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Abstract
Formants are major resonances in the vocal tract system. Identi-
fication of formants is important for study of speech. In the liter-
ature, formants are typically identified by first deriving formant
frequency candidates (e.g., using linear prediction) and then ap-
plying a tracking mechanism. In this paper, we propose a sim-
ple tracking-free formant identification approach based on zero
frequency filtering. More precisely, formants F1-F2 are identi-
fied by modifying the trend removal operation in zero frequency
filtering and picking simply the dominant peak in the short-
term discrete Fourier transform spectra. We demonstrate the
potential of the approach by comparing it against state-of-the-
art formant identification approaches on a typical speech data
set (TIMIT-VTR) and an atypical speech data set (PC-GITA).
Index Terms: Formant identification, Zero frequency filtering,
Speech analysis, atypical speech

1. Introduction
Speech is produced by excitation of a time varying vocal tract
system by a time varying excitation signal. Formants are the
major resonances in the vocal tract system. Identification of
formants is interesting from the perspective of study of speech
as well as technology development [1, 2, 3, 4]. Formant iden-
tification typically involves two steps: first step involves identi-
fication of formant candidates from a reliable spectral estimate,
and second step selects an estimate from the candidate set based
on continuity and optimality criteria.

The most popular approaches to derive candidate formant
frequency locations are linear prediction (LP) spectra [5] and
cepstrally smoothed spectra. One of the limitations with LP is
to resolve closely appearing spectral peaks, or masking of poles
due to spectral harmonics or nulls. To circumvent that, meth-
ods such as, pitch synchronous covariance formulation [6] and
temporal weighting of samples [7] have been proposed. More
recently, it has been shown that use of a weighting function
based on the glottal flow signal, followed by a time–varying LP
analysis with sparsity constraints, resulting in improved formant
candidates [8]. Beside LP or cepstral based methods, AM–FM
decomposition based methods have been proposed to generate
formant candidates. Method based on group delay are proposed
to extract formant candidates in shorter segments of speech [9].

The candidate derivation step is followed by a tracking
mechanism which ensures smooth formant contours in speech.
Continuity constraints ascertain smooth formant contours and
help alleviate tracking errors, especially in phone transition re-
gions. There are different approaches that have been employed
for tracking formants such as, (a) dynamic programming-
based [10, 11], (b) hidden Markov model-based [12], (c)
Kalman filtering-based [13], (d) t-distribution-based [14] and
(e) neural networks-based [15, 16, 17].

Zero frequency filtering (ZFF) is a signal processing ap-
proach where the signal is filtered through a heavily damped

resonator centered at 0 Hz. This approach has orginally been
developed in the context of extracting voice source characteris-
tics. In this paper, we extend this approach for formant identi-
fication. Specifically, we show that by modifying the trend re-
moval window duration formant frequencies can be highlighted
and identified by peak picking in the short-term discrete Fourier
transform (DFT) spectra of the filtered signal. We evaluate the
proposed approach against the state-of-the-art approaches on
TIMIT-VTR dataset and PC-GITA dataset. It is worth mention-
ing that modification in the trend removal step has previously
been employed to study excitation source characteristics in ex-
pressive voices and non–verbal sounds [18]. To the best of our
knowledge, this is the first work that shows that F1-F2 can be
estimated by modifying the trend removal window duration in
ZFF.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a background on ZFF. Section 3 presents
the proposed approach based on ZFF. Section 4 presents the
datasets and performance metrics adopted to evaluate the pro-
posed method. Section 5 presents the results. Finally, Section 6
concludes the paper.

2. Zero frequency filtering
The zero frequency filter is implemented as a heavily decaying
digital resonator centered at 0 Hz [19]. The ZFF method was
originally proposed to identify location of glottal closure in-
stants (GCIs) in the vibrating vocal fold source signal in speech.
The underlying motivation of the method being that the spectral
characteristics of the temporal discontinuities are evenly spread
across all bands, including very low frequencies such as in the
vicinity of 0 Hz. The contribution of the vocal tract system re-
sponse is negligible at frequencies near the 0 Hz. The signal
when filtered using the resonator, exhibits a source dominant
behaviour, with the GCIs located at the zero crossing locations
in the output.

