
THESIS

Explainable Phonology-based Approach for
Sign Language Recognition and Assessment

FEBRUARY 2020

Sandrine Tornay
Idiap Research Institute

Rue Marconi 19
CH-1920 Martigny

Switzerland
sandrine.tornay@idiap.ch

Submitted to:
Doctoral school of electrical engineering (EDEE)
École polytechnique fédérale de Lausanne (EPFL)

Director : Professor Daniel GATICA-PEREZ
Co-director : Dr Mathew MAGIMAI DOSS





The more we study,
the more we discover our ignorance.

— Percy Bysshe Shelley

To my parents, my husband, my daughter, my family. . .





Acknowledgements
First of all, I would like to thank my main supervisor, the co-director of the thesis, Dr Mathew
Magimai.-Doss. Moving from the theoretical world of mathematics to applied world was not an
obvious step for me. Mathew has accompanied me perfectly well on this path. His knowledge,
his clear explanations but above all his general and intuitive vision allowed me to develop myself
in a broad way. Following his perfectionism, which I mainly discovered while writing articles,
required me intensive work and I thank him for that because he showed me that the more we
are able to explain in a straightforward manner the more we understand the problem. I will
remember it for long. I also particularly thank him for his availability, his support and his trust.
Thank you Mathew.

The first time I went to the Idiap research institute was during its 20th anniversary event. I
remember thinking that working there would be a privilege. At that time, I was a student in
mathematics, neurosciences and psychology, I discovered there a place which connected these
fields. It was through an internship and my Master’s thesis that I entered it. I would like to thank
Dr. Milos Cernak who was my first supervisor at Idiap. Learning by his side brought me a lot and
was the beginning of my path in the application of mathematics. It was after a detour in the world
of education that I returned to Idiap to do the present thesis. I would like to thank Prof. Hervé
Bourlard for providing the academic opportunity of doing a thesis jointly with EPFL. I am also
very much grateful to Prof. Daniel Gatica-Perez, the director of the thesis, for his constructive
feedback. I also thank the administrative team of Idiap, in particular Mrs Nadine Rousseau, Mrs
Sylvie Meier and Mrs Laura Coppey for all their help, support and smiles, and the Idiap IT team
for their prompt help. I also thank the speech group in which I discovered interesting topics. I
would like also to extend my thanks to the committee members who evaluated this work, Dr
Sarah Ebling, Dr Dinesh Jayagopi and Prof. Jean-Philippe Thiran. I am very appreciative of their
valuable feedback and suggestions which helped me in improving this thesis.

This thesis was funded by the SNSF through the Sinergia project SMILE (Scalable Multimodal
Sign Language Technology for Sign Language Learning and Assessment), grant agreement CR-
SII2_160811. Through the SMILE project, I discovered a collaborative work with people from
different fields. I have learned a lot from this, both professionally and personally. Thanks to

i



Acknowledgements

this project, I was able to discover the world of the Deaf community which is very rich. I was
fortunate to learn the first level of Swiss French Sign Language. I thank all the members of the
SMILE project for the friendly meetings, the interesting discussions and pleasant stays: Prof. Dr
Tobias Haug, Dr Sarah Ebling, Dr Penny Boyes Braem, Sandra Sidler-Miserez and Katja Tissi for
the university of applied sciences in special needs education in Zürich, Prof Richard Bowden, Dr
Simon Hadfield, Dr Oscar Mendez Maldonado, Dr Necati Cihan Camgöz and Stephanie Stoll for
the university of Surrey in Great Britain, Dr Oya Aran and I particularly thank Dr Marzieh Razavi,
my colleague at Idiap, for her guidance, her support and her kindness. I have been fortunate to
work with her.

Doing this thesis was also a discovery of myself. Frustration, pride, demotivation, enthusiasm,
stress, excitement, joy, . . . so many emotions to manage as well as possible. I thank the people of
Idiap who, through a smile, a discussion, a break, have comforted me in my work. I would like
to particularly thank Rémy for his sincere listening, our philosophical sharings and his positive
energy; Noémie for her support, our valuable discussions, and her sincerity; Emmanuel for his
contagious enthusiasm in learning and his optimism; Pierre-Edouard, Christian, Olivia, Hakan,
David, Phil, Sylvain, Julian, Pavan, Angelos, Angel, Nicolas, Bozo, Thibault, Hannah, Alexandre
for the nice discussions and coffee breaks. I have met lovely people at Idiap and I apologize for
not mentioning everyone. I also take the opportunity to thank my university friends, Dan and
Florian, for their friendship and our joyful moments.

From a young age, I wanted to learn mathematics. I remember the day I told my parents that
I was choosing the path of study for discovering the mathematics. "Understanding those and
what surrounds us" is a sentence that sums up well my motivation. I am extremely fortunate for
having parents who supported me with their unconditional love and their blessings and who never
doubted my abilities. My gratitude goes also to my brothers for our precious complicity, a unique
support.
My heartfelt acknowledgment goes to my husband for always supporting me, for encouraging
me during the tough times, and for his beautiful love. I also thank the life which allowed me to
become a mother during this thesis and to give birth to our little Magalie, my everyday sunshine.

Vernayaz, February 28, 2021 Sandrine Tornay

ii



Abstract
Sign language technology, unlike spoken language technology, is an emerging area of research.
Sign language technologies can help in bridging the gap between the Deaf community and the
hearing community. One such computer-aided technology is sign language learning technology.
To build such a technology, there is a need for sign language technologies that can assess sign
production of learners in a linguistically valid manner. Such a technology is yet to emerge. This
thesis is a step towards that, where we aim to develop an "explainable" sign language assessment
framework. Development of such a framework has some fundamental open research questions:
(a) how to effectively model hand movement channel? (b) how to model the multiple channels
inherent in sign language? and (c) how to assess sign language at different linguistic levels?
The present thesis addresses those open research questions by: (a) development of a hidden
Markov model (HMM) based approach that, given only pairwise comparison between signs,
derives hand movement subunits that are sharable across sign languages and domains; (b)
development of phonology-based approaches, inspired from modeling of articulatory features
in speech processing, to model the multichannel information inherent in sign languages in the
framework of HMM, and validating it through monolingual, cross-lingual and multilingual
sign language recognition studies; and (c) development of a phonology-based sign language
assessment approach that can assess in an integrated manner a produced sign at two different
levels, namely, lexeme level (i.e., whether the sign production is targeting the correct sign or not)
and at form level (i.e. whether the handshape production and the hand movement production is
correct or not), and validating it on the linguistically annotated Swiss German Sign Language
database SMILE.
Keywords Sign language assessment, sign language recognition, sign language verification,
lexeme-level assessment, form-level assessment, hand movement subunits, phonology-based sign
language processing, hidden Markov model
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Résumé
Le domaine technologique de la langue des signes, contrairement à celui de la langue parlée,
est un domaine de recherche émergent. Les technologies liées à la langue des signes peuvent
aider à combler l’écart entre la communauté sourde et la communauté entendante. L’une de ces
technologies d’assistance est celle qui concerne l’apprentissage de la langue des signes. Pour
construire une telle technologie, il est nécessaire de disposer de méthodes capables d’évaluer la
production de signes d’apprenants d’une manière linguistiquement valide. Une telle technologie
n’a pas encore vu le jour. Cette thèse est une étape vers cela, où nous visons à développer un
cadre d’évaluation "explicable" de la langue des signes. L’élaboration d’un tel cadre comporte les
questions de recherche fondamentales ouvertes suivantes : (a) comment modéliser efficacement
le canal d’information du mouvement de la main? (b) comment modéliser les différents canaux
d’information inhérents à la langue des signes? et (c) comment évaluer la langue des signes à
différents niveaux linguistiques?
La présente thèse aborde ces questions de recherche avec : (a) le développement d’une approche
basée sur les modèles de Markov cachés (HMM) qui, en utilisant seulement la comparaison par
paires des signes, dérive des sous-unités du mouvement de la main qui ont la propriété d’être
transferable entre les différentes langues des signes ; (b) le développement d’approches basées
sur la phonologie, inspirées de la modélisation des caractéristiques articulatoires du traitement de
la parole, pour modéliser l’information multicanal inhérente aux langues des signes dans le cadre
des HMM, et la valider par des études de reconnaissance de la langue des signes monolingues
et multilingues ; et (c) le développement d’une approche d’évaluation de la langue des signes
basée sur la phonologie qui peut évaluer un signe produit de manière intégrée sur deux niveaux
différents, à savoir, au niveau du lexème (c.-à-d. si la production du signe vise le bon signe ou
non) et au niveau de la forme (c.-à-d. si la production de la forme de la main et la production du
mouvement de la main sont correctes ou non), et la valider avec la base de données SMILE de la
langue des signes suisse allemande qui est annotée linguistiquement.
Mots clés Evaluation de la langue des signes, reconnaissance de la langue des signes, vérification
de la langue des signes, évaluation au niveau du lexème, évaluation au niveau de la forme,
sous-unités du mouvement de la main, traitement de la langue des signes basé sur la phonologie,
modèle de Markov caché
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Zusammenfassung
Anders als die Lautsprachtechnologie stellt die Gebärdensprachtechnologie immer noch ein
junges Forschungsgebiet dar. Gebärdensprachtechnologien sind in der Lage, die Kommunikati-
onslücke zwischen der Gehörlosen- und der hörenden Gemeinschaft überbrücken. Eine derartige
assistive Technologie ist die Gebärdensprachlerntechnologie. Um eine solche Technologie zu
entwickeln, werden wiederum Technologien benötigt, die Produktionen von Gebärdensprach-
lernerinnen in einer linguistisch validen Weise überprüfen können. Eine solche Technologie
existiert noch nicht. Die vorliegende Dissertation stellt einen Schritt in diese Richtung dar, indem
sie ein Framework für „erklärbare“ Gebärdensprachüberprüfung bereitstellt. Die Entwicklung
eines solchen Frameworks geht mit einigen fundamentalen offenen Forschungsfragen einher:
(a) Wie lässt sich Handbewegung modellieren? (b) Wie lassen sie die verschiedenen Kanäle,
die der Gebärdensprache inhärent sind, modellieren? (c) Wie lässt sich Gebärdensprache auf
verschiedenen linguistischen Ebenen überprüfen?
Die vorliegende Dissertation bearbeitet diese offenen Forschungsfragen, indem sie (a) einen auf
Hidden-Markov-Modellen (HMM) basierten Ansatz entwickelt, der Handbewegungs-Subunits
aus paarweisen Produktionen von Gebärden ableitet, die sich auf unterschiedliche Gebärdenspra-
chen und Domänen generalisieren lassen; (b) phonologie-basierte Ansätze entwickelt, die von
der Modellierung artikulatorischer Merkmale in der automatischen Verarbeitung gesprochener
Sprache inspiriert sind, um die Mehrebeneninformation von Gebärdensprachen innerhalb des
HMM-Frameworks zu modellieren und sie durch monolinguale, crosslinguale und multilinguale
Gebärdenspracherkennungsstudien zu validieren; und (c) indem sie einen phonologie-basierten
Gebärdensprachüberprüfungsansatz entwickelt, der eine produzierte Gebärde in integrativer Ma-
nier auf zwei verschiedenen Ebenen überprüfen kann, einerseits der Lexemebene (d.h. ob eine
Gebärdenproduktion die richtige Gebärde beinhaltet oder nicht) und anderseits der Formebene
(d.h. ob die Handformproduktion und Handbewegungsproduktion korrekt ist oder nicht), und
diesen auf dem linguistisch annotierten DSGS-Datensatz SMILE validiert.
Keywords Gebärdensprachüberprüfung, Gebärdenspracherkennung, Gebärdensprachverifikati-
on, Lexem-Überprüfung, Form-Überprüfung, Handbewegungs-Subunits, phonologie-basierte
Gebärdensprachverarbeitung, Hidden-Markov-Modell
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1 Introduction

Humans are social beings. They like to be surrounded by friends and share their personal
experiences with others. Most of us at some point would have had the frustrating experience of
not being able to communicate with a person who does not understand our language. In such
circumstances, in the hearing community when we cannot use the spoken language to share
information, gestures come into play automatically, as if it is a universal understanding. In
comparison, in the Deaf 1 community when the sign language is not known, they would use
naturally mimes to communicate. Sign languages are not just pantomime but they have evolved
into a language with its own vocabulary and grammar. This evolution is culturally dependent on
the place where it belongs to; sign language is not universal as we may think. Various tools are
available to acquire new spoken language such as courses, books, learning platforms, most of
the methods allow to learn it in a self-taught manner. Moreover, the correspondence between
written and spoken language allows a “dual learning”. Learning as a whole is more accessible in
the hearing community from the fact that the written form of the known language facilitates the
self-taught learning. In the Deaf community, the accessibility of learning is another story since
the written language linked to the sign language is similar to a foreign language. Thus, computer-
aided tools are needed as support. In other words, automatic sign language processing can help
in bridging the gap between the hearing and the Deaf community by developing recognition
systems, machines translation, or learning platforms.

1.1 Goal of the Thesis

The goal of the thesis is to develop a framework which allows to assess isolated sign production
in sign language. As depicted in Figure 1.1, a framework that is not only able to verify the

1The upper-cased word Deaf is conventionally used to describe the members of the linguistic community of sign
language users and, in contrast, the lower-cased deaf to describe the audiological state of a hearing loss [75]
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Chapter 1. Introduction

produced sign in a linguistically valid manner, i.e whether the produced sign is acceptable or
not (referred to as sign verification), but also provides linguistically guided feedback on the
production of the sign, i.e. detailed analysis based on linguistic annotations. In this thesis, we
refer to sign verification together with detailed analysis based on linguistic annotation as sign
language assessment.

Sign
Learner

Capture
Software

Sign
Verification

Sign
Assessment

Acceptable/Unacceptable
Sign Production

Linguistically guided
Feedback

Expected
Sign

Production

Figure 1.1 – Illustration of the sign language assessment framework which allows to verify a
produced sign in a linguistically valid manner and provides linguistically guided feedback on the
production of the sign.

Three main challenges are encountered in that direction:

1. Resource scarcity: Only few sign languages have a proper database. Also, unlike spoken
languages, sign languages users are limited. Furthermore, sign languages have their own
vocabulary and grammar, different than the corresponding spoken language [109]. For
instance, British Sign Language is not a signed form of British English. Furthermore,
even though the spoken language can be the same, the sign languages can be different.
For example, American Sign Language and British Sign Language are different sign
languages. Similarly, Swiss German Sign Language and German Sign Language are
different sign languages. As a consequence, it is not trivial to share resources from different
sign languages.

2. Sign language linguistics: Even if there are enough resources, advances are still needed
in sign language linguistics. Few formal sign language reference grammars exist. Sign
assessment is not only about gesture verification: linguistic constraints given by the syntax
rules restrict the combination of movements, so they have to be considered. Towards
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that, the definition of the correctness, i.e. which deviations are acceptable or not, has to
be defined. This information is not readily available. Indeed, this aspect is still a point
of research in the sign linguistics community [34]. Another relevant linguistic field is
the phonology. As stated in [16], “Sign language phonology is the abstract grammatical
component where primitive structural units are combined to create an infinite number
of meaningful utterances.” Such knowledge about minimal units, such as phonemes /
graphemes in spoken/written language, is valuable information in sign language processing
such as to derive the structure of the sign’s model.

3. Sign language processing technologies: To convey information, sign languages use simul-
taneously manual and non-manual channels of information such as the handshape, hand
movement/position/location/orientation, the facial expression, mouthing, the movement
of the torso. First, the relevant information of these channels has to be properly extracted,
which is itself a challenge. Then, the sign language recognition model not only has to
integrate the multichannel aspect of the sign, but it has to be explainable. Indeed, in the
assessment task, we want it to be sensitive to the production variation of each channel
and transparent, i.e. the production information can be fed back spatially (which channel)
and temporally (which time frame), for providing detailed feedback. Such an explainable
framework is yet to emerge in the sign language technology community.

To address these challenges, a collaborative work is needed. The development of the assessment
framework of this thesis took place in the context of the SNSF Sinergia project SMILE2. Broadly,
the goal of the SMILE project was to develop an advanced platform which allows to assess
Swiss German Sign Language (Deutschschweizer Gebärdensprache) (DSGS). This project used
a multidisciplinary framework which involved three complementary partners:

• The Hochschule für Heilpädagogik (HfH) in Zürich brought its expertise in sign language
linguistics and assessment disciplines. Specifically, they developed the DSGS resources
by collecting the data, providing data transcription, assessing the acceptability of the sign,
annotating the error on the production, as well as the overall structure of the assessment
framework.

• The University of Surrey (USurrey) in UK brought its expertise in sign language technol-
ogy and computer vision. Specifically, they participated in the DSGS data collection. They
developed the recording software, the capture tools, the data acquisition methods. They
also developed the handshape estimator and worked on the automatic production/synthesis
of sign language.

2SMILE stands for Scalable Multimodal sign language technology for sIgn language Learning and assessmEnt;
http://www.idiap.ch/en/scientific-research/projects/SMILE
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• The Idiap Research Institute (Idiap) in Martigny, Switzerland, brought its expertise
in Hidden Markov Model (HMM) applied to pronunciation generation, pronunciation
modeling and speech recognition. Specifically, we developed approaches to extract and
model hand movement subunits and the framework to integrate the handshape and the hand
movement channels for sign language recognition and assessment.

1.2 Contributions of the Thesis

The main contributions of the thesis are:

1. The development of approaches to model hand movement as discrete units. State-of-the-
art neural networks-based sign language recognition methods focused on the handshape
channel mainly thanks to the discrete aspect of the handshapes which makes available the
transcription of the sign into them. But it is no sufficient, the handshape and the hand
movement are used jointly to convey sign’s meaning. Hand movement information is
continuous in nature. As a consequence, representing and modeling the hand movement
information in sign language production as a sequence of discrete units is not a trivial task.
In that direction, we develop methods based on HMM that, using position and velocity
features extracted from the visual signal, gives discrete symbolic representation of hand
movement. This representation gives an alternative to handle the challenges related to: (a)
effective modeling of hand movement information along with handshape information for
sign language recognition and sign language assessment and (b) addressing of data scarcity
issues.

