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Department of Computer Science, University of Manchester, United Kingdom†

Idiap Research Institute, Switzerland‡

{firstname.lastname}@manchester.ac.uk

Abstract
We propose an explainable inference approach
for science questions by reasoning on ground-
ing and abstract inference chains. This paper
frames question answering as a natural lan-
guage abductive reasoning problem, construct-
ing plausible explanations for each candidate
answer and then selecting the candidate with
the best explanation as the final answer. Our
method, ExplanationLP, elicits explanations
by constructing a weighted graph of relevant
facts for each candidate answer and employs
a linear programming formalism designed to
select the optimal subgraph of explanatory
facts. The graphs’ weighting function is com-
posed of a set of parameters targeting rele-
vance, cohesion and diversity, which we fine-
tune for answer selection via Bayesian Opti-
misation. We carry out our experiments on the
WorldTree and ARC-Challenge datasets to em-
pirically demonstrate the following contribu-
tions: (1) ExplanationLP obtains strong perfor-
mance when compared to transformer-based
and multi-hop approaches despite having a sig-
nificantly lower number of parameters; (2) We
show that our model is able to generate plausi-
ble explanations for answer prediction; (3) Our
model demonstrates better robustness towards
semantic drift when compared to transformer-
based and multi-hop approaches.

1 Introduction

Answering science questions remain a fundamen-
tal challenge in Natural Language Processing and
AI as it requires complex forms of inference, in-
cluding causal, model-based and example-based
reasoning (Jansen, 2018; Clark et al., 2018; Jansen
et al., 2016; Clark et al., 2013). Current state-of-the-
art (SOTA) approaches for answering questions in
the science domain are dominated by transformer-
based models (Devlin et al., 2019; Sun et al., 2019).
Despite remarkable performance on answer pre-
diction, these approaches are black-box by nature,

lacking the capability of providing explanations for
their predictions (Thayaparan et al., 2020; Miller,
2019; Biran and Cotton, 2017; Jansen et al., 2016).

Explainable Science Question Answering
(XSQA) is often framed as a natural language
abductive reasoning problem (Khashabi et al.,
2018; Jansen et al., 2017). Abductive reasoning
represents a distinct inference process, known
as inference to the best explanation (Peirce,
1960; Lipton, 2017), which starts from a set of
complete or incomplete observations to find the
hypothesis, from a set of plausible alternatives,
that best explains the observations. Several
approaches (Khashabi et al., 2018; Jansen et al.,
2017; Khot et al., 2017a; Khashabi et al., 2016)
employ this form of reasoning for multiple-choice
science questions to build a set of plausible
explanations for each candidate answer and select
the one with the best explanation as the final
answer.

XSQA solvers typically treat explanation gener-
ation as a multi-hop graph traversal problem. Here,
the solver attempts to compose multiple facts that
connect the question to a candidate answer. These
multi-hop approaches have shown diminishing re-
turns with an increasing number of hops (Jansen
et al., 2018; Jansen, 2018). Fried et al. (2015) con-
clude that this phenomenon is due to semantic drift
– i.e., as the number of aggregated facts increases,
so does the probability of drifting out of context.
Khashabi et al. (2019) propose a theoretical frame-
work, empirically supported by Jansen et al. (2018);
Fried et al. (2015), attesting that ongoing efforts
with very long multi-hop reasoning chains are un-
likely to succeed, emphasising the need for a richer
representation with fewer hops and higher impor-
tance to abstraction and grounding mechanisms.

Consider the example in Figure 1A where the
central concept the question examines is the under-
standing of friction. Here, an inference solver’s



[✓]:   Explanatory Facts
[✕]:   Non-Explanatory Facts

What is an example of force producing heat?

Candidate Answer (C1):
Two sticks getting warm when rubbed together

Grounding Facts:

[✓] a stick is an object: FG1
[✓] friction is a force: FG2
[✕] a pull is a force: FG3
[✓] to rub together means to move against: FG4
[✕] rubbing against something is kind of  
    movement: FG5

Abstract Facts:

Abstract Facts:

[✓] friction occurs when two object's surfaces 
    move against each other: FC1
[✓] friction causes the temperature of an object
    to increases: FC2
[✕] magnetic attraction pulls two objects 
    together: FC3
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Figure 1: Overview of our approach: (A) Depicts a question, answer and formulated hypothesis along with the set
of facts retrieved from a fact retrieval approach (B) Illustrates the optimisation process behind extracting explana-
tory facts for the provided hypothesis and facts. (C) Details the end-to-end architecture diagram.

challenge is to identify the core scientific facts
(Abstract Facts) that best explain the answer. To
achieve this goal, a QA solver should be able first
to go from force to friction, stick to object and
rubbing together to move against. These are the
Grounding Facts that link generic or abstract con-
cepts in a core scientific statement to specific terms
occurring in question and candidate answer (Jansen
et al., 2018). The grounding process is followed by
the identification of the abstract facts about friction.
A complete explanation for this question would
require the composition of five facts to derive the
correct answer successfully. However, it is pos-
sible to reduce the global reasoning in two hops,
modelling it with grounding and abstract facts.

