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Abstract
We aim to provide controls for emotion in synthetic speech.
Many emotions are not displayed continuously in an otherwise
emotional utterance; rather, the intensity varies with time. We
show that an emotion recogniser is capable of producing a mea-
sure of emotion intensity via attention or saliency; this measure
is appropriate to label utterances subsequently used to train a
speech synthesiser. We evaluate novel and published means to
do this showing that, whilst it is no longer state of the art for
emotion recognition, attention is a good way to indicate emo-
tion intensity for speech synthesis.
Index Terms: Emotional Speech Synthesis, TTS, Emotion
Recognition, Saliency Mapping

1. Introduction
When text to speech synthesis (TTS) is used in a non-trivial ap-
plication, it is desirable that the resulting synthetic speech con-
veys context-awareness using affect. For instance, in a speech
to speech translation application, if the input speech (in L1)
sounds, e.g., emphatic or angry, then the resulting speech (in
L2) should convey the same qualities. In a dialogue applica-
tion, the dialogue manager should be able to emphasise words
that it wishes to clarify, and should respond to, say, frustration
with empathy. Of course, this not only requires a suitably in-
telligent dialogue manager, but also a TTS system with controls
for the appropriate affect variables. In this paper we are con-
cerned with providing such controls for emotion.

While TTS systems have mastered human performance for
neutral speech, emotional speech synthesis is still a challenge.
For neutral speech large and high quality databases exist, but
emotional databases are rare and mostly of low quality. It is cer-
tainly possible to record large amounts of a specific emotion and
train the same systems as used for neutral speech. However, the
range of emotions, varying intensities, the amount of languages,
speaker variations, and the need to label each recording with the
perceived emotion of multiple listeners makes recording alone
a nearly infeasible task in terms of time and money. Modern
emotional TTS research has identified three possible directions
to solve these problems: 1) Increase the generalisability of the
architectures on low data regimes; 2) increase the quantity of
emotional data by voice or emotion conversion; and 3) increase
the quality of the data. In the following we will highlight some
recent work for each direction.

Databases with more expressive speech exist, especially au-
dio books. Those databases cover a wider range of styles, but
lack annotation of the expressed emotion or style. The lack
of these annotations spawned a range of recent works focusing
on increased model generalisability by utilising unsupervised
methods to extract style embeddings from reference audio on

a global [1, 2], clustered [3], or frame level [4, 5]. Some at-
tempted controlling the expressiveness [1, 6]. However, con-
trollability remains limited, especially for global embeddings.

Some work targets increasing the quantity of the expressive
data. Huybrechts et al. [7] have used voice conversion to con-
vert expressive recordings to the target speaker. In our recent
work [8] we have converted neutral to emotional speech. The
artificial data can then be used to train a TTS system.

We found limited work which attempts to increase the qual-
ity of the emotional data. Emotional databases usually have a
single emotion label for every recording. We argue that this
generalisation is misleading and that the emotion is localised
within the utterance. This kind of annotation can lead to dif-
ferent emotion labels on words with lower emotional strength
like conjunctions, while their acoustic features only marginally
differ. Obviously, this impedes the learning of the model.

In this work we propose to add a frame-level emotion in-
tensity to every sample, which is used as additional input to
the TTS model. We present two methods to extract it from the
recordings with pre-trained emotion recognisers. The simpler
model contains a single attention layer, which allows use of the
attention weights as emotion intensities. The other is a modern
transformer model, where we exploit saliency maps to extract
the intensity. The closest work to ours is that of Lei et al. [9].
They use relative attributes [10] to assign a level of emotional
strength to each sample. In more recent work [11] they extended
their method to phoneme level emotional strength.

We present our two methods for emotion intensity extrac-
tion as well as the method of attribute ranks of [11] in Section 2.
We compare all three methods and a baseline without intensity
input on the task of emotional TTS in Section 3. In this work we
leave out the problem of generating the emotion intensity from
text or extraction from a reference sample. Possible research
directions to attack this problem are listed in the conclusions in
Section 4.