The following publications are part of the first contribution:

An HMM approach with inherent model selection for sign language and gesture
recognition, Sandrine Tornay, Oya Aran and Mathew Magimai.-Doss, in: Proceedings
of the International Conference on Language Resources and Evaluation LREC 2020,
2020

Subunits inference and lexicon development based on pairwise comparison of ut-
terances and signs, Sandrine Tornay and Mathew Magimai.-Doss, in: Information,
Special Issue: Computational Linguistics for Low-Resource Languages, 10:298, 2019
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Data-driven movement subunit extraction from skeleton information for modeling signs
and gestures, Sandrine Tornay, Marzieh Razavi and Mathew Magimai.-Doss, Research
Report, Idiap-RR-02-2019

2. The development of a phonology-based sign language recognition framework that integrates
the multichannel aspect of a sign. In the past, this problem has been attempted through
use of sensors such as gloves or accelerometer for modeling hand gestures. As mentioned
earlier, sign language is more than hand gestures. Extracting the multichannel information
from the visual signal and modeling them jointly is still an open research problem. In that
direction, inspired from the works on modeling speech production information in speech
processing, this thesis proposes novel HMM-based frameworks that allow extraction of
each channel from the visual signal in a separate manner and jointly model them for sign
language processing.

The following publications are part of the second contribution:

HMM-based approaches to model multichannel information in sign language inspired
from articulatory features-based speech processing, Sandrine Tornay, Marzieh Razavi,
Necati Cihan Camgoz, Richard Bowden and Mathew Magimai.-Doss, in: Proceed-
ings of IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2019

Towards multilingual sign language recognition, Sandrine Tornay, Marzieh Razavi
and Mathew Magimai.-Doss, in: Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2020

3. The development of a linguistically valid sign language assessment framework. Emerging
sign language assessment studies are primarily based on sign language verification [112,
49]. It is not clear whether it was done in a linguistically valid manner or not. As discussed
earlier, development of an approach that is linguistically valid, first requires linguistic
knowledge about which variations in sign language production are acceptable or not. Next,
development of such an approach also needs data with such linguistic annotations. Third,
it requires a methodology that can tease out the variations in the different channels w.r.t
"expected" sign production in an explainable manner. The third main contribution builds
upon the developments from the second contribution to propose a sign language assessment
framework that can effectively assess sign production in a linguistically valid manner and
provide linguistically guided feedback.
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The following publication is part of the third contribution:

A phonology-based approach for isolated sign production assessment in sign language,
Sandrine Tornay, Necati Cihan Camgoz, Richard Bowden and Mathew Magimai.-
Doss, in: Companion Publication of the 2020 International Conference on Multimodal
Interaction (ICMI ’20 Companion), 2020

1.3 Organization of the Thesis

Below is the organisation of the remainder of the thesis:

Chapter 2 provides an introduction to sign languages followed by a state-of-the-art overview
of sign language processing. The databases and the evaluation measures used in this thesis are
defined in this chapter.

Chapter 3 presents the manual feature estimators and the statistical sequence modeling methods
used in this thesis.

Chapter 4 focuses on the temporal structure of the sign: how to determine the appropriate HMM
topology for modeling the hand movement information?. It is a part of the first contribution (see
Section 1.2) where we present a data-driven model selection approach which determines, for
each sign, the appropriate HMM topology at the time of recognition, as opposed to pre-setting it.
Sign language recognition and gesture recognition studies are presented to validate the proposed
data-driven model selection approach.

Chapter 5 focuses on how to discretize and model hand movement information as subunits?. This
chapter presents the core part of the first contribution (see Section 1.2) where the development of
the skeleton information based hand movement subunits is presented. The proposed approach is
validated through monolingual and cross-lingual sign language recognition studies and through
analysis of subunits through synthesis of hand movement information.

Chapter 6 focuses on integration of the multichannel aspect of the sign production, i.e. how to
model the multichannel information inherent in sign languages?. It presents the works related to
the second contribution (see Section 1.2). We propose two HMM-based approaches to model
the multichannel information. We validate those approaches through joint modeling of hand
movement information and handshape information, and conducting monolingual, cross-lingual
and multilingual sign language recognition studies.

Chapter 7 focuses on development of sign language assessment framework, i.e. how to assess
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isolated sign productions at the lexeme-level (whether the produced sign is targeting the correct
sign or not) and the form-level (whether the produced hand movement and handshape are correct
or not)?. It presents the work of the third contribution (see Section 1.2) where we propose
an explainable phonology-based sign language assessment system that builds on one of the
HMM-based frameworks developed in Chapter 6. We validate the proposed approach on isolated
signs using a linguistically annotated DSGS corpora developed as part of the SMILE project.

Chapter 8 finally concludes the thesis with suggestions for possible directions for future re-
search.
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2 Background

This chapter is organized as follows. Section 2.1 first introduces briefly sign languages. Sec-
tion 2.2 then presents a concise overview on sign language data acquisitions and sign language
recognition. Section 2.3 and Section 2.4 present the sign language databases used in the present
thesis and the evaluation metrics used to evaluate different sign language processing systems,
respectively.

2.1 Sign Languages

As mentioned in the introduction (see Chapter 1), sign languages are languages as complex as
any spoken languages despite the common misconception that it is a universal communication
composed of mimes. It is related to the spoken language of the place, but it is not a word-by-word
conversion of it. Sign language is an independent language whose grammar is different from
spoken/written grammar. The 2020 edition of the Ethnologue - Languages of the World lists 144
sign languages: 125 Deaf community sign languages and 18 shared-signing languages; the second
being the sign languages developed in a shared community with hearing and Deaf members also
called “village sign languages” [77].

Sign language is not solely about hand gestures. In addition to manual activity, sign language
also uses shoulders/torso, head, facial expression and mouthing to convey meaning. For example,
in Swiss LSF, the movement of the torso point out the tense of the sentence: forward for the
future, straight for the present and backward for the past [2]. Thus, sign language interpretation
requires integration of parallel multichannel information in comparison to spoken languages
which typically deals with modeling of sequence of acoustic feature vectors (i.e., single stream of
information). The multichannel framework can be broken down into visual subunits, sometimes
called visemes, in much the same way as words can be broken into phonemes and articulatory
features in spoken language. Sign language phonology deals with the study of the basic articulator
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units used to produce the lexical entities such as, words. The visual subunits can be grouped into
two categories: manuals, which deal with handshape, hand placement, movement, orientation
and arrangement [105]; and, non-manuals, which deal with body posture, movement of the head
and shoulder, facial expression with eyebrow, mouth, eyes, and cheeks. Commonly, interpretation
deduces that the upper part of the face is used to mark sentence type while the lower part of the
face serves adjectival or adverbial function [24]. As we all have a favourite hand when producing
hand gestures, there is a distinction between the right-handed and the left-handed people. The
left-handed signers mirror the right-handed signs and vice versa. Thus, the main hand used to
sign is called the dominant hand and the other the non-dominant hand. Sign language is produced
in a limited space, called signing space [2], which is a rectangular region that includes signer hips
up to the head, as illustrated in Figure 2.1.

Figure 2.1 – Illustration of the signing space of a signer.

There are two main written forms of sign languages: glosses and HamNoSys.

• Glosses provide semantic labels of signs. A gloss of a sign is the written form of the most
closely corresponding spoken language. It is written in upper case letters to differentiate
it from the written form of the spoken word. For example, the gloss VOLK is used to
represent the Swiss German Sign Language sign for ’folk’, see caption of Figure 2.2.
Sometimes a unique word is not sufficient because there exists no exact translation; in that
case several words are joined by hyphen. Additional symbols are used to complement, for
example ’+++’ to express repetition. To represent a finger spelled word, the gloss is written
with small letters with a hyphen in between each letter.

• HamNoSys1 is a notation system developed over 25 years ago. HamNoSys has approxi-

1https://www.sign-lang.uni-hamburg.de/dgs-korpus/index.php/hamnosys-97.html (visited on 02/19/2021)

10

https://www.sign-lang.uni-hamburg.de/dgs-korpus/index.php/hamnosys-97.html
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mately 200 symbols. It has production symbols to define the handshape, the orientation
(finger direction, palm orientation), the hand location and the hand movement. For example,
Figure 2.2 shows the HamNoSys annotation of the gloss VOLK and its corresponding
sign production. It is focused on the description of manual activities. It is one of the most
developed annotation for sign language. Compared to phonetic notation of spoken lan-
guage which is mainly perceptive notation, HamNoSys is both perceptive and production
based but it does not tell about how human perceives the multiple channels of information
(manuals and non-manuals) jointly. From HamNoSys, what we can deduce is that the
information is transmitted by spatial and multichannel parallel linear arrangement in a
temporal dimension. To overcome the temporal deficiency of HamNoSys annotation, there
exists the SiGML [37] annotation which is an XML representation of HamNoSys.

Figure 2.2 – HamNoSys annotation for VOLK, the Swiss German sign for ’folk’.

2.2 Sign Language Processing

In this section, we provide a concise survey on the data acquisition techniques and the sign
language processing techniques. Sign language processing research can be split into three
major directions: Sign Language Recognition (SLR), sign language production/synthesis and
sign language translation. This thesis mainly concerns with SLR this is why the sign language
processing presentation limits to SLR. For an extensive overview on sign language processing,
the reader is referred to [28].

2.2.1 Data acquisition

Sign language data acquisition methods have evolved over the years. The acquisition methods
can be split in two categories: sensor-based and camera-based. To capture users’ hands and
body movements, early SLR studies have used sensor-based approaches such as data gloves [118,
96] or colour gloves [103, 102, 104, 6, 48]. In recent years, gloves have been designed to
translate sign language into spoken language [26, 97]. However, as discussed earlier, even if the
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manual components are the major part of sign language, the non-manual aspect is key parts of the
grammar especially for continuous sign language.

In the camera-based case, there are a few studies using 2D features with tracking [129, 10].
However, 2D visual information modeling lacks the depth component, which is an important
component of sign language. Furthermore, occlusions (hand-to-face or hand-to-hand) cannot
be handled. To overcome these limitations, acquisition of 3D information using multiple cam-
eras [115] or with calibrated light source [99] have been proposed. The release of depth cameras,
such as the Microsoft Kinect sensor [132], allows to decrease the dependency on multiple sensors,
and facilitates the acquisition of 3D components by providing depth map and real-time human
pose information [100]. For further readings on data acquisition and visual feature extraction, the
reader is referred to [35, 28].

2.2.2 Sign language recognition techniques

Sign language recognition techniques in the literature can be grouped into three main categories:
Artificial Neural Network (ANN)-based, HMM-based and other pattern recognition techniques
based.

Artificial neural networks and variants

The earliest works on SLR applied ANN. ANN were often used to classify particular visual
subunit of the sign separately as handshape, hand location, orientation or to track hand movement.
Most of these methods focused on isolated sign classification. One of the first SLR work [76]
modelled data acquired through gloves (finger and hand angles, hand position) with a Recurrent
Neural Network (RNN). The RNN could take into account temporal aspect, but it failed to address
segmentation of the signs across time. Waldron and Kim [118] combined gloves information with
a tracking sensor. They first trained an ANN for each of the four subunit types (handshape, hand
location, orientation and movements), and then combined the outputs of the different subunits
ANN with a second ANN that classifies isolated signs. This method allows to separately model
multichannel information with the ANN in the first stage but the second ANN does not yet allow
to segment the produced sign in time. Yang et al. [127] proposed a temporal processing method
that models 2D hand pixel motion trajectories using time-delay neural network to classify signs.

More recent works have focused on using Convolutional Neural Network (CNN) to extract
handshape features by directly feeding with cropped hand images. Pigou et al. [88] have used
such an approach to feed an ANN classify isolated signs. Oliveira et al. [78] have compared the
CNN-based approach with principal component analysis combined with the k-nearest neighbour
algorithm for handshape classification. Xie et al. [125] have investigated use of CNNs and
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support vector machine or SoftMax classifier for recognition of hand gestures. For continuous
sign language recognition, Koller et al. [62] used a CNN to classify the handshapes based on
cropped images and a HMM to model the extracted handshape information. Camgoz et al. [20]
proposed to combine spatial modeling with CNN using handshape cropped images, temporal
modeling with Long Short Term Memory (LSTM) and sequence-to-sequence learning with
connectionist temporal classification.

Hidden Markov models and variants

Sign language recognition can be considered as a sequence recognition problem, similar to speech
recognition. This similarity has led to transfer of techniques from speech processing to sign
language processing. In [103], based on the use of hand gloves, the authors proposed a four-state
left-to-right HMM with one skip transition for isolated sign language recognition. In [115], the
authors used computer vision-based methods as well as a magnetic sensor system to extract
handshape and hand movement. They addressed the co-articulation effects in continuous signing
and model the transition movements between signs and within the signs themselves with different
HMM topologies. One of the main limitations of these works is that the experimental studies
were carried out on signer-dependent setup, i.e. the models were trained and tested on the same
signer.

Different HMM variants have been developed in the literature for SLR. In [57], the authors
proposed a method to model handshape features using input-output HMM. One of the problems
in HMM is to model the parallel multichannel information inherent in signs. In that context,
parallel HMM have been used where a separate HMM is used for modeling right and left hands
or different feature sets such as handshape, hand configuration and motion [117, 131]. Vogler
and Metaxas demonstrated that parallel HMM tend to yield better systems when compared to
standard HMM, factorial HMM and coupled HMM [117]. With the development of Kinect
sensor, Kumar et al. [66] developed a multi-sensor fusion framework for isolated sign recognition
by modeling state-space dependency using coupled HMM. Liu et al. [72] demonstrated that
left-to-right HMM topology to model signs provides the best performance compared to fully
connected HMM topology. Another issue when using left-to-right HMM is to fix the model size.
All the above discussed systems used a fixed number of states for all signs. In the literature, there
have been works to set the number of states based on model selection [101, 120, 68, 59].

In addition to the above discussed approaches, there are methods that combine visual subunit
classification and sequence modeling. One such approach is the two stages approach. In this
approach, the first stage consists of visual subunits classifiers (handshape, placement, motion).
The second stage consists of a sequential model for each sign constructed based on first order
Markov assumption using the outputs of the first stage classifiers [27, 29].
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The above discussed works have mainly focused on isolated sign language recognition. HMM
have also been used for continuous SLR [128, 116].

Other approaches

Sign language recognition has been also approached using other pattern recognition techniques
such as, Support Vector Machine [91], Dynamic Time Warping (DTW) [70], Conditional Random
Fields [63], Gaussian process dynamical models [41], to mention a prominent few.

2.3 Databases

In this section, we present the databases that have been used in the thesis.

2.3.1 Chalearn14 gesture database

The Chalearn14 database was collected in the context of the ChaLearn Looking at People 2014
challenge [38] which contains 3 tracks: (1) human pose recovery, (2) action/interaction recogni-
tion, (3) multi-modal gesture recognition. In this thesis, we used the data of the third track which
is based on the Italian gesture database, called Montalbano gesture database (from ChaLearn
2013 [39]). It includes a vocabulary of 20 Italian cultural/anthropological gestures. The 27
users are recorded in a wild environment in front of a Kinect, performing natural communicative
gestures and speaking in fluent Italian. 81% of the participants were native Italian speakers. Each
sign has been repeated several times by each user. The database is publicly available2.

2.3.2 DGS database

The DGS database was collected to study wide variety of signing styles [79]. It contains 40 signs
from German Sign Language (DGS). The database includes data from 14 non-native right-handed
signers, where each sign is repeated approximately 5 times by each person. There are a total of
3186 signs in the database. The DGS is a challenging database as the signs performed by the
non-native signers contain large variation. The database has been recorded in an uncontrolled
environment with a Kinect camera. The 3D coordinates of a human skeleton has been tracked
using the OpenNI framework [81].

2http://gesture.chalearn.org/mmdata#Track3 (visited on 02/19/2021)
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2.3.3 HospiSign database

The HospiSign database is the subset of the BosphorusSign database [19] which contains the
signs related to the health domain. These data were collected in the context of developing the
HospiSign [110] interactive sign language interface for hospitals. The subset contains 33 phrase
classes from Turkish Sign Language (TSL). The HospiSign subset includes six signers signing
each phrase approximately 6 times [18]. The database has been recorded with a Kinect camera.
The database is publicly available by request from the authors3.

2.3.4 SMILE DSGS database

The large-scale SMILE DSGS database [34] was created in the context of developing an assess-
ment system for lexical signs of Swiss German Sign Language (DSGS) in the SMILE project.
It contains 11 adult L1 signers and 19 adult L2 learners who produced 100 isolated signs of a
DSGS vocabulary production test. The 100 lexical items were chosen based on learning material
of the A1 DSGS level (see [34] for more details). Each sign was performed three times and
only the second pass was manually annotated. The SMILE DSGS database was collected with
the Microsoft Kinect v2 sensor and the high speed and high resolution GoPro video cameras.
The SMILE DSGS database provides the colour videos, depth maps, user masks and 3D pose
information obtained from the Kinect, the body pose, facial landmarks, and hand pose information
extracted using the deep-learning-based key point detection library OpenPose [21].

In this thesis, we only used the second pass annotated data with the ‘Category of sign produced’
annotation of the SMILE transcription/annotation scheme (presented in detail in [34]). Briefly,
this linguistic annotation evaluates, through six categories, the acceptability of a sign according
to three linguistic criteria: lexeme, meaning and form. Table 2.1 presents the different categories
and the distinction between them.

Table 2.1 – SMILE annotation scheme of the ‘Category of sign produced’ annotation presented
in [34]

Category Same lexeme
as target sign?

Same meaning
as target sign?

