognition error. The CRR is defined as the number of 

controller commands correctly recognized by the ASR (and 
not rejected due to implausibility) divided by the total number 
of commands given or in other words: the percentage of given 
commands correctly shown on the controllers’ display. An 
example transcription and resulting annotation is given in 
Table 1. A configuration file defines allowed values for 
taxiways, holding points, etc. to map “holding point three four 
to “HP_34” here. 

Table 1: Transcription and annotation example.  

Transcription Annotation 
[NE French] bonjour [/NE] hotel 
alfa charlie india zulu [unk] taxi 
to holding point three four via 
taxiway [hes] alfa runway in use 
three four and nex* 

HACIZ TAXI TO HP_34 
HACIZ TAXI VIA A 
HACIZ INFORMATION  
     ACTIVE_RWY 
     RW34 

 

3. ATC command recognition and remote 
tower simulation trials 

3.1. ATC concept extraction for command recognition 

The command recognition algorithm consists of several steps, 
where different ATC concepts are extracted iteratively and put 
into relation to recognize them as single or multiple 
commands of an utterance (for more details see [10]). First, 
we try to extract a callsign from an ATC utterance by 
considering the callsign information from the available 
surveillance data (for controller utterances, only the first 
words are considered). Then, keywords or keyword sequences 
are extracted which initiate a command type. This step 
includes the extraction of a command type followed by 
value(s), unit, qualifier, etc. if applicable. Afterwards, we look 
for unmatched words in the complete utterance that 
correspond to non-extracted ATC concepts and we also look 
for command hints such as “feet” being used in an 
ALTITUDE command. We then search again for callsigns in 
the remaining unmatched words and then, we finally try to 
extract commands from unmatched numbers in the utterance. 
The above example transcription from Table 1 is reused for 
illustrating the algorithm here. The concept extraction model 
searches for the presence of any of the available predicted 
callsigns, e.g., AFR27C, DLH9LX, HACIZ (from surveillance 
data) in the utterance. The latter callsign matches here. Then, 
the keywords “taxi to” and the value keywords “holding point 
three four” as well as “via” and “taxiway alfa” lead to 
extraction of “TAXI TO HP_34” and “TAXI VIA A”, 
respectively. The words “runway in use” and “three four” are 
extracted as “INFORMATION ACTIVE_RWY RW34”. All 
other words (“bonjour”, “[unk]”, “[hes]”, “and nex*”) are not 
relevant for the command recognition algorithm example. 

3.2. Trials for data recording and tower considerations 

In March and December 2018 multiple remote tower trials 
with Lithuanian controllers from Oro Navigacija speaking 
accented English took place in DLR TowerLab in 
Braunschweig, Germany. These trials were conducted as 
human-in-the-loop simulations in the course of the project 
CWP HMI-ASR [32]. One controller was responsible for all 
the traffic from three international airports (named Vilnius 
(EYVI), Kaunas (EYKA), and Palanga (EYPA)) at the same 
time. In total, 41.4 hours with silence between different 
utterances aligned with radar data from the air traffic control 
simulation have been recorded. After deleting the inter-

Instruction

Command Condition(s)

Type Value(s) Unit Qualifier
Conjunction +
Requirement

ReasonSpeaker
Callsign



utterance silence, 6.86 hours of pure speech in 3,919 audio 
files remain out of the trials, but only slightly more than 50% 
of the files have been manually (gold) transcribed and 
annotated. The simulation pilot utterances were not considered 
– only those of six tower controllers. The amount and division 
of labelled offline ASR data is shown in Table 2. 

Table 2: Description of transcribed audio data sets. 

Set name # files Duration 
(hours) 

Average duration 
(sec) 

all 1,993 3.6 6.6 
adapt 1,399 2.6 6.8 
test 594 1.0 6.1 

 

The average duration of an utterance in this (Lithuanian) 
multiple remote tower environment is 6.6 seconds. This is 
significantly longer than for Vienna approach (4.4s) or Prague 
approach (5.1s) in real-life data from the MALORCA project. 
Furthermore, controllers instructed roughly 2.7 commands per 
utterance. Again, this is much more than 1.6 and 1.7 
commands per utterance from Prague and Vienna approach 
from CWP HMI-ASR simulation runs, respectively. Also, the 
variation of words, i.e., the total number of different words 
used divided by the total number of used words is higher. The 
Lithuanian tower controllers used 560 different words (in total 
32,484) compared to 196 different words (in total 31,436) for 
Vienna approach and 218 different words (in total 47,426) for 
Prague approach in CWP HMI-ASR simulation runs, 
respectively. Higher variation shows more free speech due to 
visual flight rules (VFR) traffic, e.g., vague and difficult to 
analyze commands like “fly heading north” would probably 
not be given to traffic following instrument flight rules (IFR). 
In addition, the number of different command types for tower 
ATC as modeled in the ontology is larger than for approach. 
Finally, the amount of available speech data for the tower 
domain is much less, because it is harder to record them as 
compared to the very high frequency receivers for approach 
ATC speech. All above-explained characteristics make it more 
challenging to automatically recognize tower commands. 

