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Abstract—Face recognition has become a popular authenti-
cation tool in recent years. Modern state-of-the-art (SOTA) face
recognition methods rely on deep neural networks, which extract
discriminative features from face images. Although these methods
have high recognition performance, the extracted features contain
privacy-sensitive information. Hence, the users’ privacy would
be jeopardized if the features stored in the face recognition
system were compromised. Accordingly, protecting the extracted
face features (templates) is an essential task in face recognition
systems. In this paper, we use BioHashing for face template
protection and aim to establish the minimum BioHash length
that would be required in order to maintain the recognition
accuracy achieved by the corresponding unprotected system.
We consider two hypotheses and experimentally show that the
performance depends on the value of the BioHash length (as
opposed to the ratio of the BioHash length to the dimension of
the original features). To eliminate bias in our experiments, we
use several SOTA face recognition models with different network
structures, loss functions, and training datasets, and we evaluate
these models on two different datasets (LFW and MOBIO). We
provide an open-source implementation of all the experiments
presented in this paper so that other researchers can verify our
findings and build upon our work.

Index Terms—BioHashing, Biometrics, deep features, Face
recognition, Template protection

I. INTRODUCTION

Biometric recognition systems are widely used and growing
in different applications. Among biometric recognition sys-
tems, face recognition systems have become the most popular
and prevalent. With the recent advances in deep learning, the
state-of-the-art (SOTA) face recognition methods are mainly
based on deep neural networks (DNNs). In such systems, a
convolutional neural network (CNN) is used to extract fea-
tures, called ”embeddings”, from face images. These deep fea-
tures are stored in the system’s database during the enrollment
stage and are later used for recognition. Therefore, the features
stored in the system’s database contain critical information
about the users’ identities [1]. Since biometric traits, like face,
are unique and cannot be changed, the users’ privacy would
be jeopardized if their biometric features were compromised
[2]. To tackle privacy issues in biometric recognition systems,
several biometric template protection (BTP) methods have
been proposed in the literature [2], [3]. Generally, a biometric
template protection scheme should have four main properties
[4], [5]:
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• Recognition Performance: Template protection should not
result in recognition accuracy degradation, meaning that
the protected templates should have accurate recognition.

• Irreversibility: It should be computationally impossible to
reconstruct the original biometric data from the protected
templates.

• Cancelability: We should be able to revoke the enrolled
protected templates if they are compromised and replace
them with new protected templates.

• Unlinkability: Considering the cancelability property,
there should be no link between different protected tem-
plates from the same original biometric feature.

One of the most popular categories of BTP methods is
called cancelable template protection methods, in which a
transformation function, which is dependent on a key [6],
is often used. Hence, by changing the key, a new protected
template can be generated for the same biometric feature.
BioHashing [7] is one of the most widely studied and well-
known cancelable template protection methods. In particular,
BioHashing has been shown to be applied to various biometric
characteristics (e.g. finger vein [8]–[10], fingerprints [7], iris
[11], face [12], palm prints [13]).

In this paper, we use the BioHashing scheme to generate
protected templates from SOTA face recognition models. We
evaluate the recognition performance of BioHashing in two
scenarios: the normal scenario (which is the expected scenario
in practice) and the stolen scenario (which is the case when
the user’s BioHashing key is stolen). We use two datasets,
Labeled Faced in the Wild (LFW) [14] and MOBIO [15], to
evaluate several SOTA face recognition models, which vary in
their network structure, loss function, and training dataset.

When designing a BioHash-protected system, an important
decision is the appropriate length (i.e., number of bits) of the
protected templates. In this paper, we aim to establish the
minimum BioHash length that would be required in order for
our BioHash-protected face recognition systems to maintain
the recognition accuracy achieved by their corresponding base-
lines (i.e., unprotected systems). To this end, we define and
evaluate two hypotheses on how the BioHash length affects
the performance of our BioHash-protected face recognition
systems. The first hypothesis assumes that the performance
of a BioHash-protected system depends on the ratio of the
BioHash length to the dimensionality of the original feature
vector. The second hypothesis assumes that the performance
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Fig. 1: Block diagram of a Biohash-protected Face Recognition system (ISO/IEC 30136)

depends on the value of the BioHash length (as opposed to the
ratio), thereby we expect to see similar behavior over different
models when they are protected with the same BioHash
length. Our experiments on different face recognition models
show that, in general, the first hypothesis is false and the
second hypothesis is true. To the best of our knowledge, these
findings concerning the effect of the BioHash length on the
recognition accuracy of deep-learning-based face recognition
models, represent a new contribution to the field of biometric
template protection.