In line with these observations, this work
presents a novel approach that explicitly models
abstract and grounding mechanisms. The contribu-
tions of the paper are:

1. We present a novel approach that performs
natural language abductive reasoning via
grounding-abstract chains combining Linear
Programming with Bayesian optimisation for
science question answering (Section 2).

2. We obtain comparable performance when
compared to transformers, multi-hop ap-
proaches and previous Linear Programming
models despite having a significantly lower
number of parameters (Section 3.1).

3. We demonstrate that our model can generate
plausible explanations for answer prediction
(Section 3.2) and validate the importance of
grounding-abstract chains via ablation analy-
sis (Section 3.3).

2 ExplanationLP: Abductive Reasoning
with Linear Programming

ExplanationLP answers and explains multiple-
choice science questions via abductive natural lan-
guage reasoning. Specifically, the task of answer-
ing multiple-choice science questions is reformu-
lated as the problem of finding the candidate an-
swer that is supported by the best explanation. For
each Question Q and candidate answer ci ∈ C,
ExplanationLP converts to a hypothesis hi and at-
tempts to construct a plausible explanation.

Figure 1C illustrates the end-to-end framework.
From an initial set of facts selected using a re-
trieval model, ExplanationLP constructs a fact
graph where each node is a fact, and the nodes
and edges have a score according to three prop-
erties: relevance, cohesion and diversity. Subse-
quently, an optimal subgraph is extracted using
Linear Programming, whose role is to select the
best sub-set of facts while preserving structural
constraints imposed via grounding-abstract chains.
The subgraphs’ global scores computed by sum-
ming up the nodes and edges scores are adopted to
select the final answer. Since the subgraph scores
depend on the sum of nodes and edge scores, each
property is multiplied by a learnable weight which



is optimised via Bayesian Optimisation to obtain
the best possible combination with the highest ac-
curacy for answer selection. To the best of our
knowledge, we are the first to combine a parameter
optimisation method with Linear Programming for
inference. The rest of this section describes the
model in detail.

2.1 Relevant facts retrival

Given a question (Q) and candidate answers C =
{c1, c2, c3, ..., cn} we convert them to hypothe-
ses {h1, h2, h3, ..., hn} using the approach pro-
posed by Demszky et al. (2018). For each hy-
pothesis hi we adopt fact retrieval approaches
(e.g: BM25, Unification-retrieval (Valentino et al.,
2021)) to select the top m relevant abstract facts
F hi
A = {fhi

1 , f
hi
2 , f

hi
3 , ..., f

hi
m } from a knowl-

edge base containing abstract facts (Abstract Facts
KB) and top l relevant grounding facts F hi

G =

{fhi
1 , f

hi
2 , f

hi
3 , ..., f

hi
l } from a knowledge base

containing grounding facts (Grounding Facts KB)
that at least connects one abstract fact with the hy-
pothesis, such that F hi = F hi

A ∪F
hi
G and l+m = k.

2.2 Fact graph construction

For each hypothesis hi we build a weighted undi-
rected graph Ghi = (V hi , Ehi , ωv, ωe) with
vertices V hi ∈ {{hi} ∪ F hi}, edges Ehi , edge-
weight function ωe(ei; θ1) and node-weight func-
tion ωv(vi; θ2) where ei ∈ Ehi , vi ∈ V hi and
θ1, θ2 ∈ [0, 1] is a learnable parameter which is
optimised via Bayesian optimisation.

The model scores the nodes and edges based on
the following three properties (See Figure 1B):

(1) Relevance: We promote the inclusion of highly
relevant facts in the explanations by encouraging
the selection of sentences with higher lexical rele-
vance and semantic similarity with the hypothesis.
We use the following scores to measure the rele-
vance and the semantic similarity of the facts:
Lexical Relevance score (L): Obtained from the
upstream facts retrieval model (e.g: BM25 score/
Unification score (Valentino et al., 2021)).
Semantic Similarity score (S): Cosine similarity
obtained from neural sentence representation
models. For our experiments, we adopt Sentence-
BERT (Reimers et al., 2019) since it shows
state-of-the-art performance in semantic textual
similarity tasks.