4. Experiments and Results 

4.1. Models and different error/recognition rates 

All ASR experiments are conducted using the Kaldi speech 
recognition toolkit. The speech recognition acoustic model 
was trained on 195 hours of data from seven datasets in the 
ATC domain (model Supervised baseline). Description of the 
training datasets can be found in [33]. Hybrid deep neural 
network (NN)–hidden Markov model (DNN-HMM) with 
lattice-free maximum mutual information (LF-MMI) loss 
function was trained using alignment from Gaussian mixture 
models (GMM) HMM. State-of-the-art ASR chain recipes 
with convolutional NN–factorized time-delay NN (CNN-
TDNNF) architecture from Kaldi toolkit was used for training. 
4-gram 1  LM in ARPA format was trained using the same 
training set. For LM adaptation to the Lithuanian ATC 
domain, linear interpolation between the general LM and the 
LM from adaptation set with 0.8 and 0.2 weights was 
performed (model + LM-mix) due to the limited dataset. For 
improving the ASR accuracy and increasing the noise 

                                                                 
 
1 3-gram LM WERs were 0.2-0.6% higher than 4-gram LM 
WERs (only the latter reported in this paper) for the models. 

robustness of the trained model, we trained a semi-supervised 
model using 400 hours of unsupervised data from LiveATC 
dataset [34]. Incremental method was used for training the 
semi-supervised model [35]. We divided the unlabeled data to 
four 100 hours subsets. Starting from one subset, in each 
training iteration we added one unseen subset to the previous 
subsets. We extracted 86 out-of-vocabulary words including 
waypoints, airlines, and some local terms from the transcribed 
data. These words were added to the decoding graph for all 
experiments. The WER of the trained ASR models on test set 
is shown in Table 3. LM interpolation improved the WER on 
the test set by 9%. Effective mapping of LM using the dataset 
with similar phraseology pattern is one main reason for 
observing this improvement. In addition, including 
unsupervised data from ATC domain improved the ASR 
accuracy by 3%. It shows more robustness of the semi-
supervised acoustic model w.r.t. the supervised model. 
Analysis on the recognition errors shows the majority of errors 
in the supervised baseline model are because of deviation of 
the main LM w.r.t. the in-domain data. Semi-supervised model 
reduced the recognition errors of the noisy segments and 
majority of the substitution errors are words with similarity in 
the pronunciation, e.g., "flight" and "sight". 

Table 3: Applied models (with 4-gram LM), word 
error rate (WER), command recognition rate (CRR), 
command recognition error rate (CER), and callsign 
recognition rate (CaRR) for tower utterances from 

Lithuanian controllers on test set in [%]. 

Model WER CRR CER CaRR 
Supervised baseline 20.8 59.0 14.1 79.5 

 + LM-mix 11.8 78.4 8.2 93.8 
 + Semi-supervised 8.8 84.3 7.7 96.3 

 

The CRR in Table 3 is calculated on annotations. Thus, it 
can only loosely be compared to the sentence accuracy 
calculated on transcriptions – 1 minus sentence error rate 
(SER) – being used to evaluate ASR applications outside ATC 
domain. The CRR with gold transcription input, where a WER 
of 0% is assumed – compared to gold annotations is 95.8% 
with a command recognition error rate (CER) of 2.7%. From 
Table 3 we see that despite the high WER of almost 21%, a 
CRR of 59% is reached. With improved models, the WER 
decreases to roughly 12% and 9% which leads to CRRs of 
78% and even 84%, respectively. As an example, the best and 
worst CRR per speaker were less than 5% different from the 
reported average using the semi-supervised model. A lower 
CRR does not really affect the workload of a controller. If 
there is no support by the ASR system in feeding recognized 
commands into the ATC system, the situation is comparable to 
today. Of course, higher CRRs reduce controller workload. 
However, if the CER increases, this results in additional 
workload for the controller to first recognize the error, then to 
delete the wrong result, and then to manually correct the 
wrong automatic input. A CER of 7.7% means that each 
thirteenth command needs to be corrected by the controller. 
With a higher WER of 20.8%, the number of errors is almost 
two-and-a-half times higher than 8.8%. The CER, on the other 
hand, also increases with increased WER but only from 7.7% 
to 14% (less than twice the number of errors). Using the 
baseline model, each seventh command would need to be 
corrected by the controller. The reason is that high WERs may 
lead to recognizing nothing at all on concept level, i.e., the 
recognized concept is rejected, because, e.g., a heading 
command of 733 degrees is extracted. 



The callsign recognition rate (CaRR) is also listed in Table 
3. It is the most important ATC concept and can heavily 
influence the CRR, because the callsign is part of each 
command. From the perspective of an ATC application, the 
recognized callsign should be highlighted in the controller 
display to ease identifying the current communicating aircraft, 
and to speed up checking and correcting of recognized 
commands. The reference CaRR, i.e., automatic callsign 
extraction compared to the callsigns from gold annotation is 
99%. The CaRR for the three model achieves roughly 80% to 
over 96%. Hence, the recognition rates for callsigns are much 
better than for commands in general. This is due to the usage 
of Assistant Based Speech Recognition (ABSR), first 
described in [6], which relies on using context information 
from the corresponding radar data. 

