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Abstract

To better model the contextual information and increase

the generalization ability of the Speech Activity Detection

(SAD) system, this paper leverages a multilingual Automatic

Speech Recognition (ASR) system to perform SAD. Sequence-

discriminative training of Acoustic Model (AM) using Lattice-

Free Maximum Mutual Information (LF-MMI) loss function,

effectively extracts the contextual information of the input

acoustic frame. Multilingual AM training causes the robustness

to noise and language variabilities. The index of maximum out-

put posterior is considered as a frame-level speech/non-speech

decision function. Majority voting and logistic regression are

applied to fuse the language-dependent decisions. The multi-

lingual ASR is trained on 18 languages of BABEL datasets

and the built SAD is evaluated on 3 different languages. On

out-of-domain datasets, the proposed SAD model shows sig-

nificantly better performance with respect to baseline models.

On the Ester2 dataset, without using any in-domain data, this

model outperforms the WebRTC, phoneme recognizer based

VAD (Phn Rec), and Pyannote baselines (respectively by 7.1,

1.7, and 2.7% absolute) in Detection Error Rate (DetER) met-

rics. Similarly, on the LiveATC dataset, this model outperforms

the WebRTC, Phn Rec, and Pyannote baselines (respectively by

6.4, 10.0, and 3.7% absolutely) in DetER metrics.

Index Terms: speech activity detection, multilingual automatic

speech recognition, logistic regression, multilingual SAD

1. Introduction

Speech Activity Detection (SAD), a process of identifying the

speech segments in an audio utterance [1], is a critical part

of Automatic Speech Recognition (ASR), speaker recognition,

speaker diarization, and other speech-based applications. De-

veloping an accurate SAD system, operating in the noisy envi-

ronment is an active research field in speech processing [2–6].

This paper explores SAD built around multilingual ASR

systems, as we hypothesize it can offer better generalization

ability by leveraging the contextual information extracted by

ASR [7]. Generally, this paper employs a conventional multi-

task network as a multilingual Acoustic Model (AM) trained us-

ing the Lattice-Free Maximum Mutual Information (LF-MMI)

framework, capable of extracting the language-dependent con-

textual information. Using a multilingual dataset for the AM

training was investigated in several studies [8–13]. Unlike ap-

plying a simple block-softmax loss on stacked input data with

added language indicator for phoneme names, we apply LF-

MMI loss on multi-task architecture, which provides a scal-

able approach to develop multilingual AM. Practically, we use

PKWRAP, a PyTorch based Kaldi [14] wrapper for LF-MMI

training of acoustic models [15]1. The proposed multilingual

acoustic model was trained on 18 languages of the BABEL

1Multitask acoustic modeling code will be made available as a part
of PKWRAP

datasets2. The original motivation for using this dataset is to

train a SAD system robust to noise and language variabilities.

Within each language-dependent part of AM, speech and non-

speech acoustic frames are mapped to a different set of output

context-dependent phones (i.e. posteriors, cf. Section 4). For

each language, we use the index of maximum output posterior

as a frame-level speech/non-speech decision function. In or-

der to fuse the decisions from different languages, conventional

logistic regression [16] and majority voting techniques are em-

ployed.

To investigate the generalization ability of the proposed

SAD, experiments presented in the paper were performed on

both in-domain and out-of-domain data. For out-of-domain ex-

periments, two specific conditions are considered: (i) access to

a small development set is available, or (ii) no in-domain data

is available at all. Results with logistic regression and majority

voting fusion are reported for these conditions. Concretely, the

development part of the BABEL Kurdish dataset is used as an

in-domain evaluation set. Eval parts of Ester23 and LiveATC4

datasets are used as out-of-domain sets. BABEL Kurdish con-

tains conversational telephony speech (CTS) in Kurdish. Ester2

is a broadcast news dataset in French. LiveATC comprises a

large number of conversations between Air Traffic Controllers

(ATCo) and pilots with a large variety of accents in English.

To investigate the generalization ability of our SAD model,

we consider different real-life scenarios with high variability in

channel, background noise, and language.

We show that the proposed multilingual architecture of-

fers comparable results on the in-domain set and significantly

outperforms the baselines on the out-of-domain Ester2 and

LiveATC datasets. For a fair comparison with the Google We-

bRTC and the popular BUT pre-trained phoneme recognizer

based SAD (Phn Rec)5 in out-of-domain evaluation, we also

assumed that no in-domain data is available during training. In

addition, using a small development set in the logistic regres-

sion method further improves the performance of the proposed

SAD system.

The rest of this paper is organized as follows: related works

are discussed in Section 2. Multilingual acoustic model training

is briefly explained in Section 3. The proposed multilingual

ASR-based SAD is described in Section 4. Experiment setup

and results are shown in Section 5. Conclusions are discussed

in Section 6.

2One language (Somali) is part of MATERIAL project
https://www.iarpa.gov/index.php/research-programs/material. Here we
call the total dataset BABEL.