(2) Cohesion: Explanations should be cohesive,
implying that grounding-abstract chains should re-
main within the same context. To achieve cohe-
sion, we encourage a high degree of overlaps be-
tween different hops (e.g. hypothesis-grounding,
grounding-abstract, hypothesis-abstract) to prevent
the inference chains from drifting away from the
original context. The overlap across two hops is
quantified using the following scoring function:
Cohesion score (C): We denote the set of unique
terms of a given fact fhi

i as t(fhi
i ) after being lem-

matized and stripped of stopwords. The overlap
score of two facts fhi

j and fhi
j is given by:

C(fhi
j , f

hi
k ) =

|t(fhi
j ) ∩ t(fhi

k )|
max(|t(fhi

j )|, |t(fhi
k )|)

Therefore, the higher the number of term overlaps,
the higher the cohesion score.

(3) Diversity: While maximizing relevance and co-
hesion between different hops, we encourage diver-
sity between facts of the same type (e.g. abstract-
abstract, grounding-grounding) to address different
parts of the hypothesis and promote completeness
in the explanations. We measure diversity via the
following function:
Diversity score (D): We denote the overlaps be-
tween hypothesis hi and the fact fhi

i as thi
(fhi

i ) =

t(fhi
i )∩ t(hi). The diversity score of two facts fhi

j

and fhi
j is given by:

D(fhi
j , f

hi
k ) = −1

|thi
(fhi

j ) ∩ thi
(fhi

k )|
max(|thi

(fhi
j )|, |thi

(fhi
k )|)

The goal is to maximise diversity and avoid redun-
dant facts in the explanations. Therefore, if two
facts overlap with different parts of the hypothesis,
they will have a higher diversity score compared to
two facts that overlap with the same part.

Given these premises, the weight functions of
the graph is designed as follows:

ωe(vj , vk; θ1) =



θggD(vj , vk) vj , vk ∈ F hi
G

θaaD(vj , vk) vj , vk ∈ F hi
A

θgaC(vj , vk) vj ∈ F hi
G , vk ∈ F hi

A

θqgC(vj , vk) vj ∈ F hi
G , vk = hi

θqaC(vj , vk) vj ∈ F hi
A , vk = hi

ωv(vhi
i ; θ2) =

{
θlrL(vj , hi) + θssS(vj , hi) vj ∈ Fhi

A

0 vi ∈ Fhi
G

0 vi = hi



where θgg, θaa, θga, θgq, θqa ∈ θ1 and θlr, θss ∈
θ2.

2.3 Subgraph extraction with Linear
Programming (LP) optimisation

The construction of the explanation graph has to
be optimised for the downstream answer selection
task. Specifically, from the whole set of facts re-
trieved by the upstream retrieval models, we need
to select the optimal subgraph that maximises the
performance of answer prediction. To achieve this
goal, we adopt a Linear Programming approach.

The selection of the explanation graph is framed
as a rooted maximum-weight connected subgraph
problem with a maximum number of K vertices
(R-MWCSK). This formalism is derived from the
generalized maximum-weight connected subgraph
problem (Loboda et al., 2016). R-MWCSK has two
parts: objective function to be maximized and con-
straints to build a connected subgraph of explana-
tory facts. The formal definition of the objective
function is as follows:
Definition 1. Given a connected undirected graph
G = (V,E) with edge-weight function ωe : E →
IR, node-weight function ωv : V → IR , root ver-
tex r ∈ V and expected number of vertices K, the
rooted maximum-weight connected subgraph prob-
lem with K number of vertices (R-MWCSK) prob-
lem is finding the connected subgraph Ĝ = (V̂ , Ê)
such that r ∈ V̂ , |V |≤ K and

Ω(Ĝ; θ3) = θvw
∑
v∈V̂

ωv(v; θ1)

+ θew
∑
e∈Ê

ωe(e; θ2)→ max

where θvw, θew ∈ θ3, θ3 ∈ [0, 1] and θ3 is a learn-
able parameter optimized via Bayesian optimisa-
tion. The LP solver will seek to extract the optimal
subgraph with the highest possible sum of node and
edge weights. Since the solver seeks to obtain the
highest possible score, it will avoid negative edges
and will prioritise high-value positive edges result-
ing in higher diversity, cohesion and relevance. We
adopt the following binary variables to represent
the presence of nodes and edges in the subgraph:

1. Binary variable yv takes the value of 1 iff v ∈
V hi belongs to the subgraph.

2. Binary variable ze takes the value of 1 iff e ∈
Ehi belongs to the subgraph.

In order to emulate the grounding-abstract infer-
ence chains and obtain a valid subgraph, we impose
the set constraints described in Table 1 for the LP
solver.

