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Abstract

The maturity of automatic speech recognition (ASR) systems
at controller working positions is currently a highly relevant
technological topic in air traffic control (ATC). However,
ATC service providers are less interested in pure word error
rate (WER). They want to see benefits of ASR applications for
ATC. Such applications transform recognized word sequences
into semantic meanings, i.e., a number of related concepts
such as callsign, type, value, unit, etc., which are combined to
form commands. Digitized concepts or recognized commands
can enter ATC systems based on an ontology for utterance
annotation agreed between European ATC stakeholders.
Command recognition (CR) has already been performed in
approach control. However, spoken utterances of tower
controllers are longer, include more free speech, and contain
other command types than in approach. An automatic CR rate
of 95.8% is achievable on perfect word recognition, i.e.,
manually transcribed audio recordings (gold transcriptions),
taken from Lithuanian controllers in a multiple remote tower
environment. This paper presents CR results for various
speech-to-text models with different WERs on tower
utterances. Although WERs were around 9%, we achieve CR
rates of 85%. CR rates only slightly decrease with higher
WERs, which enables to bring ASR applications closer to
operational ATC environment.

Index Terms: speech recognition, speech understanding,
command recognition rate, air traffic control, tower utterances

1. Introduction

Automatic speech recognition (ASR) in air traffic control
(ATC) existed decades ago [1],[2]. However, it got more
powerful in the last decade due to improved computing power
for model training and accelerating digitization in the ATC
domain. Normally, the step that follows ASR is language
understanding — in ATC, also called as spoken instruction
understanding [3]. Different projects have shown possible
applications [4] such as runway incursion detection [5],
decision support input [6], radar label maintenance [7],[8],
etc., which ultimately results in benefits such as workload
reduction for air traffic controllers [9]. For language
understanding, multiple words are analyzed to extract the
semantic meaning (concept extraction) of utterances, which
includes the extractions of ATC concepts, such as callsigns,
command types, command values, units, conditions, etc. The
extraction of these ATC concepts is supported by machine
learning algorithms [10]. The ATC concepts can be annotated

by applying the rules of an ontology, agreed by 14 European
air navigation service and system providers [11]. Concept
extraction has already been applied to ATC utterances from
the approach domain and to manually transcribed (gold) ATC
utterances from the tower domain [12]. Our approach in this
paper is among the first applications to apply command
recognition on partly erroneous recognized speech text from
the tower domain'. With this approach, we investigate the
effect of using unsupervised data for training a robust acoustic
model for the ATC domain. The improvement of word error
rate (WER) and the partly dependent enhancement of
command recognition rate (CRR) are important steps to
achieve higher technology readiness levels because the ATC
end users are interested in low error rates on semantic level.
The next section presents related work on language modeling,
transcription rules, and the annotation ontology. Section 3
describes the ATC concept extraction to recognize commands
as well as trials for data acquisition and analysis. The
recognition experiments and results are shown in section 4.
Section 5 concludes and gives an outlook on future work.

2. Related Work

2.1. Language Modeling

Several LM adaptation or interpolation techniques were
proposed for mapping the language model (LM) to the specific
domain, e.g., linear interpolation, Bayesian interpolation and
count merging. Bayesian interpolation was introduced in [13].
[14] and [15] showed that count merging with two data
sources is a specific style of maximizing a posteriori (MAP)
adaptation. [16] shows the theoretical connections between the
mentioned LM interpolation techniques.

2.2. Transcription Rules and Annotation Ontology

Different transcription rules for ATC utterances have been
defined and used for existing audio corpora [17]-[20] such as:

o Spelled letters — not pronounced using the International
Civil Aviation Organization (ICAO) alphabet such as
alfa, bravo, etc. — e.g., “~k~l~m”/“KLM”/“K L M”,

e Truncated/broken word parts, e.g., “luf="/“luf*”/“luf-"
if “lufthansa” was not uttered fully till the end,

e Non-understandable words (“[unk]” / “[UNKNOWN]”)
and human noise/thinking loud (“[hes]” / “[HNOISE]”),

e Non-English words, e.g., “<FL></FL>"/ “[NE][/NE]”.

! For funding information please refer to [38],[11],[30].