2. Emotion intensity extraction
2.1. Attention LSTM

We use a simple emotion recogniser mostly resembling previ-
ous research [12] (Figure 1 left). It consists of a feature ex-
traction part of 3 fully-connected layers with 256 neurons and
a bidirectional LSTM (BiLSTM) with 128 neurons per direc-
tion. We apply dropout with a probability of 0.1 after each
layer. Additionally, it contains an attention block with a single
BiLSTM with 128 neurons per direction and a fully-connected
layer without bias with a single output neuron. Its output respre-
sents the unnormalised attention weights. As in previous work
[12] we use a sigmoid activation, instead of the usual softmax,
to obtain normalised attention weights. A sigmoid activation
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ensures high activation levels over many frames, which leads to
overall smoother attentions. This is especially desirable for our
downstream task of emotional TTS. We use the predicted atten-
tion weights to compute a weighted sum over the outputs of the
feature extraction part to create a single utterance level embed-
ding of size 256. We pass this vector through a single fully-
connected layer with as many neurons as emotion classes. All
parameters are initialised using Xavier initialisation [13] with
a uniform distribution, with one exception: The weights of the
fully-connected layer with single output neuron in the attention
block are initialised with samples fromN (0, 0.12).

The openSMILE toolkit [14] is used to extract frame-level
features (25 ms sliding window, 10ms shift). We use a 32-
dim subset of the IS09 feature subset composed of hand-crafted
Low-Level Descriptors (pitch, energy, zero-crossing rate, voic-
ing probability), 12 mel-frequency cepstral coefficients, and
their first derivative. This subset is mean-variance normalised
and forms the input to the emotion recogniser. To prevent over-
fitting we augment the input with random white noise with a
standard deviation of 0.4. In contrast to previous research, this
model accepts variable input lengths.

Training follows closely the procedure in previous work
[12]. The model is trained with the Adam optimiser [15]
(β1 = 0.9, β2 = 0.999, ε = 1E−8) with a learning rate of
3E−5 on mini-batches of 32 for 200 epochs with the cross-
entropy loss. To account for class-imbalance we weight the
cross-entropy for each class c by a factor of wc = Ntot

NclassesNc
,

where Ntot is the total number of training utterances, Nclasses

the number of different classes/emotions, andNc the number of
utterances of class c in the training set. All but the LSTM lay-
ers are regularised with l2-regularisation with a factor of 5E−2.
We select the best model based on the summed Weighted Accu-
racy (WA) and Unweighted Accuracy (UA).

We argue that this emotion recogniser, once trained, will
attend to the emotional parts of the utterance to make a decision.
Thus it is reasonable to assume that the attention weights over
an utterance give a good approximation of the emotion intensity.

2.2. Transformer

The above model is a very simple emotion recogniser and does
not represent the state of the art. More complex architectures
exist which do not allow a straight forward extraction of at-
tention weights. In this section we investigate a more recent
transformer model [16]. It consists of multiple self-attention
blocks, which do not allow the extraction of attention weights
in an obvious way. We make no claim that this model is the
best emotion recogniser currently available; rather, we present
a technique representative of more complex models without re-
strictions to their architecture to extract emotion intensities.

The transformer (Figure 1 right) consists of a feature extrac-
tion block with 4 fully-connected layers with 512 neurons and
SeLU activation. Afterwards a positional encoding is added in
form of a sinusoid with a large period. Dropout with 0.1 prob-
ability is applied on the latent features, which is then fed to
two self-attention [17] blocks with 32 heads each. The result-
ing attention matrix is aggregated with five 2D convolutional
layers with [30, 30, 30, 10, 6] output channels, a 5 × 5 ker-
nel size, and a stride of 2 × 2. The flattened 936-dim output
is projected with a fully-connected layer with 936 neurons and
a final fully-connected output layer with as many neurons as
emotion classes. After each but the last layer in the aggregation
step, dropout with probability 0.2 and SeLU activation is ap-
plied. All parameters are initialised using Xavier initialisation

Figure 1: Architectures of the emotion recognisers. Left: atten-
tion LSTM; right: transformer

[13] with a uniform distribution.
As before we use the openSMILE toolkit to extract frame-

level features (25ms window, 10ms shift). However, we use the
entire 384-dim IS09 features subset as input to the transformer
model and we do not add any noise. The transformer model
requires a fixed-length input. We use a sliding window of 500
frames with a step size of 50 frames previously found to per-
form best [16]. At inference time the final prediction is made
by applying a softmax on the predicted classes of each window
and averaging the results. Sequences are zero padded to match
the window and step size, no frames are dropped.