2.4 Bayesian Optimisation for Answer
Selection

Given Question Q and choices C =
{c1, c2, c3, ..., cn} we extract the optimal expla-
nation graphs ĜQ = {Ĝc1 , Ĝc2 , Ĝc3 , ..., Ĝcn}
for each choice. We consider the hypothesis
with the highest relevance, cohesion and di-
versity to be the correct the answer. Based on
this premise we define the correct answer as
cans = arg maxhi

(Ω(Ĝhi)).
In order to automatically optimize the Linear

Programming model (i.e, θ1, θ2, θ3) we use
Bayesian optimisation. The algorithm is defined as
below (Here GP is Gaussian Process and LP is the
Linear Programming module).

Algorithm 1: Bayesian Optimisation
θ1, θ2, θ3 = initRandom(seed)
GQ = fact-graph-construction(ωe(θ

′
1), ωv(θ

′
2))

ĜQ = LP(GQ, Ω(θ3))
X = evaluate-accuracy(GQ)
model = GP(X, {θ1, θ2, θ3})
iteration = 0
while iteration ≤ N do

θ
′
1, θ

′
2, θ

′
3 = get-next-exploration-point()

GQ
′

= fact-graph-construction(ωe(θ
′
1), ωv(θ

′
2))

ĜQ
′

= LP(GQ
′
, Ω(θ

′
3))

X
′

= evaluate-accuracy(GQ
′
)

model.update(X
′
, {θ

′
1, θ

′
2, θ

′
3})

iteration = iteration + 1
end
Result: Best accuracy for model and respective

parameters θ1, θ2, θ3

3 Empirical Evaluation

Background Knowledge: We construct the re-
quired knowledge bases using the following
sources.
(1) Abstract KB: Our Abstract knowledge base
is constructed from the WorldTree Tablestore cor-
pus (Xie et al., 2020; Jansen et al., 2018). The
Tablestore corpus contains a set of common sense
and scientific facts adopted to create explanations
for multiple-choice science questions. The corpus
is built for answering elementary science questions
encouraging possible knowledge reuse to elicit ex-
planatory patterns. We extract the core scientific
facts to build the Abstract KB. Core scientific facts



yvi = 1 if vi = hi (1)

yvi ≤
∑
j

yvj ∀vj ∈ NGhi (vi) (2)

zvi,vj ≤ yvi ∀e(vi,vj) ∈ E (3)

zvi,vj ≤ yvj ∀e(vi,vj) ∈ E (4)

zvi,vj ≥ yvi + yvj − 1 ∀e(vi,vj) ∈ E (5)

Chaining constraint: Equation 1 states that the subgraph should al-
ways contain the hypothesis node. Inequality 2 states that if a vertex
is to be part of the subgraph, then at least one of its neighbors with a
lexical overlap should also be part of the subgraph. Equation 1 and
Inequality 2 restrict the LP method to construct explanations that orig-
inate from the hypothesis and perform multi-hop aggregation based
on the existence of lexical overlap. Inequalities 3, 4 and 5 state that if
two vertices are in the subgraph then the edges connecting the vertices
should be also in the subgraph. These inequality constraints will force
the LP method to avoid grounding nodes with high overlap regardless
of their relevance.

∑
i

yvi ≤K ∀vi ∈ F hi
A (6)

Abstract fact limit constraint: Equation 6 limits the total number
of abstract facts to K. Instead of limiting of total selected number
of nodes to K, by limiting the abstract facts we dictate the need for
grounding facts based on the number of terms present in the hypothesis
and in the abstract facts.

∑
vj

yvi − 2 ≥− 2(1− yvj ) ∀vi ∈ NGhi (vj),

vi ∈ {Fhi
A ∪ hi},

vj ∈ Fhi
G

(7)

Grounding neighbor constraint: Inequality 7 states that if a ground-
ing fact is selected, then at least two of its neighbors should be either
both abstract facts or a hypothesis and an abstract fact. This con-
straint ensures that grounding facts play the linking role connecting
hypothesis-abstract facts.

Table 1: Linear programming constraints employed by ExplanationLP to emulate grounding-abstract inference chains and
extract the optimal subgraph

are independent from the specific questions and rep-
resent general scientific and commonsense knowl-
edge, such as Actions (friction occurs when
two object’s surfaces move against each other) or
Affordances (friction causes the temperature
of an object to increase).
(2) Grounding KB: The grounding knowledge
base consists of definitional knowledge (e.g.,
synonymy and taxonomy) that can take into
account lexical variability of questions and help
it link it to abstract facts. To achieve this goal,
we select the is-a and synonymy facts from
ConceptNet (Speer et al., 2017) as our grounding
facts. ConceptNet has high coverage and precision,
enabling us to answer a wide variety of questions.