The zero frequency filter is implemented as a cascaded res-
onators centered at 0 Hz. The impulse response of the filter is
x[n]=s[n] + 2x[n− 1]− x[n− 2], and the equivalent transfer
function H(z) is given by,

H(z) =
1

1− 2z−1 + z−2
, (1)

where s[n] is the input to the resonator and x[n] is the filtered
signal output. The zero frequency filtering is implemented as
an integrator and therefore x[n] shows a trend of polynomial
growth with time. The trend in x[n] is removed using a local
mean removal operation across a duration comparable to the
pitch period, given by

y[n] = x[n]− 1

2N + 1

n+N∑
k=n−N

x[k]; N + 1 ≤ n ≤ L−N,

(2)



where L is the net length of the signal x[n], and 2N + 1 is the
trend removal window duration.

3. Proposed method
In this section, we first provide a theoretical understanding of
modification in the trend removal step of ZFF in Sec. 3.1. We
then present the proposed formant identification method based
on ZFF in Section 3.2.

3.1. Modification in trend removal operation

The trend removal operation imposes its response over the heav-
ily decaying response of the ZFF signal. The cumulative re-
sponse of both these operations results in a peak at the funda-
mental frequency of the signal, while other components stay
suppressed, when the trend removal duration is comparable to
an estimate of the pitch period. The output y(n) of the ZFF
method therefore is periodic with each cycle resulting from
source excitation.

The frequency domain response H(ω) of the trend removal
operation (Eqn. 2) is given by,

H(ω) = 1− 1

2N + 1

N∑
k=−N

e−jωk (3)

H(ω) = 1− 1

M

{
sin(ωM

2
)

sin(ω
2
)

}
, (4)

where M = (2N + 1) is the trend removal duration. H(ω)
of the trend removal filter given in Eqn. 4 is an inverted mov-
ing average filter. Fig. 1 shows the spectral response H(ω) for
different values of M (order). It can be observed that there are
peaks and nulls in H(ω), which varies with the choice of M .
H(ω) when imposed on to the heavily decaying response of the
ZFF, results in normalization of the high gain of the zero fre-
quency filter at 0 Hz and an emphasis of the first lobe of the in-
verted MA response and decay of other components. The dom-
inant peak location and bandwidth in the response of the filter
is in inverse proportion to the window duration. A smaller du-
ration shifts the peak response towards mid to higher frequency
range with a higher bandwidth, whereas a longer window dura-
tion shifts it closer to the origin with a sharper bandwidth.
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Figure 1: Spectral response of the trend removal window. The
response is plotted for window lengths of 10, 20 and 50 sam-
ples.

3.2. F1–F2 identification using ZFF

In the case of voice source information extraction, as done in
the original work [19], the trend removal duration 2N + 1 is

comparable to the pitch period in the signal. This results in a
sharper peak or emphasis in the range of fundamental frequency
in speech. However, as shown in the previous section, the em-
phasis can be altered by changing M . For almost all voiced
sounds, the first formant in sounds usually occurs beyond the
first harmonic. Hence, modifying the trend removal window
duration to 25% of the estimated fundamental period (T0) re-
sults in shift in the peak response in the range of first formant
frequency region. Similarly, a smaller window duration than
that (e.g., ∼ 10 − 12% of the pitch period) results in shifting
the peak response within the range of the second formant.

Fig. 2 illustrates that aspect. Fig. 2(a) shows the spectro-
gram of a speech signal corresponding to an utterance of sus-
tained vowel /i/. Fig. 2(b) shows the spectrogram of the filtered
signal obtained from ZFF with a trend removal window size of
T0/5. It can be observed that the first formant region around
0.3–0.4 kHz is emphasized clearly. The higher frequency re-
gions are de-emphasized due to the sharp decay introduced by
the cascaded resonator at 0 Hz in the zero frequency filter. Fig.
2(c) shows the spectrogram of the the filtered signal obtained
from ZFF with a trend removal window size of T0/10. It can
be observed that the second formant region around 2–2.5 kHz is
well emphasized compared to other frequency regions including
the high energy first formant region.

Figure 2: Spectrograms of (a) signal corresponding utterance
containing vowel /i/, (b) the filtered signal output after ZFF with
trend removal duration of T0/5, and (c) the filtered signal out-
put after ZFF with trend removal duration of T0/10.

Based on this understanding, Algorithm 1 presents a for-
mant identification method using ZFF.

Algorithm 1 F1–F2 identification using ZFF

1: Compute ZFF signal x(n) from s(n) by applying Eqn. 1.
2: Compute an estimate of fundamental periodicity of the sig-

nal (T0) using autocorrelation.
3: Using a trend removal duration 2N + 1 = T0/5, filter x(n)

to obtain y1(n).
Obtain y2(n) from x(n) using 2N + 1 = T0/10.

4: Compute short-term DFT spectra Y1(ω) and Y2(ω) for
y1(n) and y2(n) over a desired resolution.