During training we randomly select 500 frames from each
input in the batch. We use the Adam optimiser (β1 = 0.9, β2 =
0.999, ε = 1E−8, no weight decay) with a learning rate of
1E−5 for 170 epochs on a mini-batch size of 8 and PyTorch’s
ReduceLROnPlateau scheduler with default parameters.

To extract emotion intensities with the transformer model
we propose to use saliency maps. Saliency maps are a common
technique in vision-related machine learning tasks. They at-
tempt to add interpretability to the neural network predictions.
An increasing number of techniques exist with varying com-
plexity [18, 19, 20, 21, 22]; we discuss some below. Saliency
maps compute the importance of each input to the network’s
output, thus each openSMILE feature in each frame receives a
value. To compute a scalar emotion intensity value we investi-
gate the aggregation through max and mean operations. In the
following we will give a high-level description of the techniques
we use in our experiments (Section 3).

2.2.1. Saliency Maps

Input gradients [18] continues the backpropagation chain to
the inputs and thus provides gradients of each input w.r.t. the
correct class label. The idea is that the gradients indicate how
much the class prediction is affected by a change in each input,
thus representing its importance.

Since input gradients produces relatively noisy saliency
maps Smoothgrad [19] attempts to smooth them over multi-
ple observations. It achieves this by adding white noise to the
input multiple times and computes the average input gradients
for all iterations. The idea of Smoothgrad can be applied in
many other saliency map techniques.

Input X Gradient [20] multiplies the input gradients with
the input itself. The idea is that the gradient alone only indicates
how important the feature is, but the input gives information on
how strongly the feature is present. Together they provide a
better abstraction of the feature importance.

Integrated Gradients [21] aggregates input gradients over



a linear interpolation between a baseline (the zero vector in our
case) and the input. The idea is to capture input gradients that
were steep at some of the interpolations but became flat for the
input, as they are still important for the class prediction.

2.3. Attribute Rank

Recent work [9, 11] has used attribute ranks [10] to compute
emotion intensities. We include this work as a competitive
method here and give a brief overview. For data of two cate-
gories the ranking function computes the ranking/order of the
data w.r.t. to a certain attribute, here emotion intensity. Once
the ranking function is learned, it can assign an emotion inten-
sity level to unseen emotional data. For completeness we give
an example closely following that in [11].

We select all neutral N and happy H samples from the
training set with acoustic features xt with t ∈ [1, . . . , T ] with
T = |N ∪H|. We then form an ordered setO and an unordered
set S of pairs. In the ordered set we pair an emotional sample
of H with a neutral sample from N , indicating that the emotion
intensity is higher in the samples of H than in those of N . In
the unordered set we randomly create pairs of neutral-neutral
and happy-happy samples, indicating that their rank should be
similar. The goal is to learn a ranking function r(xt) = wxt
satisfying the following constraints as much as possible

∀(i, j) ∈ O : wxi > wxj
∀(i, j) ∈ S : wxi = wxj

(1)

The problem can be relaxed with slack variables ξij and γij and
solved by Newton’s method.

In [11] a single openSMILE feature vector xt is extracted
for each utterance. Then the ranking function, i.e. the ranking
vector wm with m ∈ [1, . . . ,M ], is learned for each combina-
tion of neutral with the other M emotions. To obtain phoneme-
level rankings openSMILE features are extracted for the seg-
ments corresponding to each phoneme. This requires a forced-
alignment step for which we use the Montreal Forced Aligner
[23]. We use a Python port1 of the original code2 of [10] with
the default parameters for the Newton algorithm.

3. Experiments
For our experiments we select the SAVEE database [24]. It is
an audio-visual British English database with sentences from
TIMIT phonetically-balanced for each emotion. For each emo-
tion 3 common, 2 emotion-specific, and 10 generic sentences
(different for each emotion) were taken. For neutral the 3 com-
mon and 2 ∗ 6 emotion-specific sentences were additionally
recorded, giving 30 neutral sentences in total. 4 males acted
in 7 different emotions (neutral, anger, disgust, fear, happi-
ness, sadness, and surprise) resulting in a total of 480 utter-
ances. The audio was recorded at 44.1 kHz and has higher
quality compared to most emotional databases. We do not
use the visual information of the database. To compensate
for loudness differences in speaker ’KL’ we use a loudness
normalization technique to normalize all samples to an av-
erage root-mean squared value of RMS = 0.1 with x̃ =

x∗
√

(T ∗RMS2)/(
∑T (x− xmean)2). We also found back-

ground noise to degrade performance in some of the recordings.
To reduce the noise we use a single channel spectral enhance-
ment scheme [25] to pre-process the entire database.