Question Sets: We use the following question
sets to evaluate ExplanationLP’s performance and
compare it against other explainable approaches:
(1) WorldTree Corpus: The 2,290 questions in
the WorldTree corpus are split into three different
subsets: train-set (987), dev-set (226) and test-set
(1,077). We use the dev-set to assess the explain-
ability performance and robustness analysis since
the explanations for test-set are not publicly avail-
able.
(2) ARC-Challenge Corpus: ARC-Challenge is a

multiple-choice question dataset which consists
of question from science exams from grade 3 to
grade 9 (Clark et al., 2018). We only consider
the Challenge set of questions. These questions
have proven to be challenging to answer for
other LP-based question answering and neural
approaches. ExplanationLP rely only on the
train-set (1,119) and test on the test-set (1,172).
ExplanationLP does not require dev-set, since the
possibility of over-fitting is non-existent with only
ten parameters.

Relevant Facts Retrieval (FR): We experiment
with two different fact retrieval scores. The first
model – i.e. BM25 Retrieval, adopts a BM25 vec-
tor representation for hypothesis and explanation
facts. We apply this retrieval for both Grounding
and Abstract retrieval. We use the IDF score from
BM25 as our downstream model’s relevance score.
The second approach – i.e. Unification Retrieval
(UR), represents the BM25 implementation of the
Unification-based Reconstruction framework de-
scribed in Valentino et al. (2021). The unification
score for a given fact depends on how often the
same fact appears in explanations for similar ques-
tions.
Baselines: The following baselines are replicated



on the WorldTree corpus to compare against Expla-
nationLP:
(1) Bert-Based models: We compare the Ex-
planationLP model’s performance against a set
of BERT baselines. The first baseline – i.e.
BERTBase/BERTLarge, is represented by a stan-
dard BERT language model (Devlin et al., 2019)
fine-tuned for multiple-choice question answering.
Specifically, the model is trained for binary clas-
sification on each question-candidate answer pair
to maximize the correct choice (i.e., predict 1) and
minimize the wrong choices (i.e., predict 0). Dur-
ing inference, we select the choice with the highest
prediction score as the correct answer. BERT base-
lines are further enhanced with explanatory facts re-
trieved by the retrieval models. BERT + BM25 and
BERT + UR, is fine-tuned for binary classification
by complementing the question-answer pair with
grounding and abstract facts selected by BM25 and
Unification retrieval, respectively.

Similarly, the second model BERT + UR comple-
ments the question-answer pair with grounding and
abstract facts selected using BM25 and Unification
retrieval, respectively.
(2) PathNet (Kundu et al., 2019): PathNet is a neu-
ral approach that constructs a single linear path
composed of two facts connected via entity pairs
for reasoning. PathNet also can explain its rea-
soning via explicit reasoning paths. They have
exhibited strong performance for multiple-choice
science questions by composing two facts. Sim-
ilar to Bert-based models, we employ PathNET
with the top k facts retrieved utilizing Unification
(PathNet + UR) and BM25 (PathNet + BM25) re-
trieval. We concatenate the facts retrieved for each
candidate answer and provide as supporting facts.

Further details regarding the hyperparameters
and code used for each model, along with informa-
tion concerning the knowledge base construction
and dataset information, can be found in the Sup-
plementary Materials.

3.1 Answer Selection

WorldTree Corpus: We retrieve the top l relevant
grounding facts from Grounding KB and the top
m relevant abstract facts from Abstract KB such
that l + m = k and l = m. To ensure fairness
across the approaches, the same amount of facts
are presented to each model. We experimented
with k = {10, 20, 30, 40, 50} and report the
accuracy across Easy and Challenge split of the

# Model Accuracy
Easy Challenge

1 BERTBase 51.04 28.75
2 BERTLarge 54.58 29.39

3 BERTBase + BM25 (k=10) 53.92 42.72
4 BERTLarge + BM25 (k=10) 54.05 43.45
5 BERTBase + UR (k=10) 52.87 42.17
6 BERTLarge + UR (k=10) 58.50 43.72

7 PathNet + BM25 (k=20) 43.32 36.42
8 PathNet + UR (k=15) 47.64 33.55

9 Ours + BM25 (k=30) 63.82 48.24
10 Ours + UR (k=30) 66.23 50.15

Table 2: Accuracy on Easy (764) and Challenge split (313)
of WorldTree test-set corpus from the best performing k of
each model

# Model Explainable Accuracy

1 BERTLarge No 35.11

2 IR Solver (Clark et al., 2016) Yes 20.26
3 TupleInf (Khot et al., 2017b) Yes 23.83
4 TableILP (Khashabi et al., 2016) Yes 26.97
5 DGEM (Clark et al., 2016) Partial 27.11
6 KGˆ2 (Zhang et al., 2018) Partial 31.70
7 ET-RR (Ni et al., 2019) Partial 36.61
8 Unsupervised AHE (Yadav

et al., 2019a)
Partial 33.87

9 Supervised AHE (Yadav et al.,
2019a)

Partial 34.47

10 AutoRocc (Yadav et al., 2019b) Partial 41.24

11 Ours + BM25 (k=40) Yes 40.21
12 Ours + UR (k=40) Yes 39.84

Table 3: ARC challenge scores compared with other Fully
or Partially explainable approaches trained only on the ARC
dataset.