5: Identify the global peaks in Y1(ω) and Y2(ω) as F1 and
F2 locations, respectively.



4. Experimental setup
Section 4.1 presents the data sets used to validate the proposed
formant identification approach. Section 4.2 briefly presents
different baseline formant extraction approaches. Finally, Sec-
tion 4.3 presents the evaluation measures.

4.1. Datasets

We investigated the proposed approach on two data sets.
TIMIT-VTR corpus that contains typical speech and PC-GITA
Spanish language dataset that contains atypical speech, more
precisely, from Parkinson’s disease (PD) patients. The mo-
tivation being that PD patients speech result in the expan-
sion/shrinkage in the vowel space area (VSA) owing to diffi-
culties in exercising regular motor control. Formants in speech
corresponding to PD are therefore more spread as compared to
controlled speech [20]. So, whether the proposed approach is
able to capture such differences?

TIMIT Vowel tract resonance (TIMIT–VTR) dataset
[21]: The TIMIT–VTR dataset contains manually annotated
formant (F1, F2, and F3) locations and their respective band-
widths, over a subset of utterances in the TIMIT corpus. Loca-
tion and bandwidth values for the 3 formants are manually an-
notated for these utterances. The fourth formant is annotated us-
ing an automatic tracking algorithm [22]. The values are com-
puted every 10 ms over a frame width of 10 ms. The third and
fourth formants are not used for evaluation in this study. The
TIMIT–VTR dataset contains a total of 376 sentences, recorded
by 173 male and female speakers, grouped into 346 utterances
for training and 192 utterances for testing purpose.

PC-GITA Spanish language dataset [23]: The dataset
consists of a Spanish speech signal recording of 50 speakers
with Parkinson’s disease (PD) and 50 healthy control speak-
ers. The dataset includes recordings of 25 male and 25 female
speakers. The dataset belongs to Spanish language and contains
recording of vowels, monologues and read text. Each recording
consists of a variety over phonation, prosody and articulation.
The proposed method is evaluated over sustained vowel seg-
ments recorded by control and PD speakers corresponding to
the vowels /æ/, /i/ and /u/, which effectively illustrate the con-
trast in articulation dynamics for control and PD speakers [24].

4.2. Baseline formant extraction methods

We validate the proposed approach by comparing it against dif-
ferent formant extraction methods, namely, (a) Wavesurfer [11],
(b) Praat [10], (c) KARMA method [13], (d) MUST
method [25] and (e) time–varying quasi closed phase analysis
(TVQCP) method [26]. The KARMA method applies Kalman
filtering based state-space optimization routine over the auto–
regressive moving average (ARMA) cepstral coefficients for
formant identification. The MUST methods filters the analytic
signal using adaptive band–pass filters centered around the es-
timate of formants. A dynamic tracking filter (DTF) is used
to update the estimates of location of pole in the formant re-
gion while tracking over previous values. TVQCP is based on
pitch synchronous processing to derive system response using
weighted LP analysis, with the LP coefficient optimization rou-
tine acting as a tracking mechanism.

4.3. Performance metrics

Formants values are derived across non–overlapping frames of
duration 10 ms, and F1 and F2 values derived over voiced re-
gions are used for comparison, across different methods. As

done in the literature [26], on TIMIT-VTR dataset the pro-
posed method and baseline methods are evaluated based on the
formant estimation error (FEE) and the formant detection rate
(FDR). The FEE computed for the formant i ∈ {1, 2}, across a
segment of N analysis frames, given by

FEEi =
1

C

C∑
c=1

|FD
i (c)− FG

i (c)|, (5)

gives the average absolute deviation,where FD
i (c) and FG

i (c)
are the estimated and the annotated values for the formant i for
frame c, respectively and C is the number of frames.

FDR gives the proportion of frames with formants detected
correctly. This is done as follows:

d(c) = 1 if |FD
i (c)− FG

i (c)| ≤ BG
i (c) else 0, (6)

where BG
i (c) is the annotated or ground truth bandwidth value

of formant i at frame c. The FDR is finally obtained as,∑C
c=1 d(c)

C
× 100. (7)

In the case of PC-GITA, we analyze the different methods
by estimating the VSA.

5. Results and analysis
Following section discusses the performance of the proposed
method over typical and atypical speech.

5.1. TIMIT–VTR

We evaluated the proposed method and baseline methods on
segments corresponding to vowels, nasals, and diphthongs,
across all speakers. The corresponding segment boundaries are
obtained from the annotations provided in the TIMIT dataset.
There are a total of 10569 segments in the VTR dataset for eval-
uation.