1https://github.com/chaitanya100100/Relative-Attributes-Zero-
Shot-Learning

2https://www.cc.gatech.edu/ parikh/relative.html

3.1. Emotion Intensity

To train emotion recognisers, the SAVEE database is rather
limited. Thus we include the IEMOCAP [26] database in all
strategies for emotion intensity extraction. It splits into 5 dia-
logue sessions of acted and spontaneous emotions with 2 dif-
ferent professional actors each, totalling 10 speakers and ap-
proximately 12 hours of 48 KHz recordings. At least 3 fluent
English speakers annotated the perceived emotion and the final
emotion label was chosen based on majority vote. While still in
the database we exclude samples where no majority label was
found, additionally we exclude the ‘disgusted’ emotion from
our experiments, as it is both very hard to express and very rare
in the database. We apply the same loudness normalization and
noise reduction techniques as on SAVEE.

3.1.1. Emotion Recogniser

We train the attention LSTM (Section 2.1) and transformer
(Section 2.2) emotion recogniser models on IEMOCAP with
the parameters and inputs as defined in their respective section,
using a random split of the 5th session for the validation and
test set. We then fine-tune the models on SAVEE with the same
parameters for 200 epochs and select the best model based on
combined WA and UA on the validation set. For each emotion
we select emotion specific utterances as test and validation set.
Namely we use the 4th and 5th id as test set and the 6th and
7th id as validation set. We select the same ids for all speakers
so that the content is unseen during training. Table 1 shows the
metrics of the trained models on IEMOCAP and SAVEE. With
the trained models we extract the emotion intensity. For the
attention LSTM model these are simply the attention weights.

Table 1: Weighted (WA) and Unweighted Accuracy (UA) of the
emotion recogniser models after pre-training on IEMOCAP and
fine-tuning on SAVEE excluding the disgusted emotion class.

IEMOCAP SAVEE
WA UA WA UA

Attention LSTM 54.7 40.3 62.5 60.4
Transformer 51.2 43.1 69.6 67.7

Table 2: MSE between saliency maps and attention weights ex-
traction on the attention LSTM model on SAVEE. Saliency maps
abbreviated as IG: Input Gradient, Sg: Smoothgrad, IxG: Input
x Gradient, IntG: Integrated Gradients

Aggr. Smoothed IG Sg IxG IntG
mean no 1.46 1.451 1.626 1.62
mean yes 0.625 0.621 1.179 1.312
max no 1.466 1.461 1.5 1.56
max yes 0.665 0.664 0.835 0.984

For the transformer model the variety of saliency maps
(Section 2.2.1) allows multiple intensity curves (Figure 2). We
extract emotion intensity using Input Gradients, Smoothgrad,
Input X Gradient, and Integrated Gradients with max and mean
aggregation. As the saliency maps can be noisy, we also experi-
ment with smoothed versions obtained by a simple convolution
with an 11 frames wide Hanning window (Figure 3). With infor-
mal listening we cannot select a best system. However, we find
that the intensity weights extracted with the attention LSTM

https://github.com/chaitanya100100/Relative-Attributes-Zero-Shot-Learning
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Figure 2: Emotion intensities extracted with the attention LSTM model and different smoothed saliency maps for an angry utterance of
speaker JK. For better comparison each intensity is mean-variance normalised based on its own statistics. The content is: “Don’t ask
me to carry an oily rag like that.”
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Figure 3: Emotion intensities extracted with the attention LSTM model and with the Smoothgrad saliency map with max and mean
aggregation as well as smoothed mean for the same utterance as in Figure 2

model consistently produce more expressive speech than those
extracted with saliency. Thus it is reasonable to interpret the
saliency map as an approximation of the attention weights and
select the saliency map which is closest to them. For that rea-
son we extract the saliency maps on the attention LSTM model
and compare them to the attention weights in terms of Mean-
Squared-Error (MSE). As can be seen in Table 2 the closest
saliency map is smoothgrad with smoothed mean aggregation.