The rest of this paper is organized as follows. First, we
describe the BioHash-protected system and our hypotheses in
section II. Next, we present our experiments and discuss the
results in section III. Finally, the paper is concluded in section
IV.

II. METHODOLOGY

As mentioned in section I, in this paper we evaluate the
recognition performance of BioHashing [7] on SOTA face
recognition models. To this end, we considered a face recogni-
tion system following ISO/IEC 30136 [5] as illustrated in fig-
ure 1, and we used BioHashing (as described in section II-A)
to generate protected templates from the features extracted by
SOTA face recognition DNN models.

In section II-B, we define two hypotheses on how BioHash
length can affect the performance of BioHash-protected sys-
tem. According to our hypotheses, we consider different ex-
periments and evaluate the performance of different BioHash-
protected face recognition systems to verify our hypotheses.
We should note that we evaluate the performance of BioHash-
protected versions of the face recognition methods, and we do
not evaluate the irreversibility, cancelability, and unlinkablity
characteristics of BioHashing since the evaluation of these
characteristics have been studied in the literature [7], [16]–
[20].

A. BioHashing algorithm

Let’s consider Γ, indicating an unprotected biometric tem-
plate (i.e., embeddings) extracted by a face recognition model.

The BioHash-protected template, B, can be generated by
algorithm 1 using the user’s key, k, and their features, Γ [7].

Algorithm 1 BioHashing algorithm
1: Inputs:
2: Γ : unprotected biometric template (i.e., embeddings)
3: Le : length of the unprotected template (Γ)
4: Lb : length of the BioHash-protected template
5: k : user’s seed
6: Output: B = {bi|i = 1, 2, ..., Lb} binary BioHash protected

template
7: Procedure:
8: Generate a set of pseudo-random vectors, {ri ∈ RLe |i =

1, 2, ..., Lb}, based on the user’s seed, k.
9: Apply the Gram-Schmidt process to transform the generated

pseudo-random vectors {ri ∈ RLe |i = 1, ..., Lb} into an
orthonormal set of vectors {r⊥i ∈ |i = 1, ..., Lb}

10: Compute {⟨Γ, r⊥i⟩ ∈ R|i = 1, ..., Lb} where ⟨., .⟩ indicates
inner product operation.

11: Compute Lb bits BioHash {bi|i = 1, 2, ..., Lb} from

bi =

{
0 if ⟨Γ, r⊥i⟩ ≤ τ
1 if ⟨Γ, r⊥i⟩ > τ

, i = 1, ..., Lb,

where τ is a preset threshold.
12: End Procedure

During the enrollment stage, the BioHashed templates, B,
and the user’s key should be stored in the system database
(ideally separately). During the recognition stage, Hamming
distance is used to find the score between each pair of probe
and reference BioHashed template. In the subsequent exper-
iments, we consider the BioHash-protected face recognition
systems operating in verification mode only.

B. Hypotheses

Let’s consider a BioHash-protected face recognition system
with original dimension Le, BioHash length Lb and the ratio
α = Lb/Le. We define two hypotheses on the performance of
BioHash-protected systems:

Hypothesis 1: The performance of BioHash-protected tem-
plates depends on α.

According to this hypothesis, we expect to have similar
trend over different face recognition models when we have



similar values for α. To evaluate this hypothesis, we evaluate
different models with different Le and see if we have the same
behavior with similar values for α. In such experiments, we
use the value of BioHash length Lb = α×Le, so that we have
desired α with respect to Le.

Hypothesis 2: The performance of BioHash-protected tem-
plates depends on Lb.

Based on the second hypothesis, we expect to see similar
behavior over different models when they are protected with
the same Lb.

According to the aforementioned hypotheses, the perfor-
mance of BioHash-protected system either depends on α or
exact value of Lb. In the next section, we evaluate various
face recognition models to verify which hypothesis is correct
in practice.

III. EXPERIMENTS

In this section, we describe our experiments and evaluate the
performance of different BioHash-protected face recognition
systems to verify our hypotheses described in section II-B.
First, in section III-A we describe our experimental setup and
different baselines used in our experiments. Next, we evaluate
hypothesis 1 and hypothesis 2 in sections III-B and III-C,
respectively. Finally, we discuss our experiments and conclude
our findings in section III-D.

A. Experimental Setup and Baselines

As stated in section I, in our experiments we used the
Labeled Faced in the Wild (LFW) [14] and MOBIO [15]
databases to evaluate the recognition performance of BioHash-
ing on SOTA face recognition models. The LFW database
includes 13,233 images of 5,749 people, where 1,680 people
have two or more images. We used the View 2 protocol1 to
evaluate the models. The MOBIO dataset is a bimodal dataset
including face and audio data taken with mobile devices from
152 people. We used the development subset of mobio-all
protocol2 in our experiments.