best performing setting in Table 2. We draw the
following conclusions:
(1) Despite having a smaller number of param-
eters to train (BERTBase: 110M parameters,
BERTLarge: 340M parameters, ExplanationLP: 9
parameters), the best performing ExplanationLP
(#10) overall outperforms all the BERTBase and
BERTLarge models on both Challenge and Easy
split. We outperform the best performing BERT
model with facts (BERTLarge (#6)) by 7.74% in
Easy and 6.43% in Challenge. We also outperform
best performing BERT without facts (BERTLarge

(#2)) by 11.66% in Easy and 20.76% in Challenge.
(2) BERT is inherently a black-box model, not be-
ing entirely possible to explain its prediction. By
contrast, ExplanationLP is fully explainable and
produces a complete explanatory graph.
(3) Similar to ExplanationLP, PathNet is also ex-
plainable and demonstrates robustness to noise.



CASE I: All the selected facts are in the gold explanation (Frequency: 33%)

Question: A company wants to make a game that uses a magnet that sticks to a board. Which material should it use for
the board? Answer: steel
Explanations: (1) steel is a metal (Grounding), (2) if a magnet is attracted to a metal then that magnet will stick to that
metal (Abstract), (3) a magnet attracts magnetic metals through magnetism (Abstract),

CASE II: At least one selected facts are in the gold explanation (Frequency: 58%)

Question: A large piece of ice is placed on the sidewalk on a warm day. What will happen to the ice? Answer: It will
melt to form liquid water.
Explanations: (1) drop is liquid small amount (Grounding), (2) forming something is change (Grounding), (3) ice
wedging is mechanical weathering (Grounding), (4) melting means changing from a solid into a liquid by adding heat
energy (Abstract), (5) weathering means breaking down surface materials from larger whole into smaller pieces by
weather (Abstract),

CASE III: No retrieved facts is in the gold explanation (Frequency: 9%)

Question:Wind is a natural resource that benefits the southeastern shore of the Chesapeake Bay. How could these winds
best benefit humans? Answer: The winds could be converted to electrical energy
Explanations: (1) renewable resource is natural resource (Grounding), (2) wind is a renewable resource (Abstract), (3)
electrical devices convert electricity into other forms of energy (Abstract)

Table 4: Case study of explanation extracted by ExplanationLP

ExplanationLP also outperforms PathNet’s best
performance setting (#8) by 18.59% in Easy and
16.60% in Challenge.
(4) ExplanationLP consistently exhibits better
scores on both BM25 and UR than BERT and Path-
Net, demonstrating independence of the upstream
retrieval model for performance.

ARC-Challenge : We also evaluated our model
on the ARC-Challenge corpus (Clark et al., 2018)
to evaluate ExplanationLP on a more extensive
general question set and compare against contem-
porary approaches that provide explanations for
an inference that has only been trained on ARC
corpus. Table 3 reports the results on the test-set.
We compare ExplanationLP against published ap-
proaches that are fully/partly explainable. Here
explainability indicates if the model produces an
explanation/evidence for the predicted answer. A
subset of the approaches produces evidence for the
answer but remains intrinsically black-box. These
models have been marked as Partial.

As depicted in the Table 3, we outperform the
best performing fully explainable (#4 TableILP)
model by 13.28%. We also outperform specific
neural approaches with larger parameter sets (#5
- #9) that provide explanations for their inference
and BERT (#1). Despite having a smaller number
of training parameters, we also exhibit competitive
performance with a state-of-the-art Bert-based ap-
proach (#10) that do not use external resources to
train the QA system.

3.2 Explainability

Approach Precision Recall F1

PathNet + UR (k=20) 21.56 36.55 29.06
Ours + UR (k=30) 57.96 49.92 48.13

Table 5: Explanation retrieval performance on the
WorldTree Corpus dev-set.

Table 5 shows the Precision, Recall and F1Macro

score for explanation retrieval for PathNet and Ex-
planationLP. These scores are computed using gold
abstract explanations from WorldTree corpus. We
outperform PathNet across all spectrum by a sig-
nificant margin.

Table 4 reports three representative cases that
show how explanation generation relates to cor-
rect answer prediction. The first example (Case I)
represents the situation in which all the selected
sentences are annotated as gold explanations in the
WorldTree corpus (dev-set). The second example
(Case II) shows the case in which at least one sen-
tence in the explanation is labelled as gold. Finally,
the third example (Case III) represents the case
in which the explanation generated by the method
does not contain any gold fact. We observe Case
I and Case II occur over 91% of the questions,
demonstrating that the correct answers are mostly
derived from plausible explanations.