Fig. 3 shows the formant contours derived using the pro-
posed method, along with the annotated values, across vowel
and nasal segments in an utterance obtained from the VTR
dataset. The ground truth ( ), are plotted along with the de-
rived values ( ) for F1 (Fig. 3(a)) and F2 (Fig. 3(b)) contours in
the spectrographic representation of the segment. The ability of
the proposed method to track the dynamic variation of first and
second formants can be noted in the derived F1 and F2 contours.
The figure illustrates the that formant information thus derived
is independent of boundary conditions or continuity constraints.

Figure 3: Tracking of (a) F1 and (b) F2 peaks in natural speech
(ground truth (· · · ), derived values (· · · )).



Tab. 1 presents the results obtained over the TIMIT–VTR
dataset using different methods. It can be observed that FEE1

value obtained using the proposed method, denoted as modZFF,
is comparable to or better than the FEE1 value obtained using
the baseline methods. On the other hand, FEE2 is lower than
Wavesurfer; comparable to Praat; and higher than KARMA,
MUST and TVQCP methods. Having said that, a high FDR2

value signifies that the derived formant peaks are within the
bandwidth of the second formant.

Table 1: FEE (in Hz) and FDR (in %) for F1 and F2 obtained
on the TIMIT-VTR database.

Method FDR1 FDR2 FEE1 FEE2

modZFF 97 87 70 185
KARMA 97 90 67 130
MUST 89 87 100 135

TVQCP 95 93 70 116
Wavesurfer 88 65 130 265

Praat 81 75 140 192

5.2. PC–GITA

We analyzed the sustained vowel segments of vowels /æ/, /i/,
and /u/ uttered by healthy control speakers and PD patients by
estimating the VSA (vowel space area) using the proposed mod-
ZFF method and the baseline methods. Fig. 4 shows the distri-
bution of F1 values against F2 values obtained for sustained
vowel segments. Figs. 4(a1)–(e1) show the F1 and F2 val-
ues obtained using the proposed method, KARMA, TVQCP,
and MUST methods, for control speakers respectively. Formant
contours are smoothed using a 5–point median filtering. The
formants for vowels /i/ ( ), /æ/ ( ), and /u/ ( ), appear in non–
overlapping distinct clusters. The VSA can be noted across dif-
ferent clusters. The centroids of the clusters are marked and
connected ( – ). The axes for figures are not equal and hence the
distribution appears skewed. Figs. 4(a2)–(e2) show the F1 and
F2 values obtained using the different methods for PD patients
speech. The clusters for all the methods appear expanding, and
the VSA also changes. It can also be observed that the clusters
for other methods appear in tighter bounds, which could be at-
tributed to the tracking routine. The proposed method does not
employ such a routine and hence the clusters illustrate the for-
mant dynamics in an unconstrained manner. Whether this dif-
ference is desirable or undesirable is open for future research.

Tab. 3 gives the VSA (in Hz) for control (VSAC ) and PD
(VSAP ) speakers. It can be seen that in all cases the VSA
increases for PD patient’s speech. The proportion increase of
VSA for modZFF, KARMA and TVQCP is similar, while for
MUST and Praat it is slightly more.

6. Conclusion
This paper presented a method for F1-F2 identification based
on ZFF. It was shown that by modifying the trend removal win-
dow duration, F1 and F2 contours can be obtained by simply
picking the dominant peaks in the short-term DFT spectra. Be-
side not requiring any post-processing or a tracking method,
a distinguishing aspect of the proposed method is that, unlike
the methods proposed in the literature, this approach does not
requires source-system decomposition or AM-FM decomposi-
tion. Our investigations on TIMIT-VTR data sets showed that
the proposed approach can reliably identify F1–F2. Analysis on
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Figure 4: F1 vs. F2 values for different vowels (/u/,/i/,/æ/)
in control and PD speakers, obtained using (a1, a2) proposed
method, (b1, b2) KARMA, (c1, c2) MUST, (d1, d2) TVQCP,
and (e1, e2) Praat methods, respectively.

Table 3: VSA (Hz2) for control and PD speakers in PC–GITA
for /i/,/u/, and /æ/.

Method modZFF KARMA MUST TVQCP Praat
VSAC 448.3 716.7 601.9 436.6 582.1
VSAP 474.7 751.8 678.3 475.2 658.2

PC-GITA studies revealed that the proposed F1–F2 identifica-
tion method can be applied to study pathological speech similar
to the baseline methods. Our future work will focus on combin-
ing the proposed F1–F2 estimation capability with voice source
information extraction capability of ZFF to assess PD patient’s
speech.
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