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Abstract

The lattice-free MMI objective (LF-MMI) with finite-state
transducer (FST) supervision lattice has been used in semi-
supervised training of state-of-the-art neural network acoustic
models for automatic speech recognition (ASR). However, the
FST based supervision lattice does not sample from the poste-
rior predictive distribution of word-sequences but only contains
the decoding hypotheses corresponding to the Maximum Like-
lihood estimate of weights, so that the training might be biased
towards incorrect hypotheses in the supervision lattice even if
the best path is perfectly correct. In this paper, we propose a
novel framework which uses Dropout at the test time to sample
from the posterior predictive distribution of word-sequences to
produce unbiased supervision lattices for semi-supervised train-
ing. We investigate the dropout sampling from both the acoustic
model and the language model to generate supervision. Results
on Fisher English show that the proposed approach achieves
WER recovery of ~ 51.6% over regular semi-supervised LF-
MMI training.

Index Terms: Automatic Speech Recognition,
Supervised learning, Dropout, LF-MMI

Semi-

1. Introduction

The current acoustic models for Automatic Speech Recognition
(ASR) are based on Deep neural networks (DNN). Sequence
level training criteria such as Connectionist Temporal Classi-
fication (CTC) [1], Lattice-free Maximum Mutual Information
(LF-MMI) [2] and state-level Minimum Bayes Risk (sMBR)
[3, 4] are preferred over frame-level objectives as they exploit
sequential information. However, these methods are known to
be data hungry.

Although it is difficult and costly to obtain large amount
of supervised data, abundant unsupervised audio is often eas-
ily available. A typical approach to exploit unsupervised data
is to train a seed model using supervised data and use the seed
model to automatically transcribe the unsupervised data [5, 6].
Of course, the automatic transcripts are not perfect and the un-
supervised training data is usually selected based on confidence
measure on frame level [7], word level [6, 8, 9] or utterance
level [10, 11, 12].

More recently, lattice-based supervision has been combined
with lattice-free MMI objective for semi-supervised training
[13]. Instead of using only the best path as supervision, train-
ing with the whole decoding lattice for the unsupervised data
allows the model to learn from alternative hypotheses when the
best path is not accurate. Although it has shown significant im-
provement, directly learning from the whole lattice can deteri-
orate the performance in cases where the best path hypothesis
has much lower word error rate (WER) than the alternate hy-
potheses. This is because all the paths in the supervision lattice
are considered equally likely and thus the training can be biased
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towards incorrect hypotheses.

To this end, we propose to use a novel approach to sample
alternate hypothesis from the approximate posterior-predictive
distribution instead of using decoding lattice which contains the
most competitive hypothesis for the Maximum Likelihood esti-
mate of the weights. Given an already trained neural network
(NN) based acoustic model, we use dropout during inference to
compute the frame-level state posterior probabilities. We then
use these frame level posterior probabilities to generate a decod-
ing hypothesis for the test utterance. We repeat this process /N
times for the same utterance with different random selection of
active neurons to generate N decoded hypotheses. As shown in
[2], this process leads to a Bayesian inference over the acoustic
model weights and thus approximates sampling from the poste-
rior predictive distribution over word sequences. As shown in
[14], when the acoustic model is uncertain at a certain word, we
observe variations in the predicted Monte Carlo hypotheses; we
see the same hypothesis sampled when the model is confident.
Given this observation, we can combine all the NV hypotheses to
form an unbiased supervision lattice for the corresponding unla-
beled utterance. Similarly, this dropout-based sampling can be
applied to language model as well by re-scoring the same de-
coding lattice multiple times using a NN-based language model
while keeping dropout on.

The proposed approach has similarities to Negative Condi-
tional Entropy (NCE) [15] for semi-supervised training where
the authors minimize the expected risk over the uncertain de-
coding of the unsupervised data. However, in contrast to
[15], where the decoding lattice with forward-backward likeli-
hood computation estimates the likelihood of word-sequence, in
this work, we directly sample from the approximate posterior-
predictive distribution using dropout to generate the supervision
lattice. The approach proposed in [16] also shares some sim-
ilarities in the sense that the labels of unlabeled data are the
decoding output from multiple seed models to incorporate the
diversity. An ensemble of models is trained in parallel using
these diverse labels, and then averaged as the final model. In
the context of our framework, these multiple seed models can
be considered as the dropout-based neural network samples and
all the diverse labels are combined into one supervision lattice
used for LF-MMI training. Thus, the proposed method is sim-
pler and more rigorous.

