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ABSTRACT
Biometric recognition systems relying on finger vein have
gained a lot of attention in recent years. Besides security,
the privacy of finger vein recognition systems is always a
crucial concern. To address the privacy concerns, several
biometric template protection (BTP) schemes are introduced
in the literature. However, despite providing privacy, BTP
algorithms often affect the recognition performance. In this
paper, we propose a deep-learning-based approach for secure
finger vein recognition. We use a convolutional auto-encoder
neural network with a multi-term loss function. In addition to
the auto-encoder loss function, we deploy triplet loss for the
embedding features. Next, we apply Biohashing to our deep
features to generate protected templates. The experimental
results indicate that the proposed method achieves superior
performance to previous finger vein recognition methods pro-
tected with Biohashing. Besides, our proposed method has
less execution time and requires less memory.1

Index Terms— Auto-encoder, Biohashing, convolutional
neural network, deep learning, finger vein recognition, tem-
plate protection.

1. INTRODUCTION

Biometric recognition systems are growing and widely used
in different applications for authentication purposes. In con-
trast to the conventional authentication tools such as PIN or
password, which are always in danger of being forgotten or
stolen, biometric authentication offers excellent convenience
for the user. Meanwhile, a very crucial concern in biometric
systems is privacy. It is mainly because if a biometric tem-
plate is compromised, it can not be revoked or changed [1].
To address this challenge, many biometric template protec-
tion (BTP) schemes are introduced in the literature. Although
BTP algorithms provide privacy for the biometric system, they
affect the recognition performance.

In finger vein biometric systems, the recognition relies
on vascular patterns which are formed by blood vessels of a
human finger. Since these patterns have adequate traits, they
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Fig. 1: Two sample finger vein images from UTFVP dataset
[12] and their corresponding WLD, RLT, and MC features for
two individuals in the UTFVP dataset: (a) WLD, (b) RLT, (c)
MC, (d) Finger vein image.

are used for the purpose of automatic individual recognition.
Several methods have been proposed in the literature to extract
such features from finger vein images. Most of these methods
[2, 3, 4, 5, 6, 7] extract the binary vessel structure and then
compare the extracted templates using the Miura algorithm
[4]. Figure 1 shows two sample finger vein images and their
corresponding Wide Line Detector (WLD) [2], Repeated Line
Tracking (RLT) [3], and Maximum Curvature (MC) [4] fea-
tures. Besides these methods, some other methods are recently
proposed which use deep neural networks [8, 9, 10]. Nev-
ertheless, these methods are vulnerable to direct and indirect
attacks[11].

Additional works try to increase protection of finger vein
recognition (FVR) systems. In [13], authors explore the effect
of Biohashing template protection algorithm [14] on the per-
formance of a FVR system using WLD, RLT, and MC feature
extractors. In [15], authors use Index-of-Maximum (IoM)
[16] hashing to propose an alignment-free template protection
scheme. In [17], authors use a user-specific random projec-
tion on the extracted biometric features to reduce the features
dimension and generate protected templates. Then, they train
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Fig. 2: Block-diagram of the proposed method

a deep belief networks to match the protected templates. In
[18], authors use Biohashing for the extracted features, and
then apply a binary transformation on the Biohashing output.
Finally, the results are given to a multilayer extreme learning
machine (ML-ELM) for training and classification.