We also used several SOTA face recognition models3

including VGG-Oxford [21], AFFFE [22], ArcFace-
InsightFace4 [23], FaceNet5 [24], IncResNetV1-MSCeleb1M-
CenterLoss6 [25], IncResNetV2-MSCeleb1M-CenterLoss7

1The implementation of View 2 protocol for the LFW dataset is available
at https://gitlab.idiap.ch/bob/bob.db.lfw

2The implementation of the mobio-all protocol for the MOBIO dataset is
available at https://gitlab.idiap.ch/bob/bob.db.mobio

3The implementation of each face recognition model is available at https:
//gitlab.idiap.ch/bob/bob.bio.face

4ArcFace model with LResNet100 backbone from InsightFace: https://
github.com/deepinsight/insightface

5FaceNet model 20170512 110547 from David Sanderberg: https://github.
com/davidsandberg/facenet

6CNN with Inception-ResNet-v1 backbone trained on the MS-Celeb-1M
dataset with the cross-entropy loss and center loss.

7CNN with Inception-ResNet-v2 backbone trained on the MS-Celeb-1M
dataset with the cross-entropy loss and center loss.
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Fig. 2: ROC curves of the unprotected (i.e., baseline) and
BioHash-protected versions of features extracted by a) VGG-
Oxford (Le = 4096) and b) FaceNet (Le = 128) models with
different values of α = Lb/Le on LFW dataset in the normal
(first row) and stolen (second row) scenarios

[25] ResNet50-VGG2-ArcFace8 [26], and MobileNetV2-
MSCeleb1M-ArcFace9.

As mentioned in Section I, in our experiments we con-
sidered two scenarios: the normal scenario and the stolen
token scenario. In the normal scenario, which is the expected
scenario for most cases, each user’s key is assumed to be
secret. However, in the stolen token scenario (or briefly stolen
scenario), we assumed that the impostor has access to the
genuine user’s secret key and uses this key with the impostor’s
own face features. While such a scenario is expected to happen
rarely in practice, the security of the BioHash-protected face
recognition system relies on the secrecy of each user’s key.
To implement the stolen scenario, in the verification stage we
used the same key as the genuine’s key for other users in the
database and calculated the BioHash codes.

For our experiments, we used the Bob10 toolbox [27],
[28] and the open-source implementation of the BioHashing
algorithm in Bob11 [8], [9]. The source code and the trained
models from our experiments are publicly available to help
reproduce our results12.

B. Evaluation of Hypothesis 1

In order to evaluate our first hypothesis, we plotted the
Receiver Operating Characteristic (ROC) curve for different
values of α, for each of our BioHash-protected face recog-
nition systems. Figure 2 illustrates the corresponding plots
for the VGG-Oxford and FaceNet systems. As this figure

8CNN with Resnet-50 backbone trained on the VGG2Face dataset with
ArcFace loss.

9CNN with MobileNet-V2 backbone trained on the MS-Celeb-1M dataset
with ArcFace loss.

10https://www.idiap.ch/software/bob/
11https://gitlab.idiap.ch/bob/bob.paper.tbiom2021 protect vascular dnn

biohash
12Source code: https://gitlab.idiap.ch/bob/bob.paper.wifs2021 biohashing

sota face
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Fig. 3: Diagram of TMR at FMR = 10−3 vs BioHash length (Lb) for different BioHash-protected face recognition models in
both normal (first row) and stolen (second row) scenarios on LFW (a) and MOBIO (b) databases. For the normal scenario, the
marked points indicate where the TMR of BioHash-protected system reaches 0.98× TMR of the corresponding baseline. The
dotted lines represent models with Le = 128, the dash-dotted lines show models with Le = 512, and models with Le > 512
are shown with solid lines (i.e., VGG-Oxford [Le = 4096] and AFFFE [Le = 1000]).

shows, the performance of BioHash-protected systems does
not necessarily depend on the value of α across different face
recognition models, and therefore hypothesis 1 is not correct
in general. For example, we observe that while α = 0.1 has
significantly degraded the performance of BioHash-protected
FaceNet system (Le = 128), the same α achieves competitive
performance with the BioHash-protected VGG-Oxford sys-
tems (Le = 4096) with large values of α and its corresponding
baseline. We may thus conclude that hypothesis 1 is rejected
in general.13.