Also, for the annotation of semantic meanings of the ATC
transcriptions different ontologies or rule sets exist. An early
ontology developed by NATS for the terminal environment
comprised of callsign, standard type, non-standard type, value,
and type unit [21]. Similarly, the ontology introduced by the
AcListant® project [22] proposed to use four different
elements: callsign, type, value, and unit of a command
[23],[24]. A further approach suggested to use keywords like
callsign, flightlevel, altimeter for the corresponding values
[25]. Another proposition was to have ten class labels for
annotation of word sequences such as callsign, fix, number,
etc. [26],[27]. The AcListant® ontology was enhanced during
the MALORCA project [28] in which various command types
for “information”, “reports”, and “expects” were added next to
conditional clearances [29]. This ontology has been further
enhanced for en-route and tower commands during the CWP
HMI project [11]. Furthermore, the ontology with more than
100 different command types has been agreed between major
European partners from the air traffic management (ATM)
domain including air navigation service providers, ATM
system providers, and the coordinating partner DLR. The
HAAWAII project [30] further enhanced the ontology for pilot
utterances including their requests and reports. Also, other
European ASR projects such as HMI Interaction modes for
Approach control, HMI Interaction Modes for Airport Tower,
and Safety and Artificial Intelligence Speech Recognition
continuously contribute to the improvement of the ontology.
The global scheme for each instruction to annotate ATC
utterances is shown in Figure 1. Each ATC utterance can
contain multiple instructions.

Instruction

l Speaker " Reason || " Unit “ Qualiﬁerl

Figure 1: Elements of an air traffic control instruction
including the ATC concepts ‘callsign’, ‘command’
with sub-elements, and optional ‘conditions’.

The callsign is a mandatory element for each instruction
and might be NO_CALLSIGN if not uttered. This is followed
by a mandatory command and may be followed by optional
conditions. The command again can have a speaker (PILOT or
empty for default air traffic controller), a reason
(REPORTING, REQUEST or empty), a type (REDUCE,
DESCEND, VACATE, CONTACT_FREQUENCY,
CLEARED VIA, etc.), one or multiple values (“200”, “A B
D17, “118.300”, etc.), a unit (FL, ft, kt, none, etc.), and a
qualifier (RIGHT, OR_LESS, etc.). The conditions have a
conjunction and a requirement (“UNTIL 4 NM FINAL”,
“WHEN AIRBORNE”, etc.). An ontology for annotations
supports different purposes. It is needed as an interface to
enable interoperability of different ASR applications with
ATC systems. It is also necessary for evaluating automatically
recognized commands against manual (gold) annotations. The
name “command recognition rate” (CRR), taken from [6] has
historical reasons. According to Figure 1, the term “instruction
error rate” would be correct. For the calculation of the CRR,
each command, for example consisting of the ATC concepts
callsign, type, value, qualifier, condition, etc. is considered as
one (big) word to compute the Levenshtein distance [31]. This
means that a recognized command is correct only if all
concepts (command parts) are correct, ie., “DLH7HT
HEADING 360 LEFT” and “DLH7HT HEADING 360 none”
are not equal and would be counted as a full command
recognition error. The CRR is defined as the number of

controller commands correctly recognized by the ASR (and
not rejected due to implausibility) divided by the total number
of commands given or in other words: the percentage of given
commands correctly shown on the controllers’ display. An
example transcription and resulting annotation is given in
Table 1. A configuration file defines allowed values for
taxiways, holding points, etc. to map “holding point three four
to “HP_34” here.

Table 1: Transcription and annotation example.

Transcription Annotation

[NE French] bonjour [/NE] hotel
alfa charlie india zulu [unk] taxi

HACIZ TAXI TO HP_34
HACIZ TAXI VIA A

to holding point three four via HACIZ INFORMATION
taxiway [hes] alfa runway in use ACTIVE RWY
three four and nex* RW34