Same form
as target sign?

cat.1 yes yes yes
cat.2 yes yes slightly different
cat.3 yes yes no
cat.4 yes slightly different slightly different
cat.5 no yes no
cat.6 no no no

3https://www.cmpe.boun.edu.tr/pilab/BosphorusSign/home_en.html (visited on 02/19/2021)
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We did not make any difference between the L1 and L2 signers in our experiments. To ensure that
enough samples are available for each sign (minimum 5 samples/sign), 94 signs were selected
out of the 100.

2.4 Evaluation Measures

Two tasks are addressed in this thesis: (i) isolate SLR and (ii) isolated sign language assessment.
In the SLR task, the recognition accuracy (RA) is defined as the number of correct predictions
divided by the total number of samples, i.e.

RA= # of correctly predicted signs/gestures

total # of signs/gestures in the reference
. (2.1)

The sign language assessment task is a detection task. So, we used the F1 score as the evaluation
measure. The F1 score is the harmonic mean of the precision (denoted as p) and the recall (r ), i.e.

F1 = 2 · p · r

p + r
, (2.2)

where p = T P
T P+F P and r = T P

T P+F N ; T P stands for true positives, F P for false positives and F N

for false negatives.

2.5 Summary

In this chapter, we first provided a brief overview on sign languages. We then presented different
sign language data acquisition methods and different approaches for sign language recognition
based on ANN and HMM. Finally, we described the four different databases used in this thesis
and the evaluation measures used for SLR task and sign language assessment task.
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3 Features and Statistical Modeling
Methods

This chapter presents in Section 3.1 the extraction of the manual features used in this thesis,
namely the hand movement and the handshape feature extractors. Then, in Section 3.2 and
Section 3.3, a background on the statistical sequence modeling techniques used in this thesis is
provided. Finally, Section 3.4 concludes with a summary of this chapter.

3.1 Manual Features

As described earlier in Section 1.1, to convey meaning, sign language uses hand gestures but also
non-manual components such as facial expression, body posture or lip movement. While non-
manual components are more used for complementary information and grammar (in continuous
sign language) such as the interrogative form, hands focus on the semantic meaning. This explains
why SLR models focus mainly on manual features. There exist two linguistic-oriented approaches
which explain these syntax rules: the Stokoe system [105] and the Movement-Hold model [71].
In the Stokoe system, a sign is described as a simultaneous series of three major formational units:
handshape, hand locations and hand movements, while the Movement-Hold model fragments the
signs in two types of sequentially ordered segments: movement and hold (location) segments.

In this thesis, we focus only on manual features to model isolated signs, phrases and gestures.
One of the main reasons being extraction of non-manual features from the visual signal in a
systematic manner is still an open topic for research [28]. We separate the manual features into
two main channels: the hand movement features and the handshape features. These features
are extracted from the visual signal captured using Microsoft Kinect sensor (see Section 2.3).
Throughout the thesis, for consistent modeling reasons, the dominant hand is treated as the right
hand and mirror operation is applied to left-handed signers.
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3.1.1 Hand movement features

To model the hand movement information of a sign, we focused on two components: the hand
locations and the hand trajectories. For sake of simplicity, in the remainder of the thesis, we use
the term hand movement to refer to them. To model it, we used 3D skeleton pose data. While
the manual signals are the basic components that form the signs, several other key body parts
such as the face, shoulders and arms are also important in the analysis of manual signs in order
to understand the relative position of the hands with respect to the body [5]. Given the x, y, z

coordinate of the hand, we used two parameters: the position linked to the hand location and
the velocity for the hand trajectories. To represent the signer’s body and to handle the variation
in-between the signers, we decided to use three coordinate centers: the head, the shoulders and the
hips (see Figure 3.1). According to that, position features are given by the 3D coordinate of both

Figure 3.1 – Both hands movement features are expressed in three coordinate centers (head,
shoulder and hip joint) based on x, y, z coordinates of the skeleton joints.

hands according to the head, shoulder, hip coordinate and velocity features are the delta features.
More precisely, for each time frame t , we normalized position features of the non-dominant,
plhnd

t , and the dominant hand, prhnd
t , by the width of the head, i.e.

plhnd
t = lhndt −centert

|necky,t −heady,t | /4
, (3.1)

prhnd
t = rhndt −centert

|necky,t −heady,t | /4
, (3.2)

where lhndt , rhndt are vectors containing the x, y, z coordinates at time frame t of related joints:
non-dominant hand and dominant hand; centert are vectors containing the x, y, z coordinates at
time frame t of related joints: head, right/left shoulder, right/left hip where the right shoulder/hip
center is used to compute the dominant hand position vector and the left shoulder/hip for the
non-dominant one; heady,t and necky,t are the y coordinate of the head and the neck joint at time
frame t . The related velocity features, vlhnd

t and vrhnd
t , are estimated by computing the difference
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between the position features at time t and time t −2, i.e.

vlhnd
t = plhnd

t −plhnd
t−2 , (3.3)

vrhnd
t = prhnd

t −prhnd
t−2 . (3.4)

Thus, after normalization, the stack of the continuous hand motion and position values related to
the three coordinate centers give us the necessary information on the hand trajectory and position
with respect to the signer’s body.

The resulting feature vector, xhmvt, is the stack of plhnd, prhnd, vlhnd and vrhnd according to the
three coordinate centers, leading to a sequence of F ×36 dimensional feature vectors, where F is
the total number of frames and the 36-dimensional feature vector consists of 18 position features
(= 3 coordinates · 3 coordinate centers · 2 hands) and 18 velocity features.

Shoulder normalization-based features: In this thesis, we carry out cross-lingual and multilin-
gual studies involving multiple sign language databases (see Chapter 2.3) which have different
recording settings such as standing or sitting position. In order to compensate the differences in
the coordinate system in-between the three databases, before feature extraction, we aligned the
skeletons of signers, skel, irrespective of the datasets, w.r.t a chosen reference signer at the neck
joint and scaled by the shoulder width. More precisely, we first expressed the skeleton joints in
the neck coordinate center system, skelneck, i.e.

skelneck = skel−neck , (3.5)

where neck are the neck joints of the input skeleton. We then computed the shoulder-to-shoulder
distances, f , in-between the reference and the input skeleton used to normalize the skeleton joints,
i.e.

f = | lshdref − rshdref |
| lshd− rshd | , (3.6)

where lshdref, rshdref and lshd, rshd are respectively the left and the right shoulder joints of the
reference and the input skeletons. We finally normalized the input skeleton aligned to the neck
and translated it to the new reference neck coordinate center system, resulting to

skelnorm = f ·skelneck +neckref , (3.7)

where neckref is the neck joint of the reference skeleton. The resulting feature vector is denoted
as x̂ hmvt in the remainder of the thesis.
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3.1.2 Handshape features

Figure 3.2 illustrates the process of handshape feature extraction. More precisely, cropped hand
sequences of the sign is obtained from the visual signal and fed as input to an ANN to estimate
handshape "subunits" posterior probabilities.

ANNImages
Handshape Subunits

Posterior Probabilities

Crop

Hands

Figure 3.2 – Illustration of the handshape subunits posterior probability features estimator.

In this thesis, two different handshape estimators were used: one in the context of sign language
recognition and one in the context of sign language assessment. The development of these
estimators were done by USurrey partners1 of the SMILE project (see Chapter 1.1). The
handshape subunits classifiers were built using the One-Million-Hands2 dataset, which contains
cropped hand patches and the aligned handshape labels from three different sign languages,
namely Danish Sign Language, New Zealand Sign Language and German Sign Language. This
dataset was originally created in the context of developing a frame-based handshape classifier
on weakly annotated data [60]. The handshape labels consist of a transition shape and 60
linguistically inspired handshape classes or subunits presented in detail on the following website:
https://www-i6.informatik.rwth-aachen.de/~koller/1miohands-data/ (visited on 02/19/2021).

Handshape feature extraction for sign language recognition

For the sign language recognition task, we used the off-the-shelf CNN-based DeepHand approach
developed by Koller et al. on the One-Million-Hands dataset [60] and available on the website
mentioned earlier. For each cropped hand patch input at time frame t , the CNN estimates a 61
dimensional handshape subunits posterior probability vector zhshp

t . For the two hands, this yields
two 61-dimensional vectors.

Handshape feature extraction for sign language assessment

In the sign language assessment task, the ANN classifier is based on the CNN-LSTM hybrid
proposed by Camgoz et al. in [20], called SubUNets, which uses Connectionist Temporal
Classification loss layer [43] to avoid the costly iterative realignment process of the DeepHand [60]
approach (used in the sign language recognition task). More recent residual network based

1more precisely by Cihan Necati Camgoz that I particularly thank for his availability and his support.
2https://www-i6.informatik.rwth-aachen.de/~koller/1miohands-data/ (visited on 02/19/2021)

20

https://www-i6.informatik.rwth-aachen.de/~koller/1miohands-data/
https://www-i6.informatik.rwth-aachen.de/~koller/1miohands-data/


3.2. Statistical Sign Language Recognition Framework

CNN architecture, namely ResNeXt-101 [126], was used instead of the AlexNet [64] originally
presented in [20]. Moreover, the One-Million-Hands dataset is unbalanced causing the networks
to learn prior over the present 60 handshape classes, which does not necessarily extend to other
domains or other sign languages. To improve the quality and the generalization of our handshape
subunit representations, we first reduced the number of classes by choosing the most common
handshape classes present in the One-Million-Hands dataset by keeping the handshape classes
which have at least 1000 samples in the training set. This reduced the number of classes to 30.
We then collected new samples from four participants, two L2 signers and two non-signers, to
handle the class imbalance problem. We applied random rotation, zoom and colour jitter to help
our networks generalize better. To further address the class imbalance issue, we re-sampled the
training images with respect to their corresponding classes and simulate a uniform distribution
over all classes. Finally, the 30-dimensional handshape classifier was trained and in addition to
that a second 31-dimensional handshape classifier which includes a transition shape.

The inference process starts by cropping hand patches. The SMILE DSGS dataset [34] was
recorded using the Microsoft Kinect v2 depth sensor. Although Kinect SDK provides 2D joint
locations for colour images, its wrist localization is too jittery. To overcome this problem, we
utilized a state-of-the-art 2D pose estimation method, namely OpenPose [21], to localize wrist
locations. Using the wrist pixel coordinates, the non-dominant and dominant hands patches are
cropped to extract posterior probabilities of handshape subunits on both classifiers resulting in
a 122-dimensional handshape posterior probability vector (= 2 hands · (30 + 31) ). The models
were implemented using the PyTorch deep learning framework [86].

3.2 Statistical Sign Language Recognition Framework

In the statistical SLR approach, given an input video as a sequence of images/features X =
(x1, · · · ,xT ), the goal is to obtain the most likely sign (in the case of isolated SLR) or sign
sequence S∗ (in the case of continuous SLR), i.e.,

S∗ = argmax
S∈S

P (S|X ,Θ) , (3.8)

where S denotes the set of all possible signs or sign sequences, S represents a sign or sign
sequence and Θ denotes the set of parameters of the system. For simplicity, in the remainder of
this section Θ is dropped. As direct estimation of P (S|X ) is a non-trivial task3, typically Bayes’

3It is worth mentioning that recently there are approaches emerging which directly model P (S|X ) [43, 20].
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rule is applied, leading to,

S∗ = argmax
S∈S

p(X |S)P (S)

p(X )
, (3.9)

= argmax
S∈S

p(X |S)P (S) . (3.10)

Eqn. (3.10) is obtained as a result of the assumption that p(X ) does not affect the optimization.
P (S) is referred to as the language model, and can be estimated based on the relative frequency
of the signs on the training data. A common way to model p(X |S) in the literature is to use
conventional HMM-based approaches [85], where HMM is a Markov process with hidden
states/variables q1, . . . , qt , . . . , qT . Thus, p(X |S) in an HMM-based framework can be estimated
by summing over all possible hidden state sequences Q, i.e.,

p(X |S) = ∑
Q∈Q

p(X ,Q|S) , (3.11)

= ∑
Q∈Q

T∏
t=1

p(xt |qt )P (qt |qt−1) , (3.12)

≈ max
Q∈Q

T∏
t=1

p(xt |qt )P (qt |qt−1) , (3.13)

where Q = (q1, · · · , qt , · · · , qT ) denotes a sequence of HMM states. Equation (3.12) is obtained
by making i.i.d. and first order Markov assumptions. Equation (3.13) is obtained by applying
the Viterbi approximation. As depicted in Figure 3.3, in conventional HMM, the states, i.e.
the hidden variables, are discrete, while the observations are continuous modeled by Gaussian
distribution for the emission scores p(xt |qt ); P (qt |qt−1) are the transition probabilities.

q1 · · · qT

p(x1|q1) p(xt |qt ) p(xT |qT )

P (q1|q0) P (qt |qt−1) P (qT |qT−1)

Figure 3.3 – Illustration of the hidden Markov model with his emission scores, p(xt |qt ), and his
transition probabilities, P (qt |qt−1).

In the speech recognition work [93], it was elucidated that estimation of p(xt |qt ) can be inter-
preted as obtaining a match between xt and qt in a latent symbol set (called acoustic unit set A
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in [93]). More precisely, estimation of p(xt |qt ) can be factored into two parts as follows

p(xt |qt ) =
D∑

d=1
p(xt , ad |qt ) , (3.14)

=
D∑

d=1
p(xt |ad )P (ad |qt ) , (3.15)

where ad ∈A and xt is supposedly independent of qt |ad . Intuitively, ad are clustered context-
dependent phones in a context-dependent phone-based speech recognition system [93].

As elucidated later in Chapter 5, in sign language processing, the latent symbol space tends to
model the sign language production space, while the HMM states tend to model sign language
perception space.

3.2.1 Estimation of p(xt |ad )

The local emission score p(xt |ad ) can be estimated using different techniques. In this thesis, we
exploit using Gaussian Mixture Models (GMM) and ANN. As mentioned above, the conventional
HMM uses Gaussian distribution as output probability, i.e.

p(xt |ad ) =
N∑

n=1
cd

n N (xt ;µd
n ,Σd

n ) , (3.16)

where N denotes the number of Gaussian components per mixture for each state; cn , µn and Σn

denote respectively the mixture weight, mean and covariance of the nth Gaussian. This approach
is referred as Hidden Markov Model / Gaussian Mixture Models (HMM/GMM) approach [92].

In the hybrid Hidden Markov Model / Artificial Neural Network (HMM/ANN) approach [14,
62, 60, 123], an ANN is used to estimate the posterior probabilities zt = [P (a1|xt ) · · ·P (ad |xt ) · · ·
P (aD |xt )] which are then converted to scaled-likelihoods (sl) of HMM states, i.e.,

f psl (xt |ad ) = P (xt |ad )

p(xt )
= P (ad |xt )

P (ad )
; (3.17)

3.2.2 Estimation of P (ad |qt )

The relation between the production units and the HMM state, P (ad |qt ), can be defined by a
deterministic map. It is the case in the conventional HMM-based approaches (HMM/GMM,
hybrid HMM/ANN) where P (ad |qt ) is defined as prior knowledge by the Kronecker delta
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distribution, i.e.

P (ad |qt = i ) =
1, if d = i ;

0, otherwise ;
(3.18)

where i represents a hidden state.

Training
Given the SLR HMM-based equation (3.13), the Expectation-Maximization (EM) is used to
learn the HMM parameters in all approaches; more precisely the Viterbi EM algorithm with log-
likelihood as cost function L = log(p(X |S)). All the HMM-based approaches were implemented
using HTK [130].

Decoding
The most probable sign or sign sequence S∗ is obtained by finding the most probable state
sequence Q, i.e.,

S∗ = argmax
S∈S

p(X |S)P (S) , (3.19)

≈ argmax
Q∈Q

T∏
t=1

p(xt |qt )P (qt |qt−1) , (3.20)

≈ argmax
Q∈Q

T∑
t=1

(
log(p(xt |qt ))+ log(P (qt |qt−1))

)
. (3.21)

To do so, the Viterbi algorithm is applied in all approaches.

3.3 Posterior Feature-based Sign Language Recognition Framework

The posterior feature-based approach deals with modeling of zt = [P (a1|xt ) · · ·P (ad |xt ) · · ·
P (aD |xt )], i.e. posterior probability estimates of latent symbols. The are two different ways
to model them: (a) tandem feature-based approach and (b) Kullback-Leibler divergence-based
Hidden Markov Model (KL-HMM) approach.

3.3.1 Tandem feature-based approach

In the tandem feature-based approach, first the latent symbols ad are classified leading to the
posterior probabilities zt = [P (a1|xt ) · · ·P (ad |xt ) · · ·P (aD |xt )]. Then the posterior features are
Gaussianized and decorrelated as follows,

xtandem
t =KLT(log(zt )) , (3.22)
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where KLT denotes Kahunen Loeve Transform [47]. The decorrelation step also optionally
reduces the feature space dimension. These features then serve as features observations for a
HMM/GMM system. Although the tandem feature-based approach originally emerged from
speech recognition studies, the tandem feature-based approach has been applied for handshape
information-based continuous sign language recognition [62].

3.3.2 KL-HMM-based approach

In the KL-HMM approach, the latent symbol probability vector zt = [P (a1|xt ) · · ·P (ad |xt ) · · ·
P (aD |xt )] is directly modeled by an HMM [4, 3], where each HMM state i is parameterized by a
categorical distribution yi = [y1

i · · · yd
i · · · yD

i ]. The local score is based on Kullback-Leibler (KL)-
divergence:

SK L(yi ,zt ) =
D∑

d=1
yd

i log(
yd

i

zd
t

) . (3.23)

KL-divergence being an asymmetric measure, there are also other ways to estimate the local
score [3]:

1. Reverse KL-divergence (RK L):

SRK L(zt ,yi ) =
D∑

d=1
zd

t log(
zd

t

yd
i

) ; (3.24)

2. Symmetric KL-divergence (SK L):

SSK L(yi ,zt ) = 1

2
( SK L(yi ,zt )+SRK L(zt ,yi ) ) . (3.25)

Training and Decoding
The parameters of KL-HMM are estimated with the Viterbi EM algorithm by minimizing a local
score based on KL-divergence. The decoding is performed using standard Viterbi decoder using
the KL-divergence based local score. For more details, the reader is referred to [4, 3]. All the
KL-HMM-based approaches were implemented using an in-house modified version of HTK.