The remainder of this paper is organized as follows: in Sec-
tion 2, we introduce the regular semi-supervised training for
LF-MMI and discuss the proposed framework in more detail.
Experimental results and analysis are provided in Section 3. Fi-
nally, Section 4 concludes the paper.

2. Proposed Method

In this section, we explain our approach to maximize the ex-
pected LF-MMI objective for unlabelled data by sampling target
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word-sequences from the posterior-predictive distribution for a
given utterance. Our proposed loss for semi-supervised training
is given as follows :

U
_ (w)
Fvmr = mgxx; log (WNP(&E'OU,DS) P(W|O ,9)) (1)

where O™ is the sequence of acoustic observations for utter-
ance u, Dy is the supervised training data. W is the sampled
target word sequence for the utterance. In this work, we use
dropout to decode the same utterance multiple times to per-
form approximate Bayesian inference over the model param-
eters. This allows to sample from the approximate posterior-
predictive distribution P(W |0, D). In contrast to this, the
regular semi-supervised LF-MMI objective proposed in [13] is
given by:
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where Q,E,}‘n)l is the decoding lattice for the utterance u.

This can be seen an approximation to the proposed loss (1)
where the expectation is taken over the word-sequences in the
decoding lattice and each output word sequence in the lattice is
assumed to be equally likely. Using the whole lattice as super-
vision provides additional information especially when the seed
network is not confident on the unsupervised data. However,
these alternative paths can also spoil the supervision in some
cases. For instance, when the best decoding is quite accurate or
when the utterance is short (containing only 1 or 2 words), the
supervision might be biased towards the incorrect paths. One
decoding lattice example from the unlabeled data is shown in
Fig. 2(a). The example utterance is quite clean. Although the
model is quite confident on the sentence, the decoding lattice
still contains many incorrect paths which will deteriorate the
supervision quality.

Therefore, in this paper, we propose to employ dropout at
test time and decode the unlabeled data multiple times. Sam-
pling from the posterior-predictive distribution will lead to an
unbiased estimate to (1). We investigate Dropout-based sam-
pling for both the acoustic and the language model.

2.1. Dropout-based sampling

While dropout is typically used during training to prevent over-
fitting of DNN:ss, it was recently shown in [17] that dropout dur-
ing inference can lead to Bayesian inference over the model
parameters and thus provide a way to sample from posterior-
predictive distribution as well as to compute the models uncer-
tainty on its predictions. The present work is a novel attempt to
study the usage and utility of dropout uncertainty in the context
of semi-supervised training for ASR systems.

2.1.1. Dropout Sampling from Acoustic Model

Given an already trained DNN-based acoustic model, for each
utterance, we forward-pass it /N times through a dropout en-
abled neural network acoustic model. Each of the N acoustic
model outputs is then processed though the decoding pipeline
to generate [N dropout-lattices. As shown in our previous work
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[14], the acoustic model uncertainty about a test utterance is re-
flected in the variations observed in the predicted hypotheses for
each Monte Carlo sample. Moreover, the variations in different
decoded hypotheses for any utterance are often highly localized
at certain word positions and depict locations where the ASR
decoding might be inaccurate.

Therefore, we can generate an unbiased supervision lattice
for each unlabeled utterance by composing the predicted hy-
potheses from the Monte Carlo samples. More specifically,
as shown in Fig. 1, for each unlabeled utterance, we prune
the dropout-lattices with a very small beam and combine them
together to create the supervision lattice for semi-supervised
training. Optimizing P(W|O™),6) over this lattice leads to
an unbiased estimate of (1). We keep the rest of the training
steps the same as proposed in [13].

Fig. 2(b) shows the lattice for the same example utterance,
generated using the proposed approach. As we can find, most
of the paths in this lattice correspond to the correct transcrip-
tion since the model is confident on this clearly spoken utter-
ance (high P(W]O™), 6;) for the decoded sequence). If the
model is uncertain about an utterance, more variations will ap-
pear in each decoding sample [14] so that the combined lattice
can still retain alternative paths to provide additional informa-
tion. We hypothesize that the unbiased lattice combined from
different dropout-based decoding samples better reflects the un-
certainty of the acoustic model and is able to foster the more
likely word sequences, while keeping variations for uncertain
utterances, thus improving the semi-supervised training perfor-
mance.

Decode unlabelled data multiple
times while keeping dropout on

Model

Combined as
Supervision Lattice

Unlabelled Data

-~ Generate Label
Train seed model|

with dropout
Data Mixing and
Train the Model

Labelled Data

Figure 1: Flow-chart of the proposed method. Each network in
the figure represents one network sample because of a different
random selection of the active nodes. The white nodes denote
that they are dropped out.