In this paper, we propose a novel deep-learning-based
approach for secure FVR. As depicted in figure 2, we use a
convolutional neural network (CNN) with an auto-encoder
(AE) structure. We train the proposed CNN with a multi-
term loss function, including an auto-encoder reconstruction
loss and a triplet loss for the bottleneck (embedding) layer.
Then, we use the features at the embedding layer and ap-
ply Biohashing [14] to generate protected templates. To our
knowledge this approach is original and it was never proposed
to reduce the dimensionality of finger vein images with a deep
AE prior standard Biohashing, hence avoiding the enormous
dimensionality reduction gap achieved by applying directly
Biohashing to pre-processed images. It is worth mentioning
that Biohashing relies on a random projection matrix, which
is often referred to as key. In practice, the seed of the matrix
generation is used as the key. Hence, if the key is stolen, the
performance of the system can be affected. Therefore, we
define two scenarios to evaluate the performance of the pro-
tected templates: the normal scenario and the stolen scenario.
In the normal scenario, the protected biometric templates are
used without performing any attack (templates are not com-
promised). However, in the stolen scenario, we consider the
situation when a genuine user’s key is stolen, and it is used by
an impostor to perform an attack. Experimental results indi-
cate that in comparison to the previous FVR methods, which
are secured with Biohashing, our method is superior both in
the normal scenario and the stolen scenario. Furthermore, our
model requires less memory to store the projection matrix.

The rest of the paper is organized as follows. Section 2
introduces the proposed method and the experimental results
are provided in Section 3. Finally, the paper is concluded in
Section 4.

2. PROPOSED METHOD

2.1. Overview

As explained in Section 1, we propose a deep-learning-based
approach for FVR. Figure 2 illustrates the block diagram of

the proposed method. As shown in this figure, we use a deep
convolutional auto-encoder to extract features from finger vein
images, which is explained in detail in section 2.2. Next, we
use the Biohashing algorithm to generate protected templates.
This algorithm is also explained in section 2.3. Finally, for the
recognition stage, the Biohash templates should be compared,
which is described in 2.4.

It is noteworthy that the proposed FVR method is can-
cellable as well, because Biohashing is cancellable. Indeed,
a new protected template can be generated any time using
Biohashing with a new key.

2.2. Auto-encoder

2.2.1. Network Structure

We use a convolutional auto-encoder that reduces the size of
the input image by the encoder to generate the embedding
layer, and then reconstruct the image by the decoder. The
encoder network consists of five convolutional layers with 16,
32, 64, 128, 256 filters, respectively. We use 3×3 kernel with
stride 2 in each layer, which divides the spatial size by factor 2.
Additionally, we use Batch normalization [19] after each con-
volution operation. Finally, we use a fully connected layer to
get the embedding layer. In this paper, we consider the embed-
ding layer with length 100. For the decoder network, we use the
transpose convolution layers. Except for the final layer, which
has sigmoid function, we use the rectified linear unit (ReLU)
for the other layers. In our experiments, we use the UTFVP
dataset[12] which contains images with 672×380 resolution,
and then get 100-length features from the embedding layer.

2.2.2. Multi-term Loss Function

To train the proposed network, we use a multi-term loss func-
tion. Let’s consider I , Î ,Γ as the input image, the reconstructed
image, and the embedding layer, respectively. The total loss is

Ltotal=(1−α)LAE+αLtriplet, (1)

where α is a hyper-parameter (in [0,1] interval) to control the
contribution of LAE and Ltriplet, where LAE and Ltriplet are
the auto-encoder loss, and the embedding triplet loss, respec-
tively. For the auto-encoder loss, we use the weighted sum of



l1 and l2 norm of the auto-encoder error which we empirically
observed to produce a better accuracy than l2 norm alone:

LAE=∥I−Î∥2+0.5×∥I−Î∥1 (2)

Furthermore, the embedding triplet loss is defined as below:

Ltriplet=sigmoid
(
∥Γa−Γp∥22−∥Γa−Γn∥22

)
, (3)

where Γa, Γp, and Γn are the values of embedding layer for
anchor, positive, and negative images, respectively [20].

2.2.3. Training Process

To train the proposed auto-encoder with our multi-term loss
function, we use Adam [21] optimizer. We use the initial
learning rate of 10−3, and decrease the learning rate every 10
epochs. We use the Pytorch framework for the experiments.