3.3 Ablation Study
In order to understand the contribution lent by
different components, we choose the best setting



# Approach Accuracy
WT ARC

1 ExplanationLP (Best) 61.37 40.21

Structure
2 Grounding-Abstract Categories 58.33 35.13
3 Edge weights 43.78 29.45
4 Node weights 42.80 27.87

Cohesion
5 Hypothesis-Abstract cohesion 38.71 30.37
6 Hypothesis-Grounding cohesion 59.33 38.73
7 Grounding-Abstract cohesion 59.12 38.14

Diversity
8 Abstract-Abstract diversity 60.16 37.62
9 Grounding-Grounding diversity 60.44 37.71

Relevance
10 Hypothesis-Abstract semantic similarity 55.38 35.49
11 Hypothesis-Abstract lexical relevance 54.68 36.01

Table 6: Ablation study, removing different components of
ExplanationLP. The scores reported here are accuracy for
answer selection on the WorldTree (WT) and ARC-Challenge
(ARC) test-set.

Figure 2: Change in accuracy of answer prediction the de-
velopment set varying across different models with increasing
explanation length for WorldTree dev-set. Red dashed line
represents ExplanationLP + UR (k=30), blue line represents
BERTLarge + UR (k=10) and green dotted line represents
PathNet + UR (k=20)

(WorldTree: ExplanationLP + UR (k=30) and ARC:
ExplanationLP + BM25 (k=40)) and drop different
components to perform an ablation analysis. We re-
tain the ensemble after removing each component.
The results are summarized in Table 6.
(1) The grounding-abstract chains (#2) play a sig-
nificant role, particularly in the reasoning mech-
anism on a challenging question set like ARC-
Challenge.
(2) As observed in #3, #4 removing node weights
and edge weights lead to a dramatic drop in perfor-
mance. This drop indicates that both are fundamen-
tal for the final prediction, highlighting the role of
graph structure in explainable inference.
(3) The importance of cohesion varies across dif-
ferent types of facts. We observe that Hypothesis-

Abstract cohesion (#5) is significantly more impor-
tant than the others. We attribute this to the fact that
without Hypothesis-Abstract cohesion, multi-hop
inference can quickly go out of context.
(4) From the ablation analysis, we can see how
lexical relevance and semantic similarity (#10, 11)
complements each other towards the final predic-
tion. For WorldTree corpus, the relevance score has
a higher parameter score translating into a higher
impact and vice-versa for ARC.
(5) Diversity plays a smaller role when compared
to cohesion and relevance. The impact of diversity
in ARC is higher than that of WorldTree.

Semantic Drift To validate the performance
across an increasing number of hops, we plot the
accuracy against explanation length as illustrated
in Figure 2. As demonstrated in explanation regen-
eration (Valentino et al., 2021; Jansen and Ustalov,
2019), the complexity of a science question is di-
rectly correlated with the explanation length – i.e.
the number of facts required in the gold explanation.
Unlike BERT, PathNet and ExplanationLP use ex-
ternal background knowledge, addressing the multi-
hop process in two main reasoning steps. However,
in contrast to ExplanationLP, PathNet combines
only two explanatory facts to answer a given ques-
tion. This assumption has a negative impact on
answering complex questions requiring long expla-
nations. This is evident in the graph, where we ob-
serve a sharp decrease in accuracy with increasing
explanation length. Comparatively, ExplanationLP
achieves more stable performance, showing a lower
degradation with an increasing number of explana-
tion sentences. These results crucially demonstrate
the positive impact of grounding-abstract mech-
anisms on semantic drift. We also exhibit con-
sistently better performance when compared with
BERT as well.

4 Related Work

Our approach broadly falls into Linear Program-
ming based approaches for science question an-
swering. LP-based approaches perform inference
over either semi-structured tables (Khashabi et al.,
2016) or structural representations extracted from
the text (Khashabi et al., 2018; Khot et al., 2017a).
These approaches treat all facts homogeneously
and attempt to connect the question with the cor-
rect answer through long hops. While they have
exhibited good performance with no supervision,
the performance tends to be lower when answer-



ing complex questions requiring long explanatory
chains. In contrast, our approach performs infer-
ence over unstructured text by imposing structural
constraints via grounding-abstract chains, lowering
the hops, and also combine parametric optimisation
to extract the best performing model.

The other class of approaches that provide ex-
planations are graph-based approaches. Graph-
based approaches have been successfully applied
for open-domain question answering (Fang et al.,
2020; Qiu et al., 2019; Thayaparan et al., 2019)
where the question only requires only two hops.
PathNet (Kundu et al., 2019) operates within the
same design principles and has been applied on
OpenbookQA science dataset. As indicated in
the empirical evaluation, it struggles with long-
chain explanations since it relies only on two facts.
Graph-based approaches have also been employed
for mathematical reasoning (Ferreira and Freitas,
2020a,b) and textual entailment (Silva et al., 2019,
2018).