4.2. Analysis of command recognition performance 

Figure 2 shows the theoretical CERs if words from automatic 
transcriptions would be independent of each other given the 
three different WERs plus the perfect WER of 0%. It also 
presents the corresponding four achieved CRRs for the 
observed average number of six words per command. 

 

Figure 2: Theoretical CRR for different number of 
words per command (sentence length) and measured 

CRR for average length of 6 words. 

From Figure 2 we see that with a WER of 0%, the CRR 
should be 100%. We, however, currently reach only 95.8% 
based on 68 different used ATC command types. This is on 
the one hand due to challenges with controller utterances 
being “far away” from ICAO phraseology rules [36], e.g., 
uttering “lufthansa two victor” if “DLH23W” is meant or 
instructing just the three words “two six zero”, which can be a 
heading, speed, flight level, etc. [37]. The most recognition 
errors deal with command types TAXI, DIRECT_TO, and 
INFORMATION TRAFFIC/ACTIVE_RWY. On the other 
hand, the 5,367 gold annotations of the commands still contain 
some errors, i.e., the automatic annotation is already better 
than the manual annotation. However, for higher WERs, we 
achieve much better CRRs than theoretically achievable, if 
recognized words would be independent and word errors 
would be equally distributed. For example, a WER of 8.8% 
should enable a CRR of 58% for an average of 6 words per 
command, but we even observe above 84%. For a WER of 
11.8%, we achieve a CRR of 78.4% compared to 47% based 
on independence assumption; and for a WER of 20.8%, we 
still achieve a CRR of 59% compared to 25% based on 
independence assumption. Hence, the WER only gives some 
hints to the performance of a speech recognition system in the 
ATC world. However, the CRR (or CER) is much more 

important for the end user and is more robust against higher 
WERs, i.e., achieve roughly 30% better recognition results 
than expectable due to the independence assumption. 

Furthermore, it is more important to recognize longer 
words correctly than shorter words. If we replace each word in 
the speech recognition hypotheses files up to a length of 
2,3,4,5,6 letters by “x”, we see a steep decrease of command 
recognition rates when replacing words with up to three letters 
as shown in Table 4. If we replace the words with up to three 
letters, it means that we also replace the words with one and 
two letters. However, it is also connected to the number of 
replaced words, i.e., we roughly replace 0.1% (1), 5% (2), 
25% (3), 51% (4), and 73% (5) of words. 

Table 4: CRRs in [%] in case of replaced words up to 
the listed number of letters per word (1,2,3,4,5). 

Model 1 2 3 4 5 
Supervised baseline 59.0 51.6 17.1 3.0 0.4 
 +  LM-mix 78.4 69.6 23.6 4.9 0.6 
 +  Semi-supervised 84.3 75.1 27.3 5.3 0.9 

 

This trend can be explained with the importance of certain 
words (given their length and number of occurrence) for the 
command recognition process. If words such as “a” or “A” are 
missing (1), there is hardly any negative effect. If words such 
as “to”, “in”, “up”, “by”, “or” are missing (2), there is a slight 
decrease in recognition. However, if meaningful words – 
especially numbers – such as “one”, “two”, “six”, “via”, 
“QNH”, “KLM” are missing (3), we see a dramatic decrease. 
When replacing even longer words (4) such as “zero”, “four”, 
“five”, “nine”, “feet”, “taxi”, “wind”, “west”, “east”, “left” the 
recognition becomes hardly usable. It is completely unusable 
if even longer words such as “right”, “descend”, “vacate”, 
“takeoff”, “knots”, “degrees”, “lufthansa” are replaced. 

5. Conclusions and future work 

This paper applies ontology-based command recognition on 
automatic transcriptions from ATC tower utterances of 
Lithuanian controllers with different WERs. Compared to the 
approach environment, tower utterances are longer, have more 
speech variety, more command types, and less available 
training data, i.e., recognition of words and commands is more 
challenging than in the approach environment. The baseline 
speech recognition is developed based on approach data, the 
first speech recognition solution uses language model 
adaptation, the second solution performed a semi-supervised 
approach leading to the best WER with around 9%. The 
resulting command recognition rates have proven to be robust 
(slight decrease) even on higher WERs. With current LM 
models, CRRs of 85% are possible. 

In future, for alleviating the lack of transcribed speech 
data in the tower domain, we will focus on semi-supervised 
acoustic model adaptation for improving the accuracy of the 
ASR system on specific accents. The project HMI Interaction 
Modes for Airport Tower [38] will investigate the effect of 
presenting command recognition output to tower controllers in 
a human-in-the-loop simulation. These multiple remote tower 
trials will be conducted in the first quarter of 2022 in DLR 
TowerLab with controllers from Lithuania, Austria, and 
Poland. Controllers will benefit from callsign highlighting, 
recognized and displayed ATC concepts / commands in 
ontology annotation format. The presented results are already 
a good starting point and would enable a workload reduction 
compared to manually entering all given commands. 
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