For our experiments, we use the UTFVP finger vein dataset
[12] which contains 1440 finger vein images with 672× 380
resolution that have been collected from 60 individuals. We
apply data augmentation technique to the training set by ran-
domly adjusting each finger vein image with a combination of
the following transformations:

• rotation [range: <7 degree]
• width shift [range: <0.025× image width]
• height shift [range: <0.025× image height]
• channel shift (i.e., offset) [range: <0.075]
• zoom [range: (0.95,1.05)]

2.3. Biohashing algorithm for Template Protection

As mentioned earlier, we use the Biohashing algorithm [14] to
generate the protected templates. Let’s consider Γ, indicating
an unprotected biometric template calculated at the embedding
layer of our auto-encoder. Then, the protected template, B,
can be generated by algorithm 1 using Γ and user’s key, k. The
Biohash templates, B, and the user’s key should be eventually
stored at the system database during enrollment.

2.4. Scoring and Comparing Biohash Templates

In the subsequent experiments, we will consider that FVR
operated in verification mode only. In the enrolling stage,
the protected templates for every individual are stored at the
system database. For the verification stage, either verification
or identification, the probe templates should be compared with
the templates in the database. To find the score between the
probe template and the model template, we use the Hamming
distance between the Biohash templates.

3. EXPERIMENTAL RESULTS

3.1. Experiment Setup

As mentioned earlier, we used the publicly available finger
vein UTFVP dataset [12] in our experiments. We used the

Algorithm 1 Biohashing algorithm for template protection
1: Inputs:
2: Γ: unprotected biometric template
3: M : length of the unprotected template (Γ)
4: m : length of the protected template
5: k : user’s seed
6: Output: B = {bi|i = 1, 2, ...,m} binary BioHash protected

template
7: Procedure:
8: Generate a set of pseudo-random vectors, {ri ∈ RM |i =

1,2,...,m}, based on the user’s seed, k.
9: Apply the Gram-Schmidt process to transform the generated

pseudo-random vectors {ri ∈ RM |i = 1, ..., m} into an
orthonormal set of matrices {r⊥i∈|i=1,...,m}

10: Compute {⟨Γ,r⊥i⟩ ∈R|i= 1,...,m} where ⟨.,.⟩ indicates inner
product operation.

11: Compute m bits BioHash {bi|i=1,2,...,m} from

bi=

{
0 if ⟨Γ,r⊥i⟩≤τ
1 if ⟨Γ,r⊥i⟩>τ

,i=1,...,m,

where τ is a preset threshold.
12: End Procedure

training, development, and evaluation subsets of this dataset as
described in [13]. The training subset is used for training our
neural network, the development subset is used for threshold
estimation, and the evaluation subset is used for reporting the
final results in table 1 and table 2. We also implemented Wide
Line Detector (WLD) [2], Repeated Line Tracking (RLT) [3],
and Maximum Curvature (MC) [4] algorithms to extract bio-
metric features from finger vein images, and then generate
protected templates using Biohashing algorithm. We consider
the Biohash-protected of WLD, RLT, and MC as the baselines
in our experiments. Figure 1 shows two sample finger vein
images and the corresponding WLD, RLT, and MC features
for two individuals in the UTFVP dataset.

As mentioned in Section 1, we consider two scenarios
in our experiments: the normal scenario and the stolen sce-
nario. In the normal scenario, which is the expected scenario
for most cases, each user’s key is considered to be secret and
not been disclosed. However, in the stolen scenario, the im-
postor has access to the genuine user’s secret key and use it
with the impostor’s own finger vein template. While such a
scenario is expected to happen rarely in practice, the system’s
vulnerability relies on the leakage of the user’s secret key.

We should note that we use Bob2 toolbox [22, 23] and
the open-source implementation3 of Biohash-protected finger
vein verification systems in [13] for our experiments. In the
following experiments, we have considered Biohashing with
the length 100 for all models. In addition, we empirically fixed
the hyper-parameter α in equation 2 equal with 0.1. It is worth
mentioning that the models were evaluated on a system with an
Intel i7-7700K 4.2 GHz CPU and an NVIDIA 1080 Ti GPU.