2.1.2. Dropout Sampling from Language Model

It is not straight forward to apply the dropout-based sampling
in N-gram language model (LM) that is used in decoding. In-
stead, we investigated the same framework for neural network-
based language models during re-scoring. For each unlabeled
utterance, we first obtain the decoding lattice using the acoustic
model with dropout off. The lattice is then re-scored IV times by
using a dropout enabled neural network language model. These
re-scored lattices are then pruned and combined together to gen-
erate the supervision lattice which reflects uncertainties in the



language model. Similarly, we keep everything else the same
in the semi-supervised training setup and evaluate the perfor-
mance. Additionally, we hypothesize that the combination of
the dropout sampling from acoustic model and the sampling
from language model could help further because it covers the
uncertainties from each of the two major components of an ASR
system. This combination will also be investigated in Section 3.

Figure 2: Lattices of a clearly spoken utterance. (a) represents
the pruned decoding lattice from a dropout-off acoustic model.
(b) denotes the unbiased lattice combined from multiple dropout
decoding samples.

3. Experiments
3.1. Experimental Setup

Similar to [13], we report our results on the Fisher English cor-
pus [18]. A randomly chosen subset of speakers (250 hours)
from the corpus is used as unsupervised data. The transcripts
from the remaining 1250 hours are used to train the language
models for decoding and re-scoring the unsupervised data. We
use a 50 hours subset from the corpus as the supervised data
to train the seed model. The results are reported on separately
held-out development and test sets (about 5 hours each), which
are part of the standard Kaldi [19] recipe for Fisher English.
WER Recovery Rate (WRR) [20] is used as an additional met-
ric to evaluate the WER improvements from semi-supervised
training:

WRR — BaselineWER — SemisupWER
" BaselineWER — OracleWER

Following the standard Kaldi recipe, we first train a GMM
system using only the supervised data and use this to get su-
pervision to train a seed LF-MMI time-delay neural network
(TDNN) [21] system. The TDNN consists of 8 hidden layers,
with 450 hidden units in each layer. Dropout is applied on top
of each layer. We use i-vector [22] for speaker adaptation of the
neural network. The i-vector extractor is trained using the com-
bined supervised and unsupervised datasets. Also, for compari-
son purposes, we use statistics from only the supervised data to
train the context-dependency decision tree. Following [13], the
phone LM used for creating the denominator FST is estimated
using phone sequences from both supervised and unsupervised
data with a higher weight to the phone sequences from super-
vised data (1.5 for the 50 hours supervised dataset and 1 for the
unsupervised data).
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In addition to N-gram language models, A neural network-
based language model is trained on the same data. The network
consists of 3 temporal convolutional layers [23], with 600 units
in each layer. The size of the word embeddings is fixed to 600
and the kernel size is taken to be 3. Similarly, dropout is applied
on top of each layer. The language model was trained using
Pytorch.

3.2. Results
3.2.1. Effect of Dropout Sample Numbers from Acoustic Model

As a hyper-parameter, N denotes the number of dropout sam-
ples needed to represent the posterior-predictive distribution.
Although more posterior samples can better represent the dis-
tribution, it is more time consuming. Therefore, it is of impor-
tance to investigate appropriate value of /V for a good trade-off.
Here, we have only applied the dropout-based sampling on the
acoustic model. To generate the supervision lattice of the un-
supervised data, we decoded the data N time while keeping
dropout on and varied N from 5 to 40. As a baseline, we use
the decoding lattice generated from the same acoustic model in
a standard way (with dropout off), following [13]. The decoding
lattices were not re-scored and the performance was evaluated
on development set. As shown in Fig.3, the performance of the

19.4
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Number of decoding times
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—a—lat-comb w.r.t. AM Regular Approach

Figure 3: WER (%) of different semi-supervised training setup
by varying the value of N. The dropout-based sampling is only
applied on the acoustic model. The red line denotes the regular
semi-supervised training approach [13].

proposed method first gets improved as we combined more de-
coding lattices. It seems to saturate after reaching 20 times of
decoding. Therefore, we keep using N = 20 for the following
experiments except when explicitly stated.

3.2.2. Quality Analysis of the Supervision Lattices

From Fig.3, we can also see that the unbiased lattices yield
better word error rate (WER) than the regular semi-supervised
training approach. We analyzed the averaged WER and the sen-
tence error rate (SER) of the unbiased lattices with N = 20 and
compared it with the regular decoding lattice on the whole un-
supervised data. We evaluated the WER of each lattice by av-
eraging the WER of the N-best hypotheses for each utterance.
The regular decoding lattice was generated from the dropout-off
model and was pruned before this evaluation.