3. ATC command recognition and remote
tower simulation trials

3.1. ATC concept extraction for command recognition

The command recognition algorithm consists of several steps,
where different ATC concepts are extracted iteratively and put
into relation to recognize them as single or multiple
commands of an utterance (for more details see [10]). First,
we try to extract a callsign from an ATC utterance by
considering the callsign information from the available
surveillance data (for controller utterances, only the first
words are considered). Then, keywords or keyword sequences
are extracted which initiate a command type. This step
includes the extraction of a command type followed by
value(s), unit, qualifier, etc. if applicable. Afterwards, we look
for unmatched words in the complete utterance that
correspond to non-extracted ATC concepts and we also look
for command hints such as “feet” being used in an
ALTITUDE command. We then search again for callsigns in
the remaining unmatched words and then, we finally try to
extract commands from unmatched numbers in the utterance.
The above example transcription from Table 1 is reused for
illustrating the algorithm here. The concept extraction model
searches for the presence of any of the available predicted
callsigns, e.g., AFR27C, DLH9LX, HACIZ (from surveillance
data) in the utterance. The latter callsign matches here. Then,
the keywords “taxi to” and the value keywords “holding point
three four” as well as “via” and “taxiway alfa” lead to
extraction of “TAXI TO HP_34” and “TAXI VIA A”,
respectively. The words “runway in use” and “three four” are
extracted as “INFORMATION ACTIVE RWY RW34”. All
other words (“bonjour”, “[unk]”, “[hes]”, “and nex*”) are not
relevant for the command recognition algorithm example.

3.2. Trials for data recording and tower considerations

In March and December 2018 multiple remote tower trials
with Lithuanian controllers from Oro Navigacija speaking
accented English took place in DLR TowerLab in
Braunschweig, Germany. These trials were conducted as
human-in-the-loop simulations in the course of the project
CWP HMI-ASR [32]. One controller was responsible for all
the traffic from three international airports (named Vilnius
(EYVI), Kaunas (EYKA), and Palanga (EYPA)) at the same
time. In total, 41.4 hours with silence between different
utterances aligned with radar data from the air traffic control
simulation have been recorded. After deleting the inter-



utterance silence, 6.86 hours of pure speech in 3,919 audio
files remain out of the trials, but only slightly more than 50%
of the files have been manually (gold) transcribed and
annotated. The simulation pilot utterances were not considered
— only those of six tower controllers. The amount and division
of labelled offline ASR data is shown in Table 2.

Table 2: Description of transcribed audio data sets.

Set name  # files Duration Average duration
(hours) (sec)
all 1,993 3.6 6.6
adapt 1,399 2.6 6.8
test 594 1.0 6.1

The average duration of an utterance in this (Lithuanian)
multiple remote tower environment is 6.6 seconds. This is
significantly longer than for Vienna approach (4.4s) or Prague
approach (5.1s) in real-life data from the MALORCA project.
Furthermore, controllers instructed roughly 2.7 commands per
utterance. Again, this is much more than 1.6 and 1.7
commands per utterance from Prague and Vienna approach
from CWP HMI-ASR simulation runs, respectively. Also, the
variation of words, i.e., the total number of different words
used divided by the total number of used words is higher. The
Lithuanian tower controllers used 560 different words (in total
32,484) compared to 196 different words (in total 31,436) for
Vienna approach and 218 different words (in total 47,426) for
Prague approach in CWP HMI-ASR simulation runs,
respectively. Higher variation shows more free speech due to
visual flight rules (VFR) traffic, e.g., vague and difficult to
analyze commands like “fly heading north” would probably
not be given to traffic following instrument flight rules (IFR).
In addition, the number of different command types for tower
ATC as modeled in the ontology is larger than for approach.
Finally, the amount of available speech data for the tower
domain is much less, because it is harder to record them as
compared to the very high frequency receivers for approach
ATC speech. All above-explained characteristics make it more
challenging to automatically recognize tower commands.

4. Experiments and Results

4.1. Models and different error/recognition rates

All ASR experiments are conducted using the Kaldi speech
recognition toolkit. The speech recognition acoustic model
was trained on 195 hours of data from seven datasets in the
ATC domain (model Supervised baseline). Description of the
training datasets can be found in [33]. Hybrid deep neural
network (NN)-hidden Markov model (DNN-HMM) with
lattice-free maximum mutual information (LF-MMI) loss
function was trained using alignment from Gaussian mixture
models (GMM) HMM. State-of-the-art ASR chain recipes
with convolutional NN-factorized time-delay NN (CNN-
TDNNF) architecture from Kaldi toolkit was used for training.
4-gram' LM in ARPA format was trained using the same
training set. For LM adaptation to the Lithuanian ATC
domain, linear interpolation between the general LM and the
LM from adaptation set with 0.8 and 0.2 weights was
performed (model + LM-mix) due to the limited dataset. For
improving the ASR accuracy and increasing the noise