3http://catalog.elra.info/en-us/repository/browse/ELRA-S0338/
4https://www.liveatc.net/
5https://speech.fit.vutbr.cz/software/phoneme-recognizer-based-

long-temporal-context







5.2. In-domain evaluation

Comparison of SAD results on in-domain experiment for Ba-

belKurdish eval set is shown in the Table 3. To reduce the

noise in the classifier’s output, in each ASR-based SAD, we

applied temporal smoothing for detecting the start and end of

each speech segment. In all experiments output of Tok pisin

language showed a single best result which is ASR Single Best

in Table 3. The majority voting and logistic regression

fusion multi-language results are called ASR Mul MV, and

ASR Mul LR, respectively. For investigating the result of train-

able ASR-based and Pyannote models in the in-domain sce-

nario, the result of pre-trained Phn Rec and WebRTC models

are not shown in Table 3.

For the in-domain experiment, temporal smoothing param-

eters are tuned using the in-domain development set. Here,

w.r.t. ASR SingleBest model, ASR Mul LR improved the De-

tER by 1.2 %. This LR fusion caused to decrease in the miss

detection with increasing the false alarm. ASR-based SAD

showed comparable performance w.r.t. the Pyannote model.

Using different DNN architectures and temporal smoothing

methods are the main reasons for observing the difference in

the performance of these two systems.

Table 3: Comparison of SAD results on in-domain BabelKur-

dish eval set. ASR SingleBest, ASR Mul LR, and ASR Mul MV

are multilingual ASR based SAD systems when single best sys-

tem, logistic regression based, or majority voting based fusion

is considered, respectively.

SAD Model DetER (%) FA (%) Miss (%)

ASR SingleBest 19.9 4.0 15.9

ASR Mul LR 18.7 5.2 13.5

ASR Mul MV 19.3 5.6 13.7

Pyannote 18.1 5.9 12.2

5.3. Out-of-domain evaluation

Comparison of SAD results on out-of-domain LiveATC eval-

uation set is shown in the Table 4. Here ASR SingleBest

and ASR Mul MV models are not using any in-domain data.

ASR Mul LR model was trained using the in-domain devel-

opment set. Without considering the ASR Mul LR model,

ASR SingleBest and ASR Mul MV models significantly out-

performed the baseline models based on DetER performance

measure. Training the multilingual AM model is one of the rea-

sons for observing good results in the ASR SingleBest model.

The ASR Mul LR model outperformed the ASR SingleBest

model with a relative improvement of 4.0% on DetER perfor-

mance measure. Comparison of SAD results on out-of-domain

Ester2 evaluation set is shown in the Table 5. In this out-of-

domain set, we observed the same pattern, and based on De-

tER performance measure, the proposed model significantly

outperformed the baselines. The ASR Mul LR model outper-

formed the ASR SingleBest model with a relative improve-

ment of 38.4% on DetER performance measure. Based on the

observed results, the proposed multilingual ASR-based SAD

showed strong generalization ability. We believe that training

procedure as a multi-task learning system has the main effect

on achieving this generalization ability. In addition, having a

small in-domain dataset improves the performance of the pro-

posed method.

Table 4: Comparison of SAD results on out-of-domain LiveATC

evaluation set.

SAD Model DetER (%) FA (%) Miss (%)

ASR SingleBest 10.1 4.9 5.2

ASR Mul LR 9.7 6.1 3.6

ASR Mul MV 11.1 4.3 6.8

Phn Rec 20.1 4.6 15.5

WebRTC 16.5 9.4 7.1

Pyannote 13.8 10.1 3.7

Table 5: Comparison of SAD results on out-of-domain Ester2

evaluation set.

SAD Model DetER (%) FA (%) Miss (%)

ASR SingleBest 5.2 4.7 0.5

ASR Mul LR 3.2 2.3 0.9

ASR Mul MV 4.7 4.2 0.5

Phn Rec 6.4 3.9 2.5

WebRTC 11.8 6.5 5.3

Pyannote 7.4 7.3 0.1

6. Conclusions

Contextual information is important for training a robust SAD

system, especially at noisy sets. In this paper, we trained the

SAD system using the multilingual ASR model. This ASR

model was trained with LF-MMI loss on multi-task architec-

ture which provides a much more scalable approach to develop

AM. The decision for detecting speech/non-speech frames is

based on the index of maximum output posterior. Majority vot-

ing and logistic regression were applied to fuse the language-

dependent decisions. We observed the significant improvement

w.r.t. baselines on out-of-domain Ester2 and LiveATC evalua-

tion sets. More specifically, for the Ester2 dataset, the proposed

SAD method outperformed the WebRTC, Phn Rec, and Pyan-

note BLSTM SAD models by absolute 7.1%, 1.7%, and 2.7%

in DetER respectively. Similarly, w.r.t. WebRTC, Phn Rec,

and Pyannote BLSTM SAD models, respectively, we obtained

an absolute improvement of 6.4%, 10.0%, and 3.7% in DetER

on LiveATC dataset. In addition, using small development set

in the logistic regression method, further improved the perfor-

mance of the proposed SAD system. In in-domain experiments,

with tuning the temporal smoothing parameters we observed

comparable results w.r.t. the Pyannote model.
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