As elucidated in [93], the categorical distributions of the HMM states capture a probabilis-
tic relationship between the HMM state and the latent symbols, i.e., yi = [y1

i · · · yd
i · · · yD

i ] =
[P (a1|qt = i ) · · ·P (ad |qt = i ) · · ·P (aD |qt = i )].
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3.4 Summary

In this chapter, we first presented extraction of manual features. More precisely, extraction of
position and velocity features from the skeleton information to model hand movement information
and extraction of handshape subunits posterior probabilities to model handshape information.
We then presented different hidden Markov model-based approaches used in this thesis for sign
language processing. One of the challenges in using HMM for sign language processing is the
lack of prior knowledge to preset HMM topology. The following chapter addresses this challenge.
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RQ: How to determine the appropriate HMM topology for modeling
the hand movement information of signs and gestures?

HMM offer a natural solution for SLR with their power in handling sequential and multimodal
data. They are extensively used and have proven successful in the SLR domain [80, 28]. One of
the challenges of using HMM in sign language processing is that sign languages are inherently
under-resourced i.e. few well developed resources with several signers are available, and HMM
require a certain amount of training data for robust parameter estimation. Another challenge
is to select the structure of the HMM, i.e. the number of states, which directly can affect the
performance of SLR system. Unlike speech processing, where the spoken words are represented
as a sequence of subword units (e.g. phones) and the subword units are modeled through an
HMM with minimum duration constraint [14], there is no such prior knowledge for sign language.
As discussed in detail in Section 4.1, in many studies the number of states in the HMM is fixed
for all the signs in the dataset. This may not be optimal, as the temporal structure of signs can
differ, akin to temporal differences in spoken words.

This chapter focuses on addressing the challenge related to defining or determining the HMM
topology. Specifically, we develop an HMM-based approach where, during the training phase,
each sign is modeled by a set of HMM with different number of states. During the recognition
phase, the SLR system determines the number of states for each sign independently such that the
joint likelihood of the HMM state sequence and the feature observation is maximized. In other
words, the approach selects the best matching HMM during testing time. The motivation being
that, as there is no prior knowledge to determine the HMM topology, is to treat the number of
states for each sign as a hidden information. Further, for a single sign (or lexical entity) there can
be signer variations. For instance, signers can sign at different speeds (fast or slow) while varying
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the hand movement. Having multiple HMM per sign could also potentially handle signer variation.
To draw an analogy to spoken language processing, speech recognition systems typically handle
pronunciation variation (introduced by speakers) by having multiple pronunciations as well as by
changing minimum duration constraints [108]. Besides that, we also propose incorporation of a
transition model, similar to silence modeling in speech recognition [130], to model portions of
visual signal before and after production of signs. We validate the proposed approach through hand
movement feature-based sign language/gesture recognition studies on three different databases.

The chapter is organized as follows: in Section 4.1, we present the related work on SLR and
HMM modeling. Our proposed approach is explained in Section 4.2. Section 4.3 and Section
4.4 present the experimental setup and the results and analysis of the experiments, respectively.
Finally, Section 4.5 summarizes the key findings. The material presented in this chapter is based
on the following publication:

An HMM approach with inherent model selection for sign language and gesture recognition,
Sandrine Tornay, Oya Aran and Mathew Magimai.-Doss, in: Proceedings of the International
Conference on Language Resources and Evaluation LREC 2020, 2020

4.1 Related Work

In most of the works on SLR that use HMM, a left-to-right HMM structure with or without skip
states has been used. The number of states of the HMM has generally been fixed for all the
signs/subunits in the dataset. In [111], the authors compare three different HMM topologies with
different number of states, without presenting any model selection approach: fully connected,
left-to-right with skip states and left-to-right without skip states and conclude that the left-to-right
HMM provides the best performance, confirming the popularity of the left-to-right HMM for
SLR. Only a couple of works in the literature have investigated a model selection approach
for HMM for SLR. In [101], the authors present a state splitting algorithm for HMM. In their
experiments on a dataset of signs from Australian Sign Language, their proposed approach is
faster and achieves better performance than the conventional HMM Baum-Welch training. In
[74], the HMM topology is automatically constructed from an initial topology by modifying it
using segments, which are formed based on the segmentation of hand motion. In [120], low
rank approximation is used to determine the key frames of a sign which guides the selection of
the number of states of HMM independently for each sign. In [68], an entropy-based k-means
algorithm is used to determine the HMM number of states. With this approach, each sign is
represented by an HMM with different number of states. Additionally, an artificial bee colony
algorithm is used together with the Baum-Welch algorithm to determine the HMM structure.
Their experiments show that the proposed approach achieves better performance than a left-to-
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right HMM structure with fixed number of states. However, from the experiments reported, it is
no clear how much of the performance increase comes from the selection of the number of states
and from the determination of the HMM structure through the swarm optimization algorithm.

4.2 Proposed Approach

The proposed HMM-based model selection approach assumes that each sign could have different
number of stationary states. Intuitively, when considering hand movement information modeling,
an HMM state can represent a specific position, orientation or location of the hands depending
on the input observation features. Therefore, we make the assumption that the complexity of a
sign influences the appropriate number of states used to model it. To the authors’ knowledge,
no method in the literature today allows to set this number beforehand. An exhaustive search
using cross validation is not feasible in the sign language domain as the number of signs in the
datasets is typically high. Thus, instead of setting this number beforehand, the proposed model
selection approach selects the appropriate one in an interval of possibilities at the recognition
stage. More precisely, an interval of possible number of states is first chosen, let’s say Nmi n

to Nmax . Then, ∀n ∈ [Nmi n , Nmax ], a left-to-right HMM with n states is trained for each sign.
Then at the recognition stage, the model yielding maximum likelihood is chosen as the recognized
output (see Figure 4.1). Thus S · (Nmax −Nmi n +1) models are tested, in comparison to S in the
first approach, where S is the number of unique signs in the dataset.

Si g n1Nmi n

Si g n1(Nmi n+1)

...
Si g n1Nmax

Si g n2Nmi n

...

Figure 4.1 – Recognition network of the proposed model selection approach.

Besides the choice of the number of states, the quality of the data segmentation can also affect
the sign-based model. Indeed, the exact start and end of a sign is not perfectly defined, especially
in a continuous context where each sign is being followed by other signs. In the isolated context,
the segmentation is not necessarily optimized leading to the same problem. Thus, in both cases,
there is a transition phase at the beginning and at the end of the performed sign. This period can
represent the absence of movement/hand gesture or even some slight insignificant movement. To
handle this issue, we propose to add a transition model, common to each sign, before and after
each sign-based HMM. For preserving the continuity of the entire model, we modeled it as a
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three-state left-to-right HMM with one-state-skip (see Figure 4.2 for the structure). This structure
is inspired from speech processing to handle short pauses and silent modeling [130].

1 2 3

Figure 4.2 – HMM topology of the transition model.

4.3 Experimental Setup

As a first step, we conducted hand movement information-based isolated sign language recognition
and gesture recognition tasks on three databases to validate the proposed approach. Chapters 6-7
further validate this approach in the context of modeling handshape information.

4.3.1 Datasets

We used the Chalearn14 gesture database and the DGS and HospiSign sign language databases,
described earlier in Section 2.3. The partition of the training and testing data is given in Table 4.1.
In DGS and HospiSign studies, we conducted leave-one-signer-out cross validation experiments;
therefore, Table 4.1 reports the mean of the data samples used in each experiment. For the
Chalearn14 case, we kept the given data partition of the challenge.

Table 4.1 – Partition of the Chalearn14, DGS and HospiSign databases into training and testing
data samples

Train Test
Chalearn14 9306 3579
DGS 2586 227
HospiSign 1049 210

4.3.2 Hand movement feature extraction

For extracting the hand movement features, as described earlier in Section 3.1.1, we rely on the
tracked 3D coordinates of a human skeleton. The 3D trajectories of the two hands as well as the
other skeleton joints such as head, neck, shoulders and hips form the basis for our continuous
features of hand motion information, in particular hand position and velocity. The hand movement
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feature extraction process yields 36-dimensional feature vector at each time frame.

4.3.3 Systems

We studied three different systems, where the method used to infer the number of states is
different:

• The msHMM system stands for the proposed model selection approach, where the inference
of the number of states N is different for each sign and is not fixed beforehand. Only the
interval of possibilities from Nmi n to Nmax has to be defined.

• The sdHMM system stands for standard HMM topology where the number of states N is
the same for all the sign and is fixed beforehand. ∀n ∈ [Nmi n , Nmax ], a n states HMM is
trained and the one that yields the best performance on the test set serves as a baseline
system.

• The kmHMM system stands for the approach developed in [68] that we implemented to
further validate the proposed selection method. In this approach, the number of states N is
set using the entropy-based k-means algorithm. For fair comparison, the k was selected in
the same range, i.e. k ∈ [Nmi n , Nmax ].

In all the above presented systems: HMM refers to left-to-right HMM. The range of the number
of states was Nmi n = 3 to Nmax = 13. In all cases, each HMM state emission distribution is
modeled with a single multivariate Gaussian with diagonal covariance matrix. The performance
of the systems was evaluated in terms of recognition accuracy (presented in Section 2.4).

We also investigated a variant of the above described systems, namely, tr-msHMM, tr-sdHMM
and tr-kmHMM, that incorporate transition models at the beginning and end of each sign-based
model. Since by adding the three states transition model we increase the number of states of the
sign-based model by at least four states (two states before and after each model, see Figure 4.2),
we decided to adapt the range of possibilities, leading to Nmi n = 3 to Nmax = 9. Figure 4.3
depicts the recognition network of the tr-sdHMM and tr-kmHMM systems, while Figure 4.4 the
tr-msHMM system.

tr

Si g n1N

...
Si g n40N

tr

Figure 4.3 – Recognition network of the tr-sdHMM and the tr-kmHMM system.
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trNmi n

...

trNmax

Si g n1Nmi n

...
Si g n40Nmi n

...

Si g n1Nmax

...
Si g n40Nmax

trNmi n

...

trNmax

Figure 4.4 – Recognition network of the tr-msHMM system.

4.4 Results and Analysis

In this section, we first present the recognition accuracies of the different systems on the
Chalearn14, DGS and HospiSign databases. Next, we contrast the performances obtained
by our approach with the existing studies reported on those databases to demonstrate that the
results obtained by our systems are competitive.

4.4.1 Comparison of systems

Figures 4.5 presents the recognition accuracy of the three systems without the transition model,
all are signer-independent. Firstly, looking at the performances of the sdHMM system, we can
deduce that the number of states has an impact on the recognition accuracy and tends to saturate.
Secondly, we can observe that the proposed approach (msHMM) consistently outperforms the
approach of setting number of states based on k-means (kmHMM). Furthermore, we can also
observe that the msHMM system yields performance comparable to the sdHMM system with
fixed number of states yielding the best performance on the test data.

Figures 4.6 presents the recognition accuracy of all the systems containing the transition model.
We can observe that the recognition performance of all the systems considerably improve. As
the transition model is common to all signs, the improvement can be attributed to the modeling
of sign-independent irrelevant information at the beginning and end of the visual signal. When
comparing tr-msHMM, tr-kmHMM and tr-sdHMM systems, the trend remains the same, i.e.
tr-msHMM system is better than tr-kmHMM system and is comparable to the tr-sdHMM system.

For the sake of completeness, Table 4.2 summarizes the recognition accuracy with standard
deviation for all the systems.

Figure 4.7 shows the histogram of the number of states of the HMM selected during recognition
phase of tr-msHMM system for Chalearn14, DGS and HospiSign. As expected, it can be observed
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Figure 4.5 – Recognition accuracy of the sdHMM, the msHMM and the kmHMM systems.
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Figure 4.6 – Recognition accuracy of the tr-sdHMM, the tr-msHMM and the tr-kmHMM systems.
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Table 4.2 – Recognition accuracy of the systems on the Chalearn14, DGS and HospiSign dataset.

Chalearn14 DGS HospiSign
msHMM 59.1 59.2 ± 9.6 91.5 ± 7.0
sdHMM (# states) 60.2 (12) 58.7 ± 11.5 (11) 91.4 ± 6.0 (13)
kmHMM 57.2 55.5 ± 10.5 67.9 ± 4.4
tr-msHMM 60.2 63.1 ± 10.3 91.2 ± 6.5
tr-sdHMM (# states) 61.5 (6) 62.3 ± 9.8 (5) 92.2 ± 4.9 (8)
tr-kmHMM 57.9 60.9 ± 9.5 86.1 ± 6.3

that HMM with different number of states are selected at run time. In the case of DGS and
HospiSign models, the histogram is skewed towards higher number of states. However, it is
not the case for Chalearn14. One possible reason for that could be that Chalearn14 has simple
gestures (hand up and down movement) in an uncontrolled environment.

Figure 4.7 – Histogram of the selected number of states during the recognition process using the
tr-msHMM systems.

4.4.2 Comparison to existing studies

In this section, we contrast the performances obtained on DGS dataset and HospiSign dataset
to existing studies reported on these datasets. These studies have used the same protocols as
we have. In the case of Chalearn14, the evaluation is based on Jaccard index that involves joint
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evaluation of segmentation and recognition of gestures [38]. A fair comparison is not feasible,
as it is difficult to separate the contribution of segmentation errors and recognition errors of the
systems reported in [38]. Thus, we do not contrast for Chalearn14.

DGS Database

Table 4.3 compares performance with our models with two other works on the DGS dataset. In
[79], the authors used a multi-class sequential pattern tree with boosting for classifying signs,
using binary features based on the hand motion and location information. In [29], the authors
proposed a subunit-based approach using a sequential pattern boosting classifier, where the
subunits are extracted based on the different modalities that make up a sign, i.e. handshape, hand
location, hand motion, and hand arrangement. It is important to note that the dataset used in [29]
contains signs from one extra signer, which we do not have access to in our dataset. Based on the
reported signer independent performance of 49.4% in [29], we calculated the accuracy range for
the remaining 14 users (assuming that the accuracy on the 15th user could take a value between
0% and 100%). This calculation gives us a range of [45.7,52.9], which is still lower than the
performance achieved by the proposed tr-msHMM system.

Table 4.3 – Comparison of our systems with existing studies for the DGS dataset

Method Signer Indep. (%)
Sequential Pattern Trees [79] 55.4 ± 8.1
Boosted Subunits [29] 49.4 ± 8.5
tr-msHMM system 63.1 ± 10.3

HospiSign Database

Table 4.4 compares the performance of our system with the performance reported in [18]. Briefly,
in [18], various manual features such as handshape, hand position and hand movement were
extracted and temporal modeling using either DTW or temporal templates was performed. In the
case of using DTW, the signs were classified using k-Nearest Neighbours (k-NN). We contrast to
the system where only hand movement information is modeled. We also trained a tr-msHMM
system that uses the same hand movement and hand joint feature as in [18]. In both cases, we
can observe that the proposed tr-msHMM system yields performance close to the best reported
system using only hand movement information.
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Table 4.4 – Comparison of our systems with existing studies for the HospiSign dataset

Method Signer Indep. (%)
Hand Joint and Movement Distances [18] 93.8 ± 6.4
tr-msHMM system 91.2 ± 6.5
tr-msHMM system using the same
”Hand Joint and Movement Distances"
features as [18]

91.6 ± 6.1

4.5 Summary

This chapter presented a HMM-based model selection approach where, during training, each
sign is modeled by a set of HMM with different number of states and the best matching model
is automatically selected during the recognition phase based on maximum likelihood criteria.
We also investigated the use of a transition model taking inspiration from silence modeling in
speech processing. Our investigations on sign language recognition and gesture recognition tasks
on three different databases showed that the proposed model selection approach yields better
systems than the approach of presetting the number of HMM states using k-means and yields
systems competitive to the baseline system with fixed number of states determined on the test
set. Furthermore, incorporation of a transition model to model portion of visual signal before
and after the production of each sign helps in improving the performance of systems. So, in the
remainder of the thesis work, we used the left-to-right HMM topology with transition model.

It is worth mentioning that, although the investigations were carried out on isolated signs,
gestures and phrases, the approach can be extended to continuous sign language processing.
The different HMM for each sign can serve a similar role as multiple pronunciations for each
word in continuous speech recognition systems. Thus, the model selection aspect in continuous
sign language processing can be handled by the decoder in the same manner as selecting the
pronunciation for a word in a continuous speech recognition system. In the following chapter,
we will demonstrate that the model selection approach can potentially be exploited for hand
movement subunits extraction.
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RQ: How to discretize and model hand movement information as sub-
units?

As described in Chapter 3, the movement of both hands is a relevant structure of the sign
production that needs to be modeled. In the literature, it is well understood that the handshape
information can be modeled as a sequence of subunits [62, 20] such as HamNoSys [45, 59].
However, the continuous aspect of the movement makes modeling of movement information as
subunits difficult. Indeed, sequence modeling for signs and gestures is an open research problem.
In that direction, there is a sustained effort towards modeling signs and gestures as a sequence of
subunits. In order to develop efficient sign language processing systems, it is desirable to model
signs as a sequence of subunits, akin to phoneme- or phone-based speech processing [11]. As,
subunits allow robust parameter estimation. It could also remove the constraint that all signs in
the lexicon needs to be observed during training. Furthermore, subunits can allow data sharing
across languages [62]. The multistream nature of sign language implies that the development of
such a subunit set is a highly challenging task.