Table 1 shows that the unbiased lattice has a better WER
and a much better SER than the regular lattice. The better WER
and SER confirms our hypothesis that the lattice combination
from different dropout samples can help reduce the effect of



Table 1: Comparison the averaged WER(%) and SER (%) be-
tween combined lattice and regular decoding lattice.

avg. WER  SER
23.6 87.8
23.1 75.7

Regular Lat
Lat-comb

incorrect hypotheses in the supervision lattice when the acous-
tic model is confident on the unlabeled sentence, while keeping
alternative paths to be exploited when the acoustic model is un-
certain. It also explains the improvement on development set
after semi-supervised training because the unbiased lattice pro-
vides supervision with better quality.

3.2.3. Effect of Number of Dropout Samples from Language
Model

Similar to Section 3.2.1, in this section, we analyze the effect
of N with respect to language model only. To generate the
unbiased supervision with respect to language model, we first
obtained the lattice by decoding the data in regular way (keep-
ing dropout off). The lattice was then re-scored N times by
the network-based language model while keeping dropout on.
Similarly, we varied N from 5 to 40.

19.2
19.1

19
18.9

WER (%)

18.8 ""\-/\
18.7
18.6

18.5
5 10 20 30
Number of decoding times

40

—a—lat-comb w.r.t. LM Regular Approach

Figure 4: WER (%) of different semi-supervised training setup
by varying the value of N. The dropout-based sampling is only
applied on the language model. The red line denotes the regular
semi-supervised training approach [13] where the supervision
lattices of unsupervised data were also re-scored using NN LM.

As shown in Fig. 4, the performance on the development
set does not change much with different values of N and the
proposed approach yields very slight improvement. One of our
previous hypotheses was that the Dropout-based Monte Carlo
sampling can help reduce the confusion in the supervision lat-
tice especially for shorter sentences. However, language model
re-scoring for sentences with one or two words wouldn’t make
much difference by its nature. We found there are around one
third of the unsupervised utterances containing only 3 words or
less. Therefore, applying dropout sampling on language model
only slightly improves the performance.

3.2.4. Complete Comparison

Table 2 shows a complete comparison of the alternatives we
are exploring. The first row shows the performance of super-
vised training using only 50 hours supervised data. The last row
shows supervised training results using oracle transcripts for the
unsupervised data. All the supervision lattices for unlabeled
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Table 2:  Comparison between combined lattice and regular
decoding lattice in WER(%). The 50h supervised system is used
as baseline to calculate WRR.

System | Dev. Test WRR
50h supervised 21.0 209 -
Regular Approach 191 192 537 %
Lat-comb w.r.t. AM 185 183 76.1%
Lat-comb w.r.t. LM 188 18.7 65.7%
Lat-comb w.r.t. AM+LM | 18.5 18.2 77.6%
Oracle 17.7 175

data were re-scored using the network language model. For
re-scoring the unbiased acoustic lattice in the proposed frame-
work, we first generated the decoding lattice samples by keep-
ing dropout on in the acoustic model. Then, each decoding lat-
tice was re-scored before pruning and combination. In order to
testify whether the dropout sampling from both acoustic model
and language model can further improve the performance, we
simply combined the lattice evaluated in Section 3.2.1 and Sec-
tion 3.2.3 and tested the WER after semi-supervised training.

As we can see in the table 2, semi-supervised training ap-
proach as proposed in [13] yields around 8.6% relative WER
reduction. Incorporated with uncertainty information from only
the acoustic model, the unbiased supervision lattice improves
over the supervised system by around 12.2%. Dropout sam-
pling from network language model also brings improvement,
although the improvement is not as much as the one from acous-
tic model. The combination cannot further improve the perfor-
mance significantly. Most of the gains come from the acoustic
part. In total, the proposed semi-supervised training approach
yields approximately 12.4% relative improvement over the su-
pervised setup. Compared with the regular LF-MMI semi-
supervised training, the proposed approach gives 4.2% relative
WER reduction and 51.6% WER recovery rate.

4. Conclusion

We have proposed a novel way to exploit dropout uncer-
tainty in context of semi-supervised LF-MMI training. It was
demonstrated that the unbiased lattice combined from different
dropout-based decoding samples is able to help reduce the con-
fusion of the lattice paths, while keeping variations for uncertain
unlabeled utterances. Experiments on the Fisher English shows
that the proposed approach can further improve the WER over
the regular semi-supervised training framework. While this pa-
per primarily focused on LE-MMI training, it is clear that the
idea can be further extended to other frameworks such as end-
to-end based semi-supervised training. In the future, we also
intend to apply the idea of NCE in LF-MMI training to reduce
the time required for multiple times of decoding.
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