! 3-gram LM WERs were 0.2-0.6% higher than 4-gram LM
WERSs (only the latter reported in this paper) for the models.

robustness of the trained model, we trained a semi-supervised
model using 400 hours of unsupervised data from LiveATC
dataset [34]. Incremental method was used for training the
semi-supervised model [35]. We divided the unlabeled data to
four 100 hours subsets. Starting from one subset, in each
training iteration we added one unseen subset to the previous
subsets. We extracted 86 out-of-vocabulary words including
waypoints, airlines, and some local terms from the transcribed
data. These words were added to the decoding graph for all
experiments. The WER of the trained ASR models on test set
is shown in Table 3. LM interpolation improved the WER on
the test set by 9%. Effective mapping of LM using the dataset
with similar phraseology pattern is one main reason for
observing this improvement. In addition, including
unsupervised data from ATC domain improved the ASR
accuracy by 3%. It shows more robustness of the semi-
supervised acoustic model w.r.t. the supervised model.
Analysis on the recognition errors shows the majority of errors
in the supervised baseline model are because of deviation of
the main LM w.r.t. the in-domain data. Semi-supervised model
reduced the recognition errors of the noisy segments and
majority of the substitution errors are words with similarity in
the pronunciation, e.g., "flight" and "sight".

Table 3: Applied models (with 4-gram LM), word
error rate (WER), command recognition rate (CRR),
command recognition error rate (CER), and callsign

recognition rate (CaRR) for tower utterances from

Lithuanian controllers on test set in [%].

Model WER CRR CER CaRR
Supervised baseline ~ 20.8 59.0 14.1 79.5
+ LM-mix 11.8 78.4 8.2 93.8

+ Semi-supervised 8.8 84.3 7.7 96.3

The CRR in Table 3 is calculated on annotations. Thus, it
can only loosely be compared to the sentence accuracy
calculated on transcriptions — 1 minus sentence error rate
(SER) — being used to evaluate ASR applications outside ATC
domain. The CRR with gold transcription input, where a WER
of 0% is assumed — compared to gold annotations is 95.8%
with a command recognition error rate (CER) of 2.7%. From
Table 3 we see that despite the high WER of almost 21%, a
CRR of 59% is reached. With improved models, the WER
decreases to roughly 12% and 9% which leads to CRRs of
78% and even 84%, respectively. As an example, the best and
worst CRR per speaker were less than 5% different from the
reported average using the semi-supervised model. A lower
CRR does not really affect the workload of a controller. If
there is no support by the ASR system in feeding recognized
commands into the ATC system, the situation is comparable to
today. Of course, higher CRRs reduce controller workload.
However, if the CER increases, this results in additional
workload for the controller to first recognize the error, then to
delete the wrong result, and then to manually correct the
wrong automatic input. A CER of 7.7% means that each
thirteenth command needs to be corrected by the controller.
With a higher WER of 20.8%, the number of errors is almost
two-and-a-half times higher than 8.8%. The CER, on the other
hand, also increases with increased WER but only from 7.7%
to 14% (less than twice the number of errors). Using the
baseline model, each seventh command would need to be
corrected by the controller. The reason is that high WERs may
lead to recognizing nothing at all on concept level, i.e., the
recognized concept is rejected, because, e.g., a heading
command of 733 degrees is extracted.



The callsign recognition rate (CaRR) is also listed in Table
3. It is the most important ATC concept and can heavily
influence the CRR, because the callsign is part of each
command. From the perspective of an ATC application, the
recognized callsign should be highlighted in the controller
display to ease identifying the current communicating aircraft,
and to speed up checking and correcting of recognized
commands. The reference CaRR, i.e., automatic callsign
extraction compared to the callsigns from gold annotation is
99%. The CaRR for the three model achieves roughly 80% to
over 96%. Hence, the recognition rates for callsigns are much
better than for commands in general. This is due to the usage
of Assistant Based Speech Recognition (ABSR), first
described in [6], which relies on using context information
from the corresponding radar data.

4.2. Analysis of command recognition performance

Figure 2 shows the theoretical CERs if words from automatic
transcriptions would be independent of each other given the
three different WERs plus the perfect WER of 0%. It also
presents the corresponding four achieved CRRs for the
observed average number of six words per command.

Theoretical and achieved command recognition rates
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Number of words per command
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Figure 2: Theoretical CRR for different number of
words per command (sentence length) and measured
CRR for average length of 6 words.