In this chapter, we present a novel HMM-based approach to extract hand movement data-driven
subunits from skeleton information by building upon the inherent ability of HMM to segment
time series into stationary segments for sign modeling. In this approach, no prior knowledge of
the number of subunits or segmentation or linguistic annotation is used. Rather, only pairwise
comparison between signs production, i.e. whether two productions correspond to the same sign
or not is used. The approach involves: (a) extraction of position and motion features from 3D
skeleton information; (b) inferring a left-to-right HMM for each sign by modeling the position
and motion features; (c) clustering the states of the HMM across the signs through a measure of
discrimination to infer subunits and representing each sign in terms of those subunits; and finally
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(d) visualization based on HMM-based synthesis. We developed the proposed framework for
subunits extraction for both sign language processing and speech processing. Specifically, in the
sign language study the above-mentioned recognition-synthesis framework for hand movement
subunits extraction and analysis was developed. Whilst, in the spoken language study we
demonstrated that the framework can lead up to phone set discovery and pronunciation lexicon
development. For the sake of clarity, the investigations on spoken languages are presented in
Appendix A.

The remainder of the chapter is organized as follows: Section 5.1 presents the related work.
Section 5.2 presents the proposed framework where in the inference of the left-to-right HMM step
the number of states is fixed based on the recognition accuracy on the training and development
data. Section 5.3 presents the experimental setup and the results on sign language recognition task.
In Section 5.4, we investigate if subunits exhibit language independent property by conducting a
cross-lingual sign language recognition task. In Section 5.5, we investigate the potential of using
the model selection approach presented in Chapter 4 in the inference of the left-to-right HMM
step. Finally, in Section 5.6 we discuss the salient findings and conclude. This chapter is based
on the following publications:

Subunits inference and lexicon development based on pairwise comparison of utterances
and signs, Sandrine Tornay and Mathew Magimai.-Doss, in: Information, Special Issue:
Computational Linguistics for Low-Resource Languages, 10:298, 2019

Data-driven movement subunit extraction from skeleton information for modeling signs and
gestures, Sandrine Tornay, Marzieh Razavi and Mathew Magimai.-Doss, Research Report,
Idiap-RR-02-2019

5.1 Related Work

The focus of this chapter lies in automatic derivation of hand movement subunits for sign language
processing. In the literature, there are two strands of research in that direction.

The first strand of research makes the assumption that some annotation of signs is available.
Pitsikalis et al. [90] incorporated phonetic transcription into data-driven subunits. They first
converted Hambourg Notation System (HamNoSys) symbols into Posture-Detention-Transition-
Steady Shift model. Then they combined these structured sequences of labels with visual tracking
features for timing information via an HMM-based system to obtain the phonetic subunits. Cooper
et al. [29] used hand labeled data and compared three types of subunits: appearance-based, 2D
tracking-based and 3D-tracking based. Two sign-level classifiers were tested: an HMM-based
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approach and the sequential pattern boosting. Koller et al. [61] used gloss annotations and gloss
time boundaries to generate sequences of subunits using HMM-based modeling and expectation-
maximization algorithm. Elakkiya and Selvamani [36] extracted manual and non-manual features
by using parallel HMM and introduced a novel Bayesian parallel HMM to combine the visual
and linguistic transcriptions of the sign lexicon to form a subunit gesture base.

The second strand of research involves extraction of subunits without using annotation information.
In this case, subunits extraction typically involves unsupervised segmentation and clustering.
There exist two lines of thoughts based on the order in which segmentation and clustering steps
are carried out, i.e.,

- Clustering followed by segmentation: Bauer and Kraiss [8] used k-means algorithm to
cluster the data where each cluster is then represented as a fenonic baseform. Temporal
structure is then achieved with the HMM-based structure defined based on this fenonoic
model [51]. Han et al. [53, 7, 44] used hand motion speed and trajectory to locate subunit
boundaries and then temporal clustering by DTW is adopted to merge similar subunits.

- Segmentation followed by clustering: Sako and Kitamura [98] extracted different subunits
by training a multi-stream isolated sign HMM for each word where the feature vector
of each frame is split into three phonetic stream, and by clustering each state of the
multistream using an inter-state distance with a tree-based algorithm in order to tie the
states. Fang et al. [42] segmented signs using HMM in which each state represents one
segment. Then they used a temporal clustering algorithm based on modified k-means
algorithm where DTW is employed as the distance computation criterion. In that study,
CyberGloves and Pohelmus 3SPACE-position trackers were used. Based only on simple
position measurements obtained from the video, Theodorakis et al. [111] used, as an initial
segmentation step, the model-based segmentation proposed in [42], and then employed a
hierarchical clustering of whole dynamic models (HMM) to find the shared segments.

5.2 Proposed Subunit-based Lexicon Development

This section presents the proposed computational methodology for hand movement subunits
extraction and analysis. The proposed methodology formulates the subunits extraction problem
as follows: Given only a set of sign productions and the knowledge that any two pair of sign
productions correspond to the same lexeme or not, how to derive the set of subunits and model
each distinct sign as a sequence of subunits? The proposed methodology consists of four steps:

Step 1: first, a sequence of feature vectors is extracted for each sign production. The feature vectors
for hand movement are based on the 3D skeletal information (see Chapter 3.1.1);
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Step 2: given the sequence of feature vectors for each sign production, a HMM is obtained for
each distinct sign in the set. This step exploits the idea that HMM inherently segment a
time series into stationary segments and sign recognition can be performed with word level
HMM;

Step 3: next, the states are clustered into subunits by pairwise comparison and a sequence model in
terms of clustered subunits is obtained for each distinct sign; and finally

Step 4: visualization based on HMM-based synthesis is employed.

As illustrated in Figure 5.1, Step 2 and 3 can be grouped together and seen as a step of deriving
automatic subunits and development of an automatic subunit-based lexicon. More precisely, in
Step 2 sign-level HMM for each sign are determined. This is done by modeling each state by a
single Gaussian distribution with diagonal covariance and finding the number of states, n, such
that the recognition accuracy saturates on the training and the development data. This process
yields the same number of states n for all the distinct signs. The motivation of selecting this
approach comes from the saturation observation of the recognition accuracy of the standard
HMM system (sdHMM) in Chapter 4. As mentioned earlier, the model selection proposed in
Chapter 4 can be applied to set the HMM topology in Step 2, this investigation is proposed in
Section 5.5.

Figure 5.1 – Illustration of the subunit-based lexicon generation.

Given all the single Gaussians of the signs HMM states, Step 3 clusters them through a measure
of discrimination. More precisely, this is done by computing, between each pair of Gaussian
distributions, the Bhattacharyya distance [9]:

Bhatt(N1,N2) = 1

8
(µ1 −µ2)TΣ−1(µ1 −µ2)+ 1

2
ln(

detΣ√
detΣ1 detΣ2

) , (5.1)

where N1 := N (µ1,Σ1) and N2 := N (µ2,Σ2) are two Gaussian distributions and Σ := Σ1+Σ2
2 .

The level of similarity between two HMM states is defined by a threshold τ, i.e. two HMM states
are similar if the Bhattacharyya distance between the Gaussian distributions corresponding to the
two states is below the threshold τ. The intuitive explanation is that two segments are modeling
similar information or subunit if the probability density functions of those states are similar. This
clustering step yields a set of automatic subunits and an automatic subunit-based lexicon based
on τ. The hyper-parameter τ is determined in a cross-validation manner where,
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1. first multiple automatic subunit-based lexicons corresponding to different values of τ are
obtained;

2. a recognition system is then trained on the training data based on each of those lexicons;
and

3. the lexicon that yields best recognition accuracy on the development data is chosen.

Selection of τ in this manner ensures that minimal discrimination between signs are maintained
after the clustering step.

One way to validate is to recognize the subunits. Another way to do it is to visualize the hand
movement subunits which allows to ascertain the identity of them; this is the goal of Step 4.
The subunit-based lexicon represents the hand movement information for each observed sign
“in-parts". It is not obvious to what prior linguistic knowledge those subunits could be linked.
Even the HamNoSys annotation [45], which is used to transcribe signs, transcribes the whole
movement information, not the movement information in-parts. We develop a method, where
the trained HMM are used as a generative model to synthesize hand movement information
in the 3D feature observation space by applying a Linear-Quadratic Regulator (LQR) [87, 13].
The synthesized hand movements for the signs can then be visually compared to the actual
movements produced by the signers, which subsequently could be linked to HamNoSys should
such transcription be available. Figure 5.2 illustrates the proposed approach to synthesize hand
movement information of signs based on the derived subunits, starting from KL-HMM. As
illustrated in the figure, given a sequence of Gaussian distributions, LQR finds the minimal path
which passes through the sequence of the Gaussian distribution linked to each subunit that model
a particular sign. The main idea here being: are the derived subunits able to synthesize the hand
movement of signs such that it corresponds well with the human sign production?

Figure 5.2 – Illustration of the hand movement synthesis approach according to the hand move-
ment subunits.

5.3 Monolingual Study

We validated the proposed approach subunits extraction approach by conducting signer-independent
automatic SLR study and by synthesizing and analyzing hand movement information from the
resulting models on a sign language database.
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5.3.1 Experimental setup

SMILE DSGS database

We evaluated the proposed approach on the SMILE Swiss German Sign Language database.
More information on the database can be found in Section 2.3. As mentioned in Section 2.3, only
the second pass was annotated through six categories that evaluates the acceptability of a sign
according to linguistic criteria. In our experimental studies, we only used the second pass data
that was annotated as Category 1 or 2, i.e. acceptable signs with the same or slightly the same
form. The data was partitioned in a signer-independent manner into 1263 training set samples
from 17 signers, 249 development set samples from 3 signers and 704 test set samples from 10
signers.

Systems

We built HMM/GMM [92], hybrid HMM/ANN [14] and KL-HMM systems (see Chapter 3.2 for
statistical explanation of the models) to evaluate the automatic subunits based lexicon at SLR
level. In each case, we built two systems:

(a) sign level system: using sign-level HMM states obtained in Step 2 as subunits. This system
is the standard HMM (sdHMM) system presented in Chapter 4;

(b) SU-based system: using the clustered HMM states in Step 3 as subunits.

The motivation behind building sign level system is that Step 2 obtains a sign level HMM with
fixed number of states n through discrimination like in Step 3, so the states of the sign level
HMM can also regarded as subunits without being clustered. Such a comparison would help us
to determine whether the clustering step is indeed yielding meaningful subunits or not. For all
systems, we used the skeleton-based position and velocity features of both hands as input features.
The resulting feature vector is of size 36, see Section 3.1.1 for details.

HMM/GMM Systems: All the HMM/GMM systems are left-to-right HMM using one mixture
Gaussian distribution with diagonal covariance matrix per state as the emission distribution. In
Step 2, the number of states for the sign level HMM is chosen according to the saturation of the
model on the SMILE training and development data. The range of state is from 3 to 30. In Step 3,
the clustering step was conducted with the hyper-parameter, τ, in the range of 0.3 to 1.3 with a
0.1 step, leading to a set of lexicons. An HMM/GMM system was trained for each lexicon and
the one that yields the maximum recognition accuracy on the development set was chosen. Test
set performances are reported on that lexicon.
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Hybrid HMM/ANN Systems: For building the hybrid HMM/ANN systems, we first ob-
tained the alignments in terms of the HMM states using either the sign level or the SU-based
HMM/GMM systems. We then trained Multilayer Perceptron (MLP)s classifying HMM states
with output non-linearity of softmax and minimum cross-entropy error criterion. We used the
36-dimensional movement features with four frames preceding context and four frames following
context as the MLP input. In our experiments, we trained MLPs with different number of hidden
units (600, 800, 1000) and hidden layers (0, 1, 2, 3). The number of hidden units and hidden
layers as well as other hyper-parameters such as learning rate and the batch size were chosen
according to the frame-level accuracy on the development set.

We estimated the scaled likelihoods in the hybrid HMM/ANN systems [14] by dividing the
posterior probabilities derived from MLPs with the prior probabilities of the classes estimated
from relative frequencies in the training data. These scaled likelihoods were then used as emission
probabilities for HMM states during decoding.

KL-HMM Systems: The hand movement subunits posterior probabilities estimated by the MLP
of hybrid HMM/ANN system are used as feature observations. The KL-HMM states represent the
hand movement subunits. The cost function used to train and test was the reverse KL-divergence
(see Section 3.3.2).

The evaluation measure used in this experiment is the Recognition Accuracy (RA) presented in
Section 2.4.

Synthesis: We conducted visualization studies by applying LQR-based hand movement informa-
tion synthesis using the pbdlib library, developed by Pignat and Calinon in [87] in the context of
robotics.

5.3.2 Results and analysis

Table 5.1 presents the sign language RA depending on the SU-based system and sign level system
on the SMILE DSGS database along with the average number of subunits in each case. It can
be observed that the SU-based system with around 14% less HMM states performs comparable
to sign level system for all the systems: HMM/GMM, hybrid HMM/ANN and KL-HMM. This
indicates that the clustered subunits-based lexicon obtained in Step 3 maintains discrimination
across signs. Furthermore, HMM/GMM systems trained using subunits posterior probability as
feature observation further improves the recognition accuracy.

To get an insight into how consistent are the derived subunits, we synthesized the 3D hand
position movement of the unobserved test samples with a LQR using the sequence of Gaussian
distributions linked to the sequence of subunits of the sign (Step 4). The starting point for the hand
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Table 5.1 – Hand movement clustered subunits-based and sign level HMM/GMM, hybrid HM-
M/ANN and KL-HMM systems performance in terms of recognition accuracy on the SMILE
DSGS database

Clustered SU-based
system

Sign level
system

HMM/GMM 51.3 49.4
Hybrid HMM/ANN 51.6 53.0

KL-HMM 55.8 57.4
Average # subunits 1945 2256

movement synthesis is the starting point of a sign’s production coming from a training sample.
The duration for each state is the average number of time frames estimated by aligning the states
in the sign to the training samples. Two signs are presented: TAXI which is a well-recognized
sign (100% of recognition) and PAPIER which is a poorly recognized sign (0% of recognition).
To facilitate the visualization, we depict in Figure 5.3 the (x, y) position of the dominant hand as
well as for comparison three examples of the respective sign samples (soft lines); the z−axis, the
depth of the sign production, being not relevant for these two particular signs.

Figure 5.3 – Hand movement synthesis of the dominant hand for the well-recognized sign TAXI
(left) and the poorly-recognized sign PAPIER (right) using the Gaussian distribution sequence of
the SU-based HMM/GMM system. The red squares are the starting points.

As it can be seen, the hand movement of signers vary a lot.1 Nevertheless, in both cases, the
synthesized movements follow similar direction and range of movement as the hand movement

1For the sake of clarity, we did not show all the signers production.
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of the actual signers. This suggests that the subunits are modeling the relevant hand movement
information.

The sequence of the Gaussian distributions can be also obtained based on the parameters of
the KL-HMM system. More precisely, the categorical distributions at each state can be used to
compute a new Gaussian by using them as a weight on the subunit Gaussians. First, we selected
significant components, i.e. categorical distribution components that have a probability mass
greater than 0.005, and re-scaled them according to the total number of selected components, M .
Then the combined mean, µcomb , and diagonal covariance, σcomb , are computed as:

µcomb = 1

M

M∑
m=1

µm , σcomb =
M∑

m=1
wm ·σm ;

where wm are the re-scaled categorical distributions and µm , σm the mean and the diagonal
covariance of the corresponding Gaussian distribution. Figure 5.4 depicts the resulting movement
synthesis of the well-recognized sign, TAXI (100% of recognition) and WASCHEN a poorly-
recognized sign (0% of recognition). When comparing the synthesized movement for sign TAXI
across KL-HMM and HMM/GMM (Figure 5.3), the difference mainly appears at the end of the
sign.

Figure 5.4 – Hand movement synthesis of the dominant hand for the well-recognized sign TAXI
(left) and the poorly-recognized sign WASCHEN (right) using the Gaussian distribution sequence
computed from the SU-based KL-HMM system. The red squares are the starting points.

As the synthesized movement of the dominant right hand of the poorly-recognized sign, PAPIER,
is corresponding well to the movements produced by the signers, we looked at the confusion ma-
trix to understand the reason for the poor recognition accuracy and analyzed the hand movements.

45



Chapter 5. Hand Movement Subunits Derivation

It was found that the hand movements of some signs are similar, as it can be seen in Figure 5.5.

Figure 5.5 – (x, y) movement of the right and left (dashed line) hand of the signs PAPIER,
SCHON, VERGLEICHEN and THEMA, respectively.

Sign language convey information through multiple channels. A single channel (e.g., only hand
movement) may not be sufficient to discriminate all the signs. The confusion in terms of hand
movements can be handled by adding other channel such as handshape to the KL-HMM system.
This research is presented in Chapter 6.

5.4 Cross-lingual Study

Speech technologies such as, automatic speech recognition systems, benefit from the idea that
subword units such as phones can be shared across languages [93]. In the spoken language
part, presented in Appendix A, we have demonstrated that capability through a study using
auxiliary multilingual resources. A question that arises is: whether the derived hand movement
subunits exhibit similar desirable characteristics? For that we used the SMILE Swiss German
sign language database and the TSL HospiSign database (see Section 2.3 for detailed databases)
to perform cross-lingual sign language processing experiments.
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5.4.1 Experimental setup

We developed left-to-right KL-HMM systems to investigate the ability to share the derived
subunits across sign languages.

cross lingual KL-HMM Systems: The hand movement subunits are derived on TSL HospiSign
database (Step 2 and Step 3); an MLP is trained on the HospiSign data to estimate TSL subunits
posterior probabilities; and the states model DSGS subunits and the parameters are trained by
using the TSL subunits posterior probabilities estimated on the DSGS data as feature observations.
In doing so, the KL-HMM learns a probabilistic relationship between DSGS subunits and TSL
subunits, and lets us to examine language-independence of derived subunits. To compensate the
difference in the coordinate system recording in between both databases, a skeleton alignment
is applied before the feature extraction. To do so, all the signer skeletons of both databases are
aligned at the neck joint with respect to a reference Hospisign signer skeleton and then scaled
by the shoulder width. We used shoulder-normalization-based features of both hands as input
features. The resulting feature vector is of size 36, see Section 3.1.1 for details.