3.1.2. Attribute Rank

While it is possible to learn the ranking just on the SAVEE
database, we also include the IEMOCAP database for a fair
comparison. Indeed, we found that rankings extracted on both
databases outperform those learned only on SAVEE in infor-
mal listening tests. We exclude the SAVEE samples later used
for validation/test set of the emotional TTS model (Section 3.2)
when learning the ranking function. To form the unordered
set we randomly form pairs for each sample in the neutral set
of SAVEE. We then fill up the set with pairs from IEMOCAP
(speaker independent selection) to reach 150 pairs. We perform
the same with the respective emotion to obtain an unoredered
set with 300 pairs. For the ordered set we randomly select a
neutral SAVEE sample for each emotional SAVEE sample and
again use IEMOCAP to fill up to 300 pairs. This procedure fol-
lows the one in [11].3 With the learned ranking function we
compute phoneme-level rankings for all SAVEE samples.

3.2. Emotional TTS

Our goal is to train an emotional TTS system with emotion in-
tensity input on the SAVEE database. Due to the small size of
SAVEE we cannot train a modern encoder-decoder network on
it, as it quickly overfits before adapting the new speaking styles.
Instead we rely on a classical RNN-based network, which has
also been used in recent studies on emotional speech synthesis
[27]. We use oracle durations in all our experiments, because

3We thank Shan Yang for the detailed description of the process.

duration prediction for emotional speech is a challenging prob-
lem on its own. The model consists of 2 fully-connected layers
with ReLU activation and 1024 neurons, 3 BiLSTM layers with
512 neurons, and the final 97 dimensional output layer. 5%
dropout is applied in all but the final layer. A 128-dim speaker
and 64-dim emotion embedding is concatenated to the input
of each layer. Additionally, we concatenate the mean-variance
normalised emotion intensity input in all layers, which gives
better results than concatenating it only to the input. For all
neutral samples we set the emotion intensity to zero, indicating
that there is no emotion present. We do not predict the emo-
tion intensity internally, because we want to keep it as a tunable
input.

The inputs to the model are 425 text-derived binary and nu-
merical features normalised to [0.01, 0.99], which were derived
from the forced-aligned (with HTK [28]) phoneme sequence
previously extracted with Festival [29]. The model predicts
mean-variance normalised WORLD vocoder [30] features, con-
sisting of linearly-interpolated log F0 , a voiced/unvoiced flag,
30-dimensional mel-generalised cepstrum, and one Band Ape-
riodicity at 5 ms frame step, with their delta and double delta
derivatives. The output is smoothed with the MLPG algorithm
[31]. The WORLD vocoder is used to generate the waveform.

Even for our model the SAVEE database is too small to
train a TTS system, so we instead pre-train on the WSJCAM0
database [32]. It is a large British English database with 92
speakers with 90 utterances each recorded at 16 kHz. We use
only the head-mounted close-talking microphone recordings.
We apply the same loudness normalisation and noise reduc-
tion techniques as on IEMOCAP and SAVEE (Section 3). The
model is pre-trained for 35 epochs with a batch size of 16 and a
learning rate of 0.001 and early stopping. We reduce the learn-
ing rate by a factor of 0.1 on validation loss plateaus. The adap-
tation to SAVEE is split into adaptation to the neutral subset of
SAVEE first, and the entire database second. Each step is fur-
ther divided into three phases. In the first phase only the speaker
embedding is trained (10 epochs, lr=0.001), in the second phase



the whole model is trained (10 epochs, lr=0.001), the last phase
applies fine-tuning by repeating phase two with a smaller learn-
ing rate (10 epochs, lr=0.0001). The batch size in all phases is
16. In each phase early stopping is used and the best model is
selected to continue with the next phase.

3.3. Subjective Results

In the subjective listening test we investigate how the TTS mod-
els compare in terms of perceived emotion and whether the au-
dio quality is impacted. For the test we include five systems:

• baseline: TTS model without emotion intensity input

• attention: Attention weights from the attention LSTM

• transformer: Smoothgrad saliency map with mean ag-
gregation and smoothing extracted with the transformer

• rank: Phoneme-level rankings extracted with the com-
petitive technique [11]

• ref: Copy synthesis of the recordings

The test set consists of the same two utterances recorded for
every emotion (7, including neutral, excluding disgusted) and
every speaker (4 males). This makes 56 samples for each sys-
tem. As we do not yet have a method to predict emotion in-
tensity from text, we use the emotion intensity extracted from
the reference audio by the respective technique. This gives an
upper bound on the quality achievable with an emotion inten-
sity input assuming that the prediction is perfect. We find that
the emotion intensity input does not increase the expressiveness
of the speech much. However, it offers an unprecedented con-
trol to tune the emotion intensity. Informal listening shows a
greatly increased expressiveness, while still sounding natural,
when scaling the input with a factor of 7. The models have
learned to connect certain speech properties with the intensity
input, which allows scaling them in a natural way. In general
higher intensities result in higher energy in the speech, which is
desirable for all but the sad emotion. Thus all our tests use the
scaled version except sadness.