The third category of partially explainable ap-
proaches employs black-box neural models in com-
bination with a retrieval approach. The SOTA
model for Science Question (Khashabi et al., 2020)
answering is pretrained across multiple datasets
and is not explainable. The current partially ex-
plainable SOTA approach that does not rely on
external resource (Yadav et al., 2019b) employs
a large parameter BERT model for question an-
swering resulting. In contrast, with a low number
of parameters, we have introduced a model that
demonstrates competitive performance and leaves
a smaller carbon footprint in terms of energy con-
sumption (Henderson et al., 2020). Other methods
construct explanation chains by leveraging explana-
tory patterns emerging in a corpus of scientific ex-
planations (Valentino et al., 2020, 2021).

5 Conclusion

This paper presented a robust, explainable and ef-
ficient science question answering model that per-
forms abductive natural language inference. We
also presented an in-depth systematic evaluation
demonstrating the impact on the various set of de-
sign principles via an in-depth ablation analysis.
Despite having a significantly lower number of
parameters, we demonstrated competitive perfor-
mance compared with contemporary explainable
approaches while also showcasing its robustness,
explainability and interpretability.
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A Supplementary Material

This section consists of all the hyperparameters,
code and libaries used in our approach. We present
this in the hope it fosters reproducibility.

A.1 Linear Programming Optimization

The components of the linear programming system
is as follows:

• Solver: CPLEX optimization studio
V12.9.0 https://www.ibm.com/products/

ilog-cplex-optimization-studio

The hyperparatemers used in the LP constraints:

• Maximum number of abstract facts (K): 2

• Average time per epoch: 6 minutes for train-
set

• Number of Epochs: 200

Infrastructures used:

• CPU Cores: 32

• CPU Model: Intel(R) Core(TM) i7-6700 CPU
@ 3.40GHz

• Memory: 128GB

• OS: Ubuntu 18.04 LTS
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A.2 Parameter tuning

Our work employed Bayesian optmiza-
tion with Gaussian process for hyper-
paramter tuning. We used the https:

//github.com/fmfn/BayesianOptimization:
Bayesian-Optimization python library to im-
plement the code. These parameters are as
follows:

• Gaussian Kernels:

– RationalQuadratic Kernel with default
parameters

– WhiteKernel with noise level of 1e-5,
noise level bounds (1e-10, 1e1) and rest
of the default parameters

• Number of iterations: 200

• alpha (α): 1e-8

• random state: 1

A.3 Sentence-BERT for Semantic Similarity
Scores

We use: roberta-large nli-stsb mean-tokens model
to calculate the semantic similarity scores.

A.4 BERT model

The BERT model was taken from the Hug-
ginface Transformers (https://github.com/
huggingface/transformers) library and fine-
tuned using 4 Tesla V100 GPUs for 10 epochs in
total with batch size 16 for BERTLarge and 32 for
for BERTBase. The hyperparameters adopted for
BERT are as follows:

• gradient accumulation steps: 1

• learning rate: 1e-5

• weight decay: 0.0

• adam epsilon: 1e-8

• warmup steps: 0

• max grad norm: 1.0

• seed: 42

A.5 PathNet
We use the code and dependencies pro-
vided by the PathNet github repository
(https://github.com/allenai/PathNet).
We used the training config provided
for OpenBookQA as a baseline: https:

//github.com/allenai/PathNet, file name:
blob/master/training configs/config obqa.json.

A.6 Relevant facts retrieval
The code for BM25 and Unification retrieval
approaches were adopted from the Unifi-
cation Explanation Retrieval GitHub repos-
itory (https://github.com/ai-systems/
unification_reconstruction_explanations).

A.7 Code
The code for reproducing the ExplanationLP and
the experiments described in this paper are at-
tached with the code appendix and will be avail-
able at the following GitHub repository (with
a Dockerized container): https://github.com/
ai-systems/explanationlp.

A.8 Data
WorldTree Dataset : The 2,290 questions in the
WorldTree corpus are split into three different sub-
sets: train-set (987), dev-set (226), and test-set
(1,077). We only considered questions with expla-
nations for our evaluation. The reasoning behind
omitting questions without explanations was to en-
sure fact coverage for all questions. For Abstrac-
tKB building we excluded facts from ’KINDOF’
and ’SYNONYMY’ table, as these are the one pri-
marily composed of grounding facts.

ARC-Challenge Dataset : Only used the Chal-
lenge split: https://allenai.org/data/arc.
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