5.4.2 Results and analysis

Table 5.2 presents the results of the cross-lingual study, where the subunits are derived on the
TSL HospiSign and KL-HMM system is trained on DSGS database to recognize DSGS signs
with DSGS subunits lexicon. It can be observed that the performance drops considerably when
compared to the monolingual case. However, the performance obtained is beyond chance level.
This suggests that there exists some degree of systematic relationship between the DSGS subunits
and TSL subunits but it is not sufficient to recognize well the DSGS signs. The reason for that
could be: (a) differences in the coverage of hand movements across the two databases and (b)
differences in recording settings. In the case of HospiSign, the signs were performed in standing
position, while in the case of DSGS, the signs were performed in sitting position. Skeleton
alignment may not have fully compensated for these differences.

Table 5.2 – Sign language RA on the SMILE DSGS database of the KL-HMM system trained
with TSL HospiSign subunits posterior probabilities in the multilingual case and DSGS subunits
in the monolingual one

Cross-lingual
system

Monolingual
system

Sign RA 41.5 55.8

Figure 5.6 depicts the synthesis of the movement based on the TSL HospiSign subunits of a
well-recognized sign and poorly-recognized sign, THEMA and SPIELEN respectively. In the
case of sign THEMA, we can observe that the synthesized movement follow hand movement of
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the actual signers. Whilst, in the case of sign SPIELEN it is not the case. One of the reasons for
that could be that TSL subunits may not be covering well all the DSGS movements.

Figure 5.6 – Hand movement synthesis of the dominant hand for the well-recognized sign
THEMA (left) and the poorly-recognized sign SPIELEN (right) using the Gaussian distribution
sequence computed from the KL-HMM system using the TSL subunits. The red squares are the
starting points.

5.4.3 Impact of number of training samples

As discussed in Chapter 1, sign languages are inherently under-resourced. To handle that, the
cross-lingual approach is leading towards methods to share resources across sign languages. So,
we investigated the impact of number of training samples per sign from the target sign language
on the performance of cross-lingual sign language recognition system.

In the SMILE DSGS database, since we only used Category 1 an Category 2 data (see Section 2.3),
the number of training samples varies; Figure 5.7 depicts the histogram of the number of samples
per sign. To find the appropriate number of training samples per sign, we conducted a study using
three different setups where in the first setup ten samples per sign (referred as ten-sample-signs),
in the second setup eight samples per sign (eight-sample-signs) and in the third setup six samples
per sign (six-sample-signs) are used. To evaluate the three different setups, we derived hand
movement subunits for each setup and built KL-HMM based sign language recognition systems.

Table 5.3 presents the RA obtained on the three setups. It can be observed that the RA decreases
with decrease in number of samples per sign. As it can be observed in Figure 5.8, the minimum
number of samples seems to be around twelve samples but, the figure also shows that the number
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Figure 5.7 – Histogram of the number of training samples per sign of the SMILE DSGS database.

Table 5.3 – Cross-lingual KL-HMM based systems results on the SMILE DSGS database
depending on the three different setups used to infer the lexicon (ten-/eight-/six-sample-signs
lexicon)

Number of training samples Sign RA
ten-sample-signs 35.9

eight-sample-signs 33.7
six-sample-signs 33.8

of samples needed depends on the sign. The different movement complexity of the signs and
variations introduced by the signers can explain this difference. Furthermore, as we observed
earlier, the differences in the coverage of hand movements across the two databases can also
explain why a low number of samples is not sufficient.

5.5 Model Selection-based Sign-level HMM Inference for Subunits
Extraction

In Step 2 of the proposed approach (see Section 5.2) a sign level HMM is inferred for each sign.
The HMM structure is defined as left-to-right HMM with a fixed number of states for all the
signs based on the recognition accuracy obtained on the training and the development data. In
Chapter 4, we developed a model selection approach which can be applied to define the HMM
structure in a data driven manner. In this section, we apply that approach in the proposed subunit
extraction framework, by implementing it in Step 2.
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Figure 5.8 – Sign recognition accuracy density of the KL-HMM system per sign using the TSL
hand movement subunit according to the total number of training samples.

5.5.1 Proposed modification

In the proposed modification, in Step 2, a range of possible number of states: [Nmi n , Nmax ]

is first defined. Then, an HMM with n states is modeled for each sign Sm ∈ {S1 · · ·SM }, ∀n ∈
[Nmi n , Nmax ]. Finally, from the set of HMM for each sign, the HMM that yields the maximum
likelihood on the development data is chosen. Figure 5.9 illustrates this process. Given the
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Figure 5.9 – Illustration of the MS-based sign level HMM topology inference

inferred HMM with N Sm
states for each sign Sm , the resulting sign model is a sequence of

Gaussian distributions. Step 3 (see Section 5.2) remains the same, i.e., the HMM states are
clustered through the same measure of discrimination, i.e. Bhattacharya distance.

50



5.5. Model Selection-based Sign-level HMM Inference for Subunits Extraction

5.5.2 Experimental setup

We compared the proposed modification in Step 2 with the former method of inferring sign
level HMM based on the recognition accuracy on the training and development data on signer-
independent SLR and gesture recognition tasks. For the sake of clarity, we denote the former
method as std-based and the method with proposed modification as MS-based.

Databases

The HospiSign sign language database and the Chalearn14 gesture database were used in this
study; more details can be found in Section 2.3.

In the HospiSign database, in order to conduct a signer-independent experiment, we have used
a leave-one-signer out cross-validation study. Furthermore, as we need a development set for
tuning the hyper-parameters, we have left another signer out for this purpose. Therefore, as can
be seen from Table 5.4, we have conducted six experiments where in each experiment, one signer
is used for testing, one signer is used as the development set, and the rest of the signers are used
for training. For each experiment, we have presented the average performance over the signers as
the final result. Table 5.5 presents the average number of samples in the train, development and

Table 5.4 – The HospiSign database segmentation of training, development and testing data
according to signers. The numbers in the table refer to the signers’s number

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

Train
3,4,
5,6

2,4,
5,6

2,3,
5,6

2,3,
4,6

2,3,
4,5

3,4,
5,6

1,4,
5,6

1,3,
5,6

1,3,
4,6

1,3,
4,5

2,4,
5,6

1,4,
5,6

1,2,
5,6

1,2,
4,6

1,2,
4,5

2,3,
5,6

1,3,
5,6

1,2,
5,6

1,2
,3,6

1,2,
3,5

2,3,
4,6

1,3,
4,6

1,2,
4,6

1,2,
3,6

1,2,
3,4

2,3,
4,5

1,3,
4,5

1,2,
4,5

1,2,
3,5

1,2,
3,4

Dev 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
Test 2 3 4 5 6 1 3 4 5 6 1 2 4 5 6 1 2 3 5 6 1 2 3 4 6 1 2 3 4 5

test sets over the six experiments.

Table 5.5 – Description of the HospiSign database in terms of average number of samples

Train Dev Test
# of samples 874 210 210

For efficient comparison to the existing results, we used the train/development/test setup defined
by the Chalearn14 competition. Table 5.6 presents the number of samples in the train, development
and test sets. It is worth mentioning that in the Chalearn 2014 competition, the segmentation of

Table 5.6 – Description of the Chalearn14 database

Train Dev Test
# of samples 6800 2506 3579

51



Chapter 5. Hand Movement Subunits Derivation

videos in the test set was not provided. Therefore, the task contained two parts: (1) segmentation
of videos into gestures/non-gestures, and (2) classifying the gestures. As our focus in this section
is on classifying the gestures, we have used the ground truth segmentation on the test set.

We are aware that signs and gestures are different but, for sake of simplicity, we used the term
sign to refer to sign and gesture in the remainder of this section.

Systems

We built a HMM/GMM and a hybrid HMM/ANN systems using sign level sequence modeling
approach and the SU-based sequence modeling approach.

HMM/GMM Systems:
In the case of sign level sequence modeling, we modeled the signs with left-to-right HMM using
Gaussian state-output distributions. The number of Gaussian mixtures varies between 1 and 56
and was defined by the best recognition accuracy on the development data. We defined both
the std-based and the MS-based inferences to determine the number of HMM states per sign.
The range of HMM states was from Nmi n = 3 to Nmax = 9 states. In the MS-based framework,
the average number of HMM states per sign was 8 for the HospiSign database and 3 for the
Chalearn14 database. In the std-based framework, the derived number of HMM states per sign
was defined such that the recognition accuracy saturates on the training data; the resulting number
was 9 for both databases.

In the SU-based model, we trained HMM/GMM systems where each subunit was modeled with
a single HMM state. The number of Gaussian components per mixture also varied between 1 to
56, and was set based on the recognition accuracy on the development set.

Hybrid HMM/ANN Systems:
For building the hybrid HMM/ANN systems, we first obtained the alignments in terms of the
HMM states using the trained HMM/GMM systems. We then trained ANNs, more precisely
multilayer perceptrons (MLPs) classifying HMM states with output non-linearity of softmax and
minimum cross-entropy error criterion. We used 36-dimensional position and velocity features
with four frames preceding context and four frames following context as the MLP input. In our
experiments we trained MLPs with different number of hidden units (600, 800, 1000) and hidden
layers (0, 1, 2, 3). The number of hidden units and hidden layers as well as other hyper-parameters
such as learning rate and the batch size were chosen according to the frame-level accuracy on the
development set.

We estimated the scaled likelihoods in the hybrid HMM/ANN systems by dividing the posterior
probabilities derived from MLPs with the prior probabilities of the classes estimated from relative
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frequencies in the training data. These scaled likelihoods were then used as emission probabilities
for HMM states.

The performance of the developed systems are evaluated in terms of recognition accuracy (RA)
described in Section 2.4.

5.5.3 Results and analysis

In this section, we first present the recognition accuracies on the HospiSign and Chalearn14
databases. We then contrast the performance of the proposed approach with the existing ap-
proaches in the literature

Sign language recognition on HospiSign database

Table 5.7 presents the HMM/GMM SLR system results (± standard deviation) in terms of RA on
the HospiSign database; the detailed signer split for the presented experiment setup can be found
in Table 5.4.

Table 5.7 – HMM/GMM results on the HospiSign database depending on the std-based and the
MS-based segmentation approach explained in Section 5.5.1

Experiment
sign level seq. modeling SU-based seq. modeling
std-based MS-based std-based MS-based

Exp 1 92.6 92.0 92.0 90.8
Exp 2 89.5 89.7 87.9 88.0
Exp 3 91.7 92.9 92.1 90.9
Exp 4 88.1 89.5 89.5 89.7
Exp 5 91.6 90.0 91.6 91.2
Exp 6 93.0 92.0 90.6 88.3

Average RA ± std 91.1 ± 1.9 91.0 ± 1.4 90.6 ± 1.7 89.8 ± 1.4
Average # of states 300 278 218 190

Firstly, it can be observed that the SU-based modeling approach leads to development of a
comparable SLR system to the sign level sequence modeling approach; thus we confirm what was
observed with SMILE DSGS database in Section 5.3. This observation also holds for MS-based
systems. This is interesting as the MS-based SU-based system is able to perform comparable to
the MS-based sign level system despite considerably reducing the total number of states by in
average 32%. Secondly, the MS-based system yields comparable recognition accuracy in the sign
level setup while in the SU-based setup there is slight decrease in performance. Altogether, it can
be observed that if both model selection approach and subunit clustering is applied we can reduce
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the number of states from 300 to 190, i.e. around 37%, while keeping comparatively similar good
recognition accuracy.

Table 5.8 presents the hybrid HMM/ANN results on the HospiSign database. It can be observed
that the use of neural networks instead of GMMs for estimating the local emission scores leads to
significant improvements in the performance of all the systems.

Table 5.8 – Hybrid HMM/ANN results on HospiSign database depending on the std-based and
the MS-based segmentation approach explained in Section 5.5.1

Experiment
sign level seq. modeling SU-based seq. modeling
std-based MS-based std-based MS-based

Exp 1 96.6 94.8 96.9 94.5
Exp 2 96.0 95.1 95.1 94.1
Exp 3 96.5 97.0 95.9 96.2
Exp 4 95.5 95.8 95.1 94.5
Exp 5 94.3 94.0 95.0 96.5
Exp 6 95.1 94.8 95.4 94.5

Average RA ± std 95.7 ± 0.9 95.2 ± 1.0 95.6 ± 0.7 95.0 ± 1.0

Comparison of the results on the six experimental setups depicted in Table 5.4 shows that,
irrespective of the development set chosen, the systems perform mostly similar to one another.
This indicates that the proposed subunit extraction approach is less sensitive to these aspects.

Gesture recognition on Chalearn14 database

Table 5.9 presents the HMM/GMM and hybrid HMM/ANN results on Chalearn14 database. In
the HMM/GMM systems based on the gesture level sequence modeling, the average number
of Gaussian mixtures used is 40. Indeed, the number of Gaussian mixtures plays an important
role in the performance of the systems as increasing the number of mixtures from 1 to 40 leads
to around 25% absolute improvement in the gestures recognition accuracy. This improvement
can be explained by the wild setup and the gesture framework which imply a significant signer
variation. So, the balance between the number of states and the number of mixtures is more
difficult to set compared to HospiSign study where increasing the number of mixtures does not
change the recognition accuracy. In the Chalearn14 case, the SU-based HMM/GMM model
seems to better handle this balance since we can notice a significant improvement compared to
the gesture level model. Furthermore, in the std-based setup, the SU-based system improves over
the gesture level sequence modeling with a decrease of around 14% of number of states, while
in the MS-based setup it is not the case. This can be explained by the fact that the MS-based
setup needs a splitting criteria since the segments are not minimal, whereas, such a criteria is not
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needed for the std-based setup.

Table 5.9 – HMM/GMM and hybrid HMM/ANN results on Chalearn14 database depending on
the std-based and the MS-based segmentation approach explained in Section 5.5.1

System
gesture level seq. modeling SU-based seq. modeling
std-based MS-based std-based MS-based

HMM/GMM 80.8 83.5 86.1 78.6
Hybrid HMM/ANN 81.3 83.0 83.8 78.5
Average # of states 183 70 157 55

In conclusion, the results suggest that it is somewhat better to infer the subunit-based on the
std-based segmentation rather than the MS-based segmentation. Furthermore, std-based SU
extraction tends to yield recognition systems comparable to sign- or gesture-level sequence
modeling-based systems.

Comparison to existing studies

In this section, in order to ascertain that our approach is leading to meaningful systems, we
contrast our results with the performance of systems reported on HospiSign and Chalearn14
databases which use the skeleton information.

Comparison on HospiSign database

In [18], various manual features such as handshape, hand position and hand movement were
extracted and temporal modeling using either DTW or temporal templates was performed. In the
case of using DTW, the signs were classified using k-Nearest Neighbors. In the case of using
temporal templates, Random Decision Forest was used for classifying the signs.

For a fair comparison, as done in [18], we first computed the average performance for each signer
over the six experiments, and then computed the average performance over the signers as the
final accuracy. Table 5.10 provides the comparison of our approach using the hybrid HMM/ANN
framework with the proposed approach in [18] when using DTW along with k-Nearest Neighbors
using hand joint distances and hand movement distances as features. Furthermore, we have
presented the results in the case of using temporal templates with the random decision forests as
it yielded one of the best results in [18]. It can be observed from Table 5.10 that both sign-level
and SU-based sequence modeling approaches yield comparable systems to the systems developed
in [18]. Furthermore, the lower standard deviation w.r.t DTW & k-Nearest Neighbors based
systems indicates that the proposed approach is yielding a more consistent system across different
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signers.

Table 5.10 – Comparison of our proposed approach to the proposed approach in [18] for the
HospiSign database

Approach Features Accuracy

Our approach
HMM/ANN with std-based

sign level seq. modeling
position

and motion
95.7 ± 2.5

Our approach
HMM/ANN with std-based

SU-based seq. modeling
position

and motion
95.6 ± 2.8

Approach in [18]
DTW & k-Nearest Neighbors
using hand movement distance

position
and motion

93.8 ± 6.4

Approach in [18]
Temporal templates &

Random Decision Forest
position, motion
and handshape

96.7 ± 1.8

Comparison on Chalearn14 Database

In the Chalearn 2014 competition, various approaches for feature extraction, temporal segmenta-
tion and classification of gestures were investigated. In order to evaluate the proposed approaches,
Jaccard index was used as the evaluation metric. Jaccard index is a commonly used metric for
evaluating the gesture spotting. The Jaccard index is defined as:

Js,g = As,g ∩Bs,g

As,g ∪Bs,g
, (5.2)

where As,g is the ground truth for gesture g at sequence s, and Bs,g is the prediction for this
gesture at sequence s [38].

Table 5.11 contrasts the performance of the systems based on the proposed subunit extraction
approach with the performance of the systems in the competition that used only the skeleton
information, like the proposed approach. It is worth mentioning that in the Chalearn 2014
competition, the segmentation of videos in the test set was not provided. Therefore, the task
contained two parts: (1) segmentation of videos into gestures/non-gestures, and (2) classifying the
gestures. As our focus is on classifying the gestures, we have used the ground truth segmentation
on the test set. In order to get an idea on how the systems resulting from the proposed approach
perform when the ground truth information is not available, we evaluated our systems based
on the segmentation used in the system reported in [17].2 When considering segmentation and
classification, we can observe that the systems based on the proposed approach are neither the

2In [17] a random forest was used to recognize the gestures and non-gestures. We would like to thank Necati Cihan
Camgöz for sharing the test set segmentation with us.
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best nor the worst. Thus, indicating that the proposed approach is worth pursuing for gesture
recognition as well.