36 listeners rated 25 randomly selected samples each in a
5-scale MOS test with 0.5 steps and also selected the emotion
they perceived. Table 3 summarises the results. The total col-
umn includes the correct ratings on neutral. As many subtle
emotions like fearful or surprised are rated as neutral, this num-
ber is biased. The emo column indicates the accuracy on the
emotional samples only. On both metric the attention weight
extracted with the attention LSTM model outperforms the other
systems. It shows that an emotion intensity input increases the
expressiveness of the speech, which is also perceivable by lis-
teners. The happy emotion is almost never perceived. The low
recognition rate of the reference samples indicates that it was
not acted well enough. Providing a neutral reference during the
listening test might facilitate its prediction.

It also shows that the quality of the emotion intensity mat-
ters as the phoneme level rankings perform much worse, this
might be due to the phoneme-level granularity. The key benefit
of the ranking function is that it requires very little training data.
It might perform best when we do not include any IEMOCAP
data. It outperforms the baseline system in a similar manner to
that reported in the related work [11].

Interestingly, the saliency map extracted from the trans-
former model performs worse then the simple attention weight,
even though the model is much more complex and achieves
higher emotion recognition scores. All the saliency map tech-
niques are developed for the field of vision, focusing on convo-

Table 3: Results of the subjective evaluation of perceived emo-
tions in percentage. ‘total’ includes the neutral samples. Accu-
racy for each emotion is shown as well labelled as n: neutral,
a: angry, f: fearful, h: happy, sa: sad, su: surprised.

System total emo n a f h sa su

baseline 25.3 17.6 72 28 15 3 33 12
attention 35.5 28.9 70 54 13 6 55 21

transformer 26.7 20.6 60 33 25 0 41 8
rank 25.3 19.0 69 30 14 6 40 8

ref 45.9 40.3 75 74 23 19 31 54

baseline attention transformer rank ref
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Figure 4: Results of the 5-scale MOS test with 0.5 steps

lutional layers. A different type of saliency map might be neces-
sary for speech tasks or more convolutional networks might al-
low better saliency maps. The benefit of the transformer model
is that it will likely improve its emotion recognition perfor-
mance with more training data compared to the attention LSTM
model due to its small complexity. However, as long as no
proper saliency map technique exists, we are limited to mod-
els that allow straight-forward extraction of emotion intensity.

Figure 4 shows the results of the MOS test. None of the
differences in the results are statstically significant in a two-
tailed paired t-test with a p-value < 0.05. This includes the
copy synthesis reference, which has other quality issues that
were rated low by listeners. We can conclude that the proposed
techniques do not deteriorate the audio quality.4

4. Conclusion and Future Work
We presented two techniques to extract an emotion intensity in-
put from audio in an unsupervised way by utilising pre-trained
emotion recognisers. We do not require emotion intensity label-
ing, but only emotion class labels. Thus one could also refer to
it as weak supervision. From an emotion recognition network
with a single attention layer we extract the attention weights as
emotion intensity. From a transformer-based network we ex-
tract it using saliency maps. We show that the additional emo-
tion intensity input improves an emotional TTS system; increas-
ing the accuracy of which human listeners perceive the target
emotion without degradation in signal quality. The simpler first
method outperforms all others, including a recently published
method for emotion intensity extraction by relative attributes.

For the tests we use oracle emotion intensity extracted from
the reference. As the results show great improvements with an
emotion intensity input, future research will focus on predicting
it from text or conversion in speech-to-speech translation.
Ack.: This work was supported by the Swiss NSF grant number 185010: Neural
Architectures for Speech Technology (NAST); http://p3.snf.ch/Project-185010

4Audio samples at www.idiap.ch/paper/ssw11 emotion intensity/
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