2https://www.idiap.ch/software/bob/
3https://gitlab.idiap.ch/bob/bob.chapter.

fingerveins_biohashing
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Fig. 3: Comparison of ROC curves for our method and
previous methods: (a) normal scenario, (b) stolen scenario.

3.2. Recognition Evaluation

Figure 3 compares the receiver operating characteristic (ROC)
curves of our method (AE+Biohash) against the protected tem-
plates of WLD, RLT, and MC methods, namely WLD+Bio-
hash, RLT+Biohash, and MC+Biohash, respectively, in nor-
mal and stolen scenarios on the development subset of the
UTFVP dataset. Besides, in the normal scenario, we com-
pare the ROC curve of our method to WLD, RLT, and MC
methods alone without template protection. As shown in this
figure, in the normal scenario, our method achieves superior
performance than unprotected versions of WLD, RLT, and
MC methods and also than their Biohash-protected versions.
Similarly, in the stolen scenario, our method has far better
performance than the Biohash-protected templates of WLD,
RLT, and MC methods.

In addition to the ROC curve, we compare the performance
of our method in terms of False Match Rate (FMR), False Non-
Match Rate (FNMR), and Half Total Error Rate (HTER) for
the evaluation subset of the UTFVP dataset, which is reported
in the table 1. Please note that for the values in this table,
the threshold for each method is selected individually in the
way that we achieve minimum Equal Error Rate (EER) on the

Table 1: Comparing the performance of the proposed method
with Biohashed-protected templates of previous methods in
terms of FMR, FNMR, and HTER on the evaluation subset of
UTFVP dataset. (Note that the best performance is embolden)

Normal Scenario Stolen Scenario
method FMR FNMR HTER FMR FNMR HTER
[Proposed] 0.0% 0.0% 0.0% 18.7% 16.7% 17.7%
WLD + Biohash 1.4% 1.7% 1.5% 34.3% 44.0% 39.1%
RLT + Biohash 0.5% 0.7% 0.6% 46.8% 34.4% 40.6%
MC + Biohash 2.9% 2.3% 2.6% 42.1% 53.0% 47.5%

Table 2: The average execution time (second) and the required
memory to store the projection matrix for generating the
Biohash-protected templates

WLD MC RLT AE [Proposed]

Exe. Time 0.17 3.25 22.6 0.06 (0.004)∗

Memory 6.2 MB 106.4 MB 38.3 MB 40.0 KB
∗The values are for the CPU (GPU) implementation.

development subset. This table also confirms that our method
achieves the best performance in both the normal and the
stolen scenario. In the normal scenario, the error on test data is
surprisingly zero for our method. In addition, in the stolen sce-
nario, our proposed approach achieves far better performance
than the compared methods.

3.3. Complexity and the Required Memory

In the table 2, we compare the complexity of the mentioned
methods in terms of execution time and the required memory
to store the projection matrix for generating Biohash-protected
templates. In terms of execution time for extracting biometric
features, our method achieves the best performance. In par-
ticular, in the GPU implementation, the proposed approach
is quite fast. Besides, in terms of the required memory, our
method needs less memory to store the projection matrix for
the Biohashing algorithm. Less memory is mainly because the
number of biometric features is less in our method; therefore,
the projection matrix is smaller. However, we should note that
for the feature calculation, our method requires to store the
encoder part of our network which needs 27.5 MB RAM.

4. CONCLUSION

In this paper, we proposed a deep-learning-based approach
for secure finger vein recognition. We trained a deep convolu-
tional auto-encoder with a multi-term loss function. In addition
to the auto-encoder loss function, we used a triplet loss for the
embedding features. Next, we used the extracted features at the
embedding layer and generated protected templates using Bio-
hashing. The experimental results indicated that in the normal
scenario and in the stolen scenario, our method achieves supe-
rior performance than regular finger vein recognition methods
protected directly by Biohashing. Besides, our proposed
method has less execution time and requires less memory.
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