Table 5.11 – Comparison between the performance of the proposed approach with the performance
of related approaches from the Chalearn 2014 competition in terms of Jaccard index

Team/Approach Accuracy Features Classifier

std-based SU-based seq.
modeling (ground truth seg.)

0.8655 Skeleton HMM/GMM

MS-based gesture level seq.
modeling (ground truth seg.)

0.8422 Skeleton HMM/GMM

Ismar [17] 0.7466 Skeleton Random forest
std-based SU-based seq.
modeling (seg. from [17])

0.6868 Skeleton HMM/GMM

MS-based gesture level seq.
modeling (seg. from [17])

0.6825 Skeleton HMM/ANN

Terrier 0.5390 Skeleton Random forest
YNL 0.2706 Skeleton HMM, SVM

5.6 Discussion and Summary

The present chapter proposed a data-driven approach for hand movement subunit extraction for
modeling signs and gestures without using any linguistic annotation information. Specifically,
the subunits are extracted given only pairwise comparison between each pair of sign productions
or gesture productions. As it can be seen in Table 5.12, the previous approaches have focused on
processing images or motion information captured via gloves, while our approach focuses on
modeling skeleton information, which can be easily and reliably obtained nowadays. Also, most
of these works have not investigated signer-independence. Furthermore, we also demonstrated
that the extracted subunits could be transferred across different sign languages. An aspect that
has not been studied by the existing approaches in the literature.

Besides that, the recognition studies consistently showed that, with the 36 dimensional hand
movement features extracted from the skeleton information, the subunits can be obtained at the
sign-level itself. Clustering of the sign-level HMM states through pairwise discrimination leads
to state space reduction. In both scenarios, discrimination between the signs gets modeled and
leads to systems that yield similar performance. The investigations also showed that the proposed
approach is not so sensitive to the method used to infer sign-level HMM in Step 2, i.e. std-based
or MS-based. Both methods lead to extraction of subunits that yield comparable recognition
performance. Finally, through development of a visualization method inspired from robotics, we
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Table 5.12 – Comparison of our sign language hand movement subunit studies with existing
studies

Ref. Features
based Segment. Clustering

algorithm
Recognition

study
Signer indep.

study
Monolingual/
Cross-lingual

Sako and Kitamura [98]
images

processing
multi-stream

HMM
tree based
algorithm

3 3 Monolingual

Bauer and Kraiss [8] gloves HMM k-means 3 7 Monolingual

Han et al. [53]
images

processing
discontinuity

detector
DTW 3 7 Monolingual

Fang et al. [42] gloves HMM modified k-means 7 7 Monolingual

Theodorakis et al. [111]
images

processing
HMM

HMM
hierarchical
clustering

7 7 Monolingual

Our approach skeleton HMM
pair-wise

clustering with
Bhatt. dist.

3 3 Mono- and cross-lingual

demonstrated that the extracted subunits could be further analyzed through synthesis of the hand
movements of signs in the input 3D coordinate space.

In the following chapters, we build upon the proposed subunit extraction approach to develop
methods to model hand movement information with handshape information for sign language
recognition and sign language assessment.
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6 Phonology-based Sign Language
Recognition Framework

RQ: How to model the multichannel information inherent to sign lan-
guages?

A significant progress was achieved for sign languages in the 60s with the linguistic analysis of
American Sign Language (ASL) by William Stokoe [105]: sign language has his own phonology,
morphology and syntax. The phonology describes the organisation of non-meaningful distinctive
units of language (phonemes) which combine themselves to form meaningful units (morphemes).
In spoken languages, the phonemes are acoustic and articulatory-based units. In sign languages,
the phonology is visual-based: the phonemes are manual and non-manual components, such
as handshapes, hand trajectories, hand localisation and mouthing, which combines themselves
to produce new vocabulary signs. A phoneme substitution to another allows to distinguish two
signs, as for example in Swiss French Sign Language (Langue des Signes Française) (LSF) the
signs MARS (march) and DIRE (to say) differ only by the hand movement (see Figure 6.1). One
main difference with spoken languages is that the unit combination is simultaneous while in
spoken language it is sequential. Thereby modeling the multichannel information of a sign is a
highly challenging problem. In this chapter, we propose a phonology-based framework to model
sign languages by elucidating the link between spoken language and sign language in terms
of production phenomenon and perception phenomenon. Specifically, we elucidate that when
modeling linguistically motivated speech production knowledge, i.e. “articulatory” features (AFs),
it is a multichannel information modeling problem akin to sign language processing. Through
that understanding, we show that the methods developed to model “Articulatory” Features (AF)s
can be scaled to model the multichannel information for sign language processing.

Moreover, modeling of multichannel information requires also sufficient sign language specific
data. This is a challenge as sign languages are inherently under-resourced, as discussed in
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Figure 6.1 – Illustration of the sign production of the Swiss LSF signs DIRE (left) and MARS
(right) (“to say” and “March”, respectively).

Chapter 1. One way to address the resource scarcity challenge is to develop methods that can
exploit multiple sign language resources by overcoming the limitations imposed by the differences
between the sign languages. In the literature, there is limited work in that direction, more precisely
with handshape modeling only. It has been found that, given the HamNoSys annotation [45]
of produced signs, a global handshape classifier can be trained by pooling resources from
multiple sign languages and handshape information based sign language recognition systems
can be developed [60]. However, handshape is only one channel of information. There is need
to model other channels such as, hand movement, which unlike handshape is a continuous
aspect or in other words is not inherently a discrete unit. In Chapter 5, we demonstrated that
the hand movement information can be discretized into subunits and these subunits exhibit
language-independent characteristics. We build upon that to demonstrate that, in the proposed
phonology-based frameworks to model multichannel information, sign language recognition
systems can be effectively developed by using multilingual sign language resources.

The remainder of the chapter is organized as follows: in Section 6.1, we present the related work.
Section 6.2 presents the proposed phonology-based approaches to jointly the model multichannel
information inherent in sign languages. Section 6.3 and Section 6.4 validate the proposed
phonology-based approaches through monolingual and multilingual studies, respectively. Finally,
Section 6.5 concludes the chapter with a summary of key findings. The material presented in this
chapter is largely based on the following publications:

HMM-based approaches to model multichannel information in sign language inspired from
articulatory features-based speech processing, Sandrine Tornay, Marzieh Razavi, Necati
Cihan Camgoz, Richard Bowden and Mathew Magimai.-Doss, in: Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019
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Towards multilingual sign language recognition, Sandrine Tornay, Marzieh Razavi and
Mathew Magimai.-Doss, in: Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2020

6.1 Related Work

Sign language processing presents two main challenges: (1) robust extraction of the multichannel
information and (2) modeling of the multichannel information. In this chapter, we are addressing
the second challenge, i.e. modeling of the multichannel information. The first one was addressed
in Chapter 3 and Chapter 5 where initially the handshape estimators and the hand movement
extraction were presented (Chapter 3) and then the method to extract the hand movement subunits
(Chapter 5).

As presented in Section 2.2, different machine learning techniques have been investigated for mod-
eling signs for SLR such as, HMM [104], parallel HMM [117], relevance vector machines [122]
and deep learning methods [62, 20]. The early work of Vogler and Metaxas [115] borrowed
heavily from the studies of sign language by Liddell and Johnson [71], splitting signs into motion
and pause sections. While their later work [117], used parallel HMM on both handshape and
hand motion subunits, as proposed by the linguist Stokoe [105].

Sign language processing faces data scarcity issues. Thus, the studies have also concentrated on
learning sign models in an effective manner from low number of examples. Lichtenauer et al. [69]
presented a method to automatically construct a sign language classifier for a previously unseen
sign. Their method works by collating features for signs from many people then by comparing
the features of the new sign to that set. They then construct a new classification model for the
target sign. This relies on a large training set for the base features (120 signs by 75 people) yet
subsequently allows a new sign classifier to be trained using one shot learning. Bowden et al. [15]
also presented a SLR system capable of correctly classifying new signs given a single training
example. Their approach used a two-stage classifier bank, the first of which used hard coded
classifiers to detect handshape, hand arrangement, motion and position “subunits”. The second
stage removed noise from the 34 bit feature vector (from stage 1) using independent component
analysis, before applying temporal dynamics to classify the sign. Kadir et al. [54] extended this
work with head and hand detection based on boosting (cascaded weak classifiers), a body-centered
description (normalized movements into a 2D space) and then a two-stage classifier where stage 1
classifier generates linguistic feature vector and stage 2 classifier uses Viterbi on a Markov chain
for highest recognition probability. Cooper and Bowden [27] continued this work still further
with an approach to SLR that does not require tracking. Instead, a bank of classifiers is used to
detect “phonemic” parts of sign activity by training and classifying (AdaBoost cascade) on certain
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sign subunits. These were then combined into a second stage word-level classifier by applying a
first order Markov assumption. The results showed that the detection rates achieved with a large
lexicon and few training examples were almost equivalent to a tracking-based approach. With
the advances in deep learning methods, there has been effort in modeling signs in the framework
of hybrid HMM/ANN [62] and in the framework of connectionist temporal classification [20].
However, these efforts have mainly focused on modeling handshape information.

6.2 Proposed Phonology-based Framework for Sign Language Recog-
nition

Conceptually, communication is about transmission of a signal between a source and a receiver,
see Figure 6.2. The source produces a signal and the receiver perceives it. For example, in
speech communication a human source produces speech signal by moving the articulators in
the speech production system and a human receiver perceives the signal as sequence of phones,
words and sentences/phrases. In sign language communication, a human produces visual signal
through manuals and non-manuals and a human receiver perceives them as words and phrases. In
other words, communication involves a synergy between production phenomenon and perception
phenomenon.

Source

Production
Phenomenon

Receiver

Perception
Phenomenon

Signal

Figure 6.2 – Illustration of communication scheme.

More precisely in both sign language and spoken language:

(a) there is a production phenomenon that generates a signal. In the case of spoken language,
it is movement of articulators like vibration of vocal folds, movement of tongue, lips
and jaw that produce time varying 1D acoustic signal. In the case of sign language, it is
hand articulators (such as handshape), mouthing, body postures and facial expressions that
produce time varying 2D visual signal; and

(b) there is a perception phenomenon, which interprets that generated signals in terms of
elements of “language”, e.g. words, phrases.
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Linguistically, the perception phenomenon is better understood in spoken language than sign
language. More precisely, in spoken language, it is well understood that the time structure of
word units can be defined as a sequence of subword units, e.g. phonemes, syllables, which are
“perceptual” in nature (i.e. can be heard and distinguished); can be related to the movement of
articulators; and can be modelled by parameterizing the spectral characteristics of the speech
signal. Such an understanding, however, does not exist yet in the case of sign language. More
precisely, how hand gestures, facial expressions, body postures, mouthing together create a
subword unit like a time structure is not clear yet. It is still an open research problem in sign
linguistics.

In spoken language processing, despite the success of spectral feature-based approach, there is
interest in modeling the production phenomenon related information through AFs [58, 73, 94].
More precisely, defining each phoneme in terms of AFs like manner of articulation or degree
of constriction, place of articulation, voicing, nasality, rounding, height of tongue, frontness
of tongue; estimating these AFs from the speech signal; and then modeling the multichannel
AFs through sequential models such as HMM. The AFs in speech processing are synonymous
to the “subunits” in sign language. This close similarity can be exploited to scale the methods
developed for AF based processing to sign language processing. In this chapter, we develop two
such methods, namely, an HMM/GMM-based approach which models tandem features and a
KL-HMM-based approach that models posterior probabilities of visual subunits.

6.2.1 HMM/GMM-based approach

One of the common approach to model AFs is to estimate these features using ANN; transform
them using tandem feature extraction technique; concatenate them with the acoustic feature;
and model them with HMM [73, 40, 22, 94]. As illustrated in Figure 6.3, we can adopt a
similar approach for sign language processing where the features representing different channels

of information are extracted, concatenated xt :=
[

xhshp
t xhmvt

t · · · xfacial
t

]T
and then modeled

by an HMM/GMM. xhshp
t , xhmvt

t , xfacial
t denote the features corresponding to handshape, hand

movement and facial expression, respectively. The features can be extracted in the measurement
space as for example the hand movement features xhmvt

t by using the 3D skeleton features or from
the probabilistic representation of the subunits using tandem technique [47], as for example the
handshape features. The tandem feature extraction technique is described in Section 3.3.1.

6.2.2 Kullback-Leibler divergence HMM-based approach

Another approach is to model AFs as probabilistic features using KL-HMM (see Section 3.3.2).
As illustrated in Figure 6.4, we can adopt the KL-HMM based AF modeling framework that was
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s1 s2 s3

⊕
KLT(log(zhshp

t ))

VShshp posterior esti-
mation, e.g. handshape

VShmvt skeleton
information

· · ·
zhshp

t

xt

Visual feature sequence:
(x1, . . . ,xt , . . . ,xT )

· · ·

xhshp
t

xhmvt
t

xhshp
1 xhshp

t xhshp
T· · · · · ·

xhmvt
1 xhmvt

t xhmvt
T

Local score: log likelihood function

Perception
Space

Production
Space

Visual
Space

Figure 6.3 – Illustration of the tandem feature-based HMM/GMM approach to model multichannel
information for sign language processing; VS stands for Visual Subunits.

originally proposed in [94] for sign language processing, where for each channel we extract proba-

bilistic features and stack them to get the feature observation zt :=
[

zhshp
t zhmvt

t · · · zfacial
t

]T
. zhshp

t ,

zhmvt
t and zfacial

t denote the probabilistic features corresponding to handshape, hand movement
and facial expression, respectively. The HMM state si is parameterized by a stack of categorical

distribution ysi :=
[

yhshp
si yhmvt

si · · · yfacial
si

]T
of the same dimension as the feature observations.

The local score S(ysi ,zt ) is based on KL-divergence [65].

6.3 Monolingual Sign Language Recognition

We validated both the proposed approaches on a monolingual isolated sign language recognition
(SLR) task using the SMILE DSGS database.
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Figure 6.4 – Illustration of the KL-HMM approach to model multichannel information for sign
language processing; VS stands for Visual Subunits.

6.3.1 Database

As mentioned, the large-scale SMILE Swiss German sign language database presented in Sec-
tion 2.3 was used. We only used, in our experimental setup, the second pass annotated as
Category 1 or 2, as there are acceptable signs with the same or slightly the same form. The data
was partitioned in a signer-independent manner into 1263 training set samples from 17 signers,
249 development set samples from 3 signers and 704 test set samples from 10 signers.

6.3.2 Feature estimation

Handshape features

In the KL-HMM approach, as presented in Section 3.1.2, the off-the-shelf DeepHand neural
network was used to estimate the handshape class-conditional posterior probabilities, zhshp

t .
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In the HMM/GMM approach, the zhshp
t was transformed into tandem feature xhshp

t by applying
the logarithm and Kahunen Loeve Transform (KLT) operations. In the KLT step, we reduced the
feature dimension to cover up to 99% variance of the data.

Hand movement features

The hand movement feature observations xhmvt
t , used in the HMM/GMM approach, are 36

dimensional the position and velocity skeleton-based features presented in Section 3.1.1.

In the KL-HMM approach, we used the hand movement subunit extraction approach presented in
Chapter 5, where the sign level HMM was used to model xhmvt

t into GMMs. We then estimated
the posterior probability-based features zhmvt

t := [z1
t , . . . , z I

t ]T with the following two methods:

(1) by applying the Bayes’ rule on the GMMs;

(2) with MLPs, by aligning xhmvt
t in terms of the HMM states and then trained MLPs clas-

sifying HMM states with output non-linearity of softmax and minimum cross-entropy
error criterion. We used the feature observation with four frames preceding context and
four frames following context as the MLP input. In our experiments, we trained MLPs
with different number of hidden units (600, 800, 1000) and hidden layers (0, 1, 2, 3).
The number of hidden units and hidden layers as well as other hyper-parameters such as
learning rate and the batch size were chosen according to the frame-level accuracy on the
development set. The MLPs were trained using the Quicknet software [52].

The total number of HMM states is I = 849.

6.3.3 Recognition models

We built three systems for each of the two proposed approaches: the hand movement-based
system (M), the handshape-based system (rlS) and the handshape-plus-hand movement-based
system (M+rlS).

Following Chapter 4, in both approaches, the number of states in the left-to-right HMM where
varied from 3 (Nmi n) to 9 (Nmax) during training. So each sign had 7 different HMM. During
recognition phase, the decoder selected from 94×7 sign models the sign model that yielded
the maximum likelihood in the case of HMM/GMM approach and the sign model that yielded
the minimum KL-divergence score in the case of KL-HMM approach. For the HMM/GMM
approach, each state was modeled by 4 Gaussian mixtures for the M system and by a single
Gaussian for systems S and M+S. We found that increasing the number of mixture of Gaussians
for S and M+S did not help in improving performance.
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6.3.4 Results

Table 6.1 shows the performance obtained in terms of recognition accuracy for both proposed
approaches: the HMM/GMM approach and the KL-HMM approach. We report the performance
according to the number of states, i.e. developing the system by presetting the number of HMM
states. ms 3 to 9 denotes the model selection approach based system, where the HMM topology
is inferred during decoding (as presented in Chapter 4).

Table 6.1 – Recognition accuracy of the HMM/GMM and the KL-HMM approaches applied on
the hand movement (hmvt) features (M), the handshape features (S) and combined ones (M+S).