C. Evaluation of Hypothesis 2

To verify hypothesis 2, we evaluated the performance of our
BioHash-protected systems (using different face recognition
models) for different values of the BioHash length. We used
a match threshold at a False Match Rate (FMR) of 10−3, and
we calculated the True Match Rate (TMR)14 for each system.
Figure 3 illustrates the resulting TMR vs Lb for the different
face recognition models on which our BioHash-protected
systems are based, for the LFW and MOBIO databases. For
the normal scenario plots, we also marked the points where the
TMR of each BioHash-protected system reaches 0.98×TMR

13The corresponding plots for other models are also available in the
software package of the paper.

14TMR = 1− FNMR (where FNMR is False Non-Match Rate).

of its corresponding baseline15. These points are summarized
in Table I, in terms of their Lb (denoted as Lb

∗) and α
(denoted as α∗). For comparison, Table I also presents the
number of features in the unprotected face embeddings (Le)
corresponding to each baseline face recognition system, as
well as the baseline performance in terms of TMR on the
LFW and MOBIO datasets. As in figure 3, , the threshold
for the TMR results in table I for each system was selected
individually at FMR = 10−3. As figure 3 shows, the marked
points are close and their BioHash lengths (as reported in table
I) are also in the same range. These results can be explained
by hypothesis 2.

D. Discussions

In section III-B, we used the ROC curves and compared
BioHash-protected systems with different values of α and
concluded that hypothesis 1 can not be true in general. Table I
also shows that the values of α for the BioHash-protected
systems which reach 0.98 × TMR of their corresponding
baselines have a large range from 0.01 to 0.40. Hence, this
table also support our conclusion on rejecting hypothesis 1.

Table I also shows that the values of Lb
∗ are in range

31 to 175. This shows that even for baselines with large
embeddings (e.g., 4096 for VGG-Oxford, or 1000 for AFFFE),

15To compensate for the models with very well-performing baselines,
we consider achieving 0.98 × TMR baseline as maintaining the baseline
performance.



TABLE I: Comparison of SOTA Face Recognition models and their corresponding Lb and α where TMR of BioHash-protected
system reaches 0.98×TMRbaseline on LFW and MOBIO datasets. The thresholds for the baselines and BioHash-protected systems
are selected individually at a False Match Rate (FMR) of 10−3

Model Le
LFW MOBIO

TMRbaseline Lb
∗ α∗ TMRbaseline Lb

∗ α∗

VGG-Oxford 4096 0.59 36 0.01 0.62 34 0.01

AFFFE 1000 0.79 175 0.34 0.77 83 0.16

ArcFace-InsightFace 512 0.98 153 0.30 1.00 81 0.16

ResNet50-VGG2-ArcFace 512 0.81 74 0.14 0.86 150 0.29

MobileNetV2-MSCeleb1M-ArcFace 512 0.87 54 0.11 0.82 97 0.19

FaceNet 128 0.98 50 0.40 0.79 50 0.40

IncResNetV1-MSCeleb1M-CenterLoss 128 0.86 32 0.26 0.86 42 0.33

IncResNetV2-MSCeleb1M-CenterLoss 128 0.97 31 0.24 0.93 44 0.35
Lb

∗ and α∗ correspond to the BioHash-protected system which its TMR reaches 0.98 × TMRbaseline

choosing the BioHash length around 175 helps to maintain the
recognition performance of the corresponding baseline.

We should also note that as depicted in figure 3, in the
case of the normal scenario, BioHash-protected templates with
large values of BioHash length can outperform unprotected
templates (baseline). However, in the stolen scenario, Bio-
Hashing degrades the performance. This can be interpreted
with respect to the secret or the disclosed key in these
scenarios. In the normal scenario, using a secret key for
each user helps to increase the distance between the protected
templates from different users, thereby better distinguishing
between templates of users. This is not the case when the key
is revealed as in the stolen scenario.

Last but not least, we should note that in our experiments,
we used different face recognition methods with numbers
of extracted features, network structures, loss functions, and
training datasets. Besides, we evaluated the models on two
different challenging datasets (LFW and MOBIO). Therefore,
there are no inherent assumptions or inherent biases regarding
network structures, loss functions, training data, or test data
in our experimental results.

IV. CONCLUSION

In this paper, we used BioHashing to protect SOTA face
recognition methods and evaluated their performance in nor-
mal and stolen scenarios. We aimed to find the minimum
value of BioHash length that would maintain the recognition
accuracy of the corresponding unprotected face recognition
system. To this end, we considered two hypotheses on how
BioHash length affects the performance of BioHash-protected
system. Our experiments show that in general, the performance
depends only on the BioHash length (as oppose to the ratio of
BioHash length to the dimensionality of the original feature
vector). To prevent bias in our experiments, we evaluated the
models on two different datasets (LFW and MOBIO) and
used various face recognition methods with different network
structure, loss functions, and training datasets.
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