From Figure 2 we see that with a WER of 0%, the CRR
should be 100%. We, however, currently reach only 95.8%
based on 68 different used ATC command types. This is on
the one hand due to challenges with controller utterances
being “far away” from ICAO phraseology rules [36], e.g.,
uttering “lufthansa two victor” if “DLH23W” is meant or
instructing just the three words “two six zero”, which can be a
heading, speed, flight level, etc. [37]. The most recognition
errors deal with command types TAXI, DIRECT TO, and
INFORMATION TRAFFIC/ACTIVE_RWY. On the other
hand, the 5,367 gold annotations of the commands still contain
some errors, i.e., the automatic annotation is already better
than the manual annotation. However, for higher WERs, we
achieve much better CRRs than theoretically achievable, if
recognized words would be independent and word errors
would be equally distributed. For example, a WER of 8.8%
should enable a CRR of 58% for an average of 6 words per
command, but we even observe above 84%. For a WER of
11.8%, we achieve a CRR of 78.4% compared to 47% based
on independence assumption; and for a WER of 20.8%, we
still achieve a CRR of 59% compared to 25% based on
independence assumption. Hence, the WER only gives some
hints to the performance of a speech recognition system in the
ATC world. However, the CRR (or CER) is much more

important for the end user and is more robust against higher
WERSs, i.e., achieve roughly 30% better recognition results
than expectable due to the independence assumption.

Furthermore, it is more important to recognize longer
words correctly than shorter words. If we replace each word in
the speech recognition hypotheses files up to a length of
2,3,4,5,6 letters by “x”, we see a steep decrease of command
recognition rates when replacing words with up to three letters
as shown in Table 4. If we replace the words with up to three
letters, it means that we also replace the words with one and
two letters. However, it is also connected to the number of
replaced words, i.e., we roughly replace 0.1% (1), 5% (2),
25% (3), 51% (4), and 73% (5) of words.

Table 4: CRRs in [%] in case of replaced words up to
the listed number of letters per word (1,2,3,4,5).

Model 1 2 3 4 5
Supervised baseline 59.0 51.6 17.1 3.0 04
+ LM-mix 784 69.6 236 49 0.6
+ Semi-supervised 84.3 75.1 273 53 0.9

This trend can be explained with the importance of certain
words (given their length and number of occurrence) for the
command recognition process. If words such as “a” or “A” are
missing (1), there is hardly any negative effect. If words such
as “to”, “in”, “up”, “by”, “or” are missing (2), there is a slight
decrease in recognition. However, if meaningful words —
especially numbers — such as “one”, “two”, “six”, “via”,
“QNH”, “KLM” are missing (3), we see a dramatic decrease.
When replacing even longer words (4) such as “zero”, “four”,
“five”, “nine”, “feet”, “taxi”, “wind”, “west”, “east”, “left” the
recognition becomes hardly usable. It is completely unusable
if even longer words such as “right”, “descend”, “vacate”,

“takeoft”, “knots”, “degrees”, “lufthansa” are replaced.

5. Conclusions and future work

This paper applies ontology-based command recognition on
automatic transcriptions from ATC tower utterances of
Lithuanian controllers with different WERs. Compared to the
approach environment, tower utterances are longer, have more
speech variety, more command types, and less available
training data, i.e., recognition of words and commands is more
challenging than in the approach environment. The baseline
speech recognition is developed based on approach data, the
first speech recognition solution uses language model
adaptation, the second solution performed a semi-supervised
approach leading to the best WER with around 9%. The
resulting command recognition rates have proven to be robust
(slight decrease) even on higher WERs. With current LM
models, CRRs of 85% are possible.

In future, for alleviating the lack of transcribed speech
data in the tower domain, we will focus on semi-supervised
acoustic model adaptation for improving the accuracy of the
ASR system on specific accents. The project HMI Interaction
Modes for Airport Tower [38] will investigate the effect of
presenting command recognition output to tower controllers in
a human-in-the-loop simulation. These multiple remote tower
trials will be conducted in the first quarter of 2022 in DLR
TowerLab with controllers from Lithuania, Austria, and
Poland. Controllers will benefit from callsign highlighting,
recognized and displayed ATC concepts / commands in
ontology annotation format. The presented results are already
a good starting point and would enable a workload reduction
compared to manually entering all given commands.
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