HMM/GMM KL-HMM
hmvt estimation
based on GMM

hmvt estimation
based on MLP

#state S M M+S S M M+S M M+S
3 47.7 44.4 63.8 25.9 41.5 59.5 43.8 68.3
4 47.6 47.2 63.4 28.8 39.9 60.5 46.7 70.5
5 49.3 48.5 64.8 28.0 41.8 60.1 45.6 69.7
6 45.3 49.8 65.5 28.0 43.0 62.4 46.3 71.0
7 46.6 48.1 66.1 30.7 41.2 60.5 49.6 69.9
8 44.6 50.2 63.7 32.5 43.3 62.1 47.0 70.0
9 43.5 50.4 65.9 30.7 41 9 61.7 48.0 71.7

ms 3 to 9 50.3 51.6 66.8 32.8 44.3 63.1 47.3 71.9

It can be observed that, in both the approaches, M+S systems outperform handshape alone and
hand movement alone systems. The model selection method ms 3 to 9 yields the best system for
both the approaches. When comparing across the approaches, the HMM/GMM approach yields
better system than KL-HMM. Low performance for system S in KL-HMM approach can be
explained from the fact that the DeepHand handshape posterior feature estimator has not observed
any SMILE DSGS dataset. However, the HMM/GMM approach uses SMILE training data to get
the KLT matrix. For system M in KL-HMM approach the MLP based posterior estimation gives
better performance compare to the GMM based posterior estimation. Since the HMM/GMM M
system yields the best performance, we suppose that standard HMM/GMM is sufficient to model
the hand movement information alone while in the combined handshape and hand movement
features (system M+S), KL-HMM approach with MLP based posterior estimation outperforms
the HMM/GMM approach.

6.3.5 Analysis

This section presents the advantage of the interpretability of the KL-HMM approach through two
analyses: one on the hand movement channel and one on the handshape channel.
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Hand position and velocity decomposition analysis

The proposed approaches, in particular KL-HMM approach, allows further simplifications. For
instance, the hand movement can be decomposed into position and velocity and can be modeled
independently with handshape. We demonstrate that through an experiment with KL-HMM
approach. We used the GMM-based posterior estimation method used to derive the hand move-
ment posterior feature estimator (see section 6.3.2) to obtain the hand position zhpos

t and the
hand velocity zhvel

t posterior feature estimators based on the hand position and velocity features
separately. Table 6.2 presents the results. System P denotes modeling of zhpos

t alone. System V
denotes modeling of zhvel

t alone. P+S and V+S denotes modeling of handshape posterior feature
zhshp

t along with zhpos
t and zhvel

t , respectively. We can observe the same trends as before that
jointly modeling handshape and hand position or hand velocity information helps. It can be
observed that separating the hand movement features into position and velocity (the P+V system)
does not affect the performance in comparison to the M system. Furthermore, we see that there is
a slight increase in the performance of system V+S when compared to system M+S.

Table 6.2 – Recognition accuracy of the KL-HMM approach applied on the hand position features
(P), the hand velocity features (V), both features (P+V), and each combined with the handshape
features (·+S)

KL-HMM
#state P V P+V P+S V+S P+V+S

3 30.7 36.4 40.0 50.7 59.4 58.8
4 30.5 38.5 42.2 53.0 61.2 59.9
5 30.8 40.1 44.9 53.3 62.1 60.4
6 31.3 40.1 46.0 53.0 61.8 60.8
7 31.0 37.2 44.7 53.3 62.4 62.2
8 33.4 40.3 45.3 53.1 63.9 60.2
9 32.5 39.6 44.7 54.7 64.1 61.1

ms 3 to 9 32.5 40.5 43.5 54.4 64.5 61.4

Handshape analysis

One of the advantages of KL-HMM approach is that the parameters i.e. the categorical distribution
of HMM states can be interpreted. Figure 6.5 shows the handshape categorical distributions of
the 9 states V+S system of two signs: AUCH and KRANK. In the AUCH case, the V system
recognized 0 samples out of 9, the S system 3 samples and the V+S one 6 samples; thus, we
can hypothesize that the handshape information is the major source of information in that case.
Indeed, the density plot of the handshape categorical distributions shows that the model contains
relevant information since the sequence of maximum distribution by state (1, 1, 1, 37, 37, 1, 37,
1, 1) corresponds to the true label (1, 37, 1). In the KRANK case, the reverse can be observed;
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Figure 6.5 – Density plots of the right handshape categorical distribution linked to each KL-HMM
states for AUCH and KRANK sign’s model. Tr is used for the Transition shape.

adding the handshape features adds confusion in the recognition task. The V system recognized 5
samples out of the 7, the S system 1 sample and V+S 3 samples. The density plot confirms the
fact that there is a confusion in the model itself since the resulting handshapes are the transition
shape for all the states. This can be partly attributed to high signer variations in the handshapes
used in the training data.

6.4 Multilingual Sign Language Recognition

In Chapter 5, we observed that the inferred hand movement subunits exhibit language indepen-
dence characteristics. Building upon that, in this section, we extend the proposed phonology-based
framework to multilingual SLR, where the hand movement information is modeled using multiple
sign language resources, similar to handshape information.

6.4.1 Proposed multilingual framework

The KL-HMM framework can be visualized as matching of a sequence of multichannel informa-
tion obtained through bottom-up modeling (visual signal-to-hand gestures) with a sequence of
multichannel information obtained through top-down modeling (lexeme-to-hand gestures). In
KL-HMM based speech recognition, it has been found that resource constraints can be effectively
addressed by using auxiliary or non-target language resources for bottom-up modeling and using
the target language resources only for top-down modeling [93]. Given that understanding, a

69



Chapter 6. Phonology-based Sign Language Recognition Framework

question that arises is: can we achieve the same for sign language recognition? In other words,
zt estimators are trained with target language independent data and ysi is estimated on target
language data. The monolingual study presented earlier demonstrates that capability for modeling
handshape.

The subunits approach developed in Chapter 5 paves the path for such a multilingual approach for
modeling hand movement. More precisely, as depicted in Figure 6.6, one hand movement subunit
estimator is trained for each auxiliary sign language separately to estimate hand movement
subunits probabilities. These estimates are then stacked, and KL-HMM parameters are trained on
the target language data.

s1 s2 s3

yhmvt-SL1

s1 yhmvt-SL1

s2 yhmvt-SL1

s3

...
...

...
yhmvt-SLM
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· · ·
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Visual feature sequence:
(x1, . . . ,xt , . . . ,xT )

xt

Local score: Kullback Leibler divergence SK L(ysi ,zt )

language independent

Figure 6.6 – Illustration of the adapted KL-HMM-based phonology-based framework to multilin-
gual scenario, where the hand movement visual subunits (VShmvt) are extracted from different
sign languages (SL1 to SLM ).
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6.4.2 Experimental setup

To validate the proposed multilingual framework, we derived the language independent hand
movement subunits from three different languages and tested them through development of cross-
and multi-lingual systems.

Databases

In this experiment, we used databases from three sign languages, namely the Swiss German
Sign Language SMILE DSGS database, the Turkish Sign Language HospiSign database and the
German Sign Language DGS database. These databases are described in Section 2.3.

For the SMILE DSGS database, we used the same setup as in the monolingual study (see
Section 6.3.1). In order to conduct a signer-independent experiment with the HospiSign and DGS
databases, we followed leave-one-signer out protocol. In the case of HospiSign database, in each
fold on average there were 1074 training samples and 210 test samples. In the DGS database, in
each fold on average there were 2586 training samples and 227 test samples.

Handshape subunit estimator

We use the same off-the-shelf DeepHand handshape subunits posterior probability estimator that
was used in the monolingual study (see Section 6.3.2).

Hand movement subunit estimator

The hand movement subunit posterior probability estimators were based on the developments
made in Chapter 5. Briefly, as illustrated in Figure 6.7, the shoulder normalization-based features
described in Section 3.1.1 were used as feature observation, where the skeletons of signers in the
SMILE DSGS, HospiSign and DGS corpus were aligned w.r.t a signer from HospiSign database.
Then a sign level HMM with one mixture Gaussian and diagonal covariance was trained for each
sign using 3 to 30 states. The development data was decoded using all the 28 whole sign-based
HMM/GMM for all the signs, and the most frequently recognized model in terms of number of
states was chosen. These states served as the hand movement subunits. Then the HMM states was
clustered by pairwise comparison of respective Gaussian distributions using the Bhattacharyya
distance leading to a clustered subunits states. For building the sign-based and SU-based MLPs,
we first obtained the alignments in terms of the HMM states using either the subunits infer by
the sign level HMM/GMM (sign-based) or the clustered subunits (SU-based). We then trained
MLPs classifying HMM states with output non-linearity of softmax and minimum cross-entropy
error criterion. We used the feature observation with four frames preceding context and four
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SU-based

MLP

sign-based

MLP

observation

features

sign level

HMM/GMM

alignment

on sign level

subunits

clustering

step

alignment

on clustered

subunits

Figure 6.7 – Illustration of the derivation of the SU-based and the sign-based MLP based on the
hand movement subunit extraction methods developed in Chapter 5

frames following context as the MLP input. In our experiments, we trained MLPs with different
number of hidden units (600, 800, 1000) and hidden layers (0, 1, 2, 3). The number of hidden
units and hidden layers as well as other hyper-parameters such as learning rate and the batch
size were chosen according to the frame-level accuracy on the development set. For HospiSign
and German Sign Language (Deutsch Gebärdensprache) (DGS) databases, the data of one of
the signers in the training set was used as development set. The MLPs were trained using the
Quicknet software [52].

As depicted in Figure 6.6, the hand movement subunits extraction step was done accord-
ing to each sign language separately leading to a stack of posterior probabilities zhmvt

t :=[
zhmvt-SL1

t zhmvt-SL2
t · · · zhmvt-SLN

t

]T
. The reason for that is that when we tried to extract a

common set of subunits from different corpora, we noticed that during the clustering step the sub-
units remained separate by languages. This can be explained by the differences in the recording
conditions in the different data sets.

Recognition studies

Two studies were conducted: one based on the hand movement subunits solely and a second based
on both the hand movement and the handshape subunits. In all cases, we extracted hand movement
subunits from either one language (cross-lingual setup) or two languages (multilingual setup).
We also developed a corresponding KL-HMM-based monolingual reference as baseline. All the
models was trained with 3 to 30 states. For a better visualization, we report the performance of
the best system.

6.4.3 Results and analysis

In this section, we first present studies modeling hand movement alone, and then present studies
that model both hand movement and handshape.
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Hand movement study

Table 6.3 presents the results of the monolingual reference systems and the cross- and multi-
lingual systems in terms of recognition accuracy RA (± standard deviation). It can be observed

Table 6.3 – Average RA (± standard deviation), over the leave-one-signer out protocol, for
reference monolingual systems and cross-/multi-lingual KL-HMM-based systems using hand
movement subunits

(a) Targeted language: DSGS (SMILE DSGS database)

hmvt MLP trained on
KL-HMM

sign-based MLP SU-based MLP
dim. RA dim. RA

DGS 281 46.6 160 47.3
TSL 496 41.6 324 41.5

DGS and TSL 777 48.2 484 48.4

DSGS 2257 57.4 1946 55.8

(b) Targeted language: DGS (DGS database)

hmvt MLP trained on
KL-HMM

sign-based MLP SU-based MLP
dim. RA±std dim. RA±std

TSL 496 52.5 ± 10.2 324 52.2 ± 9.5
DSGS 2163 57.3 ± 9.8 1485 58.1 ± 9.5

TSL and DSGS 2659 57.7 ± 9.8 1809 58 ± 10.8

DGS 281 65.8 ± 13.1 217 68.2 ± 10

(c) Targeted language: TSL (HospiSign database)

hmvt MLP trained on
KL-HMM

sign-based MLP SU-based MLP
dim. RA±std dim. RA±std

DGS 281 97.5 ± 1.4 160 95.4 ± 2.0
DSGS 2163 98.0 ± 1.1 1485 98.8 ± 1.0

DGS and DSGS 2444 98.1 ± 1.1 1645 98.2 ± 1.1

TSL 300 97.5 ± 1.7 217 97.3 ± 1.7

that for DSGS (Table 6.3 (a)) and DGS (Table 6.3 (b)) as target languages the performance of
cross- and multi-lingual systems are well above random classification but below monolingual
system performance. The low performance can be due to combination of two factors: (a)
differences in recording settings. More precisely in the SMILE DSGS database the signs are
performed sitting while in the DGS and HospiSign databases standing. Skeleton alignment may
not fully compensate for these differences. (b) Vocabulary in each database is limited. As a
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consequence, not all possible movements can be expected to be covered by the derived subunits.
Moreover, the HospiSign database is composed of phrases while the two other databases are
composed of isolated signs. These differences can also influence the nature of the extracted
subunits. This could explain why adding TSL subunits does not significantly help to recognize
DGS or DSGS languages.

Together these results indicate that whether we take subunits from sign-based or SU-based
approaches, they exhibit sign language independence characteristics. Indeed, when comparing
SU-based MLP and sign-based MLP systems, it can be observed that the performances are
comparable, despite the fact that subunit extraction leads to state space reduction of 31% on
DSGS, 35% on TSL and 43% on DGS.

Hand movement and handshape study

Table 6.4 presents the results of the handshape based KL-HMM system in terms of recognition
accuracy on the three different sign languages (DSGS, DGS and TSL). As it can be observed,
for all the three databases, the handshape component is not as good as the hand movement to
differentiate the signs. We observed similar trend in the monolingual study. One of the reasons
could be the hand orientation independence of the handshape estimator. The cropping of the
hand zone is also dependent on the precision of the joint tracking which differs for each database.
The very low performance on DGS could be due to the uncontrolled environment in which the
database was collected. As the performance is very poor, we decided not to pursue the DGS study
modeling both the hand movement and handshape subunits.

Table 6.4 – Average RA (± standard deviation) of the handshape based KL-HMM systems on
three sign languages (DSGS, TSL and DGS)

hshp-based KL-HMM-based
dim. RA

DSGS 122 38.2
DGS 122 5.8 ± 2.5
TSL 122 83.8 ± 8.0

In the next experiment, we combined the hand movement and shape observation to train the sys-
tems. Table 6.5 presents the results of the reference monolingual system and cross-/multi-lingual
KL-HMM systems. As expected, the handshape component gives complementary information to
the hand movement as evidenced by the results. Moreover, adding the handshape decreases the
gap in between the monolingual and the cross-/multi-lingual framework. Also, it is interesting
to note that the best reported recognition accuracy using both hand movement and handshape
information on the HospiSign database is 96.67% (± 1.80) [18].
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Table 6.5 – Average RA (± standard deviation) for reference monolingual system and cross-
/multi-lingual KL-HMM systems using hand movement and handshape subunits

(a) Targeted language: DSGS (SMILE database)

hmvt MLP
trained on

hshp MLP
trained on

KL-HMM
sign-based MLP SU-based MLP

DGS 1 million hand 72.9 72.6
TSL 1 million hand 67.3 66.1

DGS and TSL 1 million hand 72.9 73.2
DSGS 1 million hand 75.6 74.3

(b) Targeted language: TSL (HospiSign database)

hmvt MLP
trained on

hshp MLP
trained on

KL-HMM
sign-based MLP SU-based MLP

DGS 1 million hand 98.6 ± 1.4 99.0 ± 1.1
DSGS 1 million hand 99.0 ± 1.2 99.1 ± 1.1

DGS and DSGS 1 million hand 99.4 ± 0.7 99.3 ± 0.9
TSL 1 million hand 98.9 ± 0.9 98.9 ± 1.4

6.4.4 Multilingual sign language recognition with HMM/GMM approach

The tandem feature-based HMM/GMM framework can also be adapted to multilingual SLR. As
depicted in Figure 6.8, the hand movement subunit estimators are trained on different languages
and then are transformed using the tandem technique (see Section 3.3.1) before being concatenated
and used as feature observation for HMM/GMM system trained in a language-dependent manner.
As illustrated in the figure, the target language data is used to estimate both KLT transformation
matrix and the parameters of the HMM/GMM system.

Experimental setup

To validate the tandem feature based multilingual framework, we used the setup with DSGS as
the target language. The handshape and the hand movement estimators remained the same as in
the KL-HMM based multilingual study. We derived the language-independent hand movement
subunits from two different languages, namely Turkish Sign Language (TSL) in HospiSign
database and German Sign Language (DGS) in DGS database to recognize Swiss German
Sign Language (DSGS) isolated signs in the SMILE DSGS database. During tandem feature
extraction, in the KLT step, we reduced the feature dimension to cover up to 99% variance of the
data. HMM/GMM systems were trained with different number of states, i.e. from 3 to 30 states,
similar to the study using KL-HMM. The emission distribution at each state was modeled by one
mixture Gaussian distribution (i.e. single multivariate Gaussian distribution).
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Figure 6.8 – Illustration of the adapted HMM/GMM-based framework to multilingual scenario,
where the hand movement visual subunits (VShmvt) are extracted from different sign languages
(SL1 to SLM ).

Hand movement study

Table 6.6 presents the results of the tandem feature-based cross- and multi-lingual systems in
terms of recognition accuracy RA for the hand movement study. We can observe that there is a
dimensionality reduction of about 96% using the sign-based subunits MLP model and about 91%
using the SU-based MLP. The resulting systems lead to higher performance than the KL-HMM
approach (Table 6.3 (a)). This indicates that not all language-independent subunits dimensions
are of interest for the target language. In the KL-HMM approach, all the language-independent
subunits dimensions are modeled, which can be noisy. Furthermore, the KLT matrix is estimated
on the target language data, which could compensate for domain differences when extracting
tandem features. We can see that particularly for the cross-lingual system using TSL subunits. In

76



6.4. Multilingual Sign Language Recognition

Table 6.6 – RA of the cross-/multi-lingual HMM/GMM-based systems using hand movement
subunits

Targeted language: DSGS (SMILE DSGS database)

hmvt MLP trained on
HMM/GMM-based

sign-based MLP SU-based MLP
dim. RA dim. RA

DGS 11 48.0 23 52.6
TSL 16 54.1 20 54.7

DGS and TSL 27 54.6 43 56.4

the KL-HMM approach, no such domain difference compensation happens.

Hand movement and handshape study

Table 6.7 presents the results of the handshape based system in terms of recognition accuracy on
the SMILE DSGS database. With the criteria of 99% variance, the KLT step reduces the feature
dimension by about 60%. The tandem feature based handshape alone system outperforms the
handshape alone KL-HMM system (Table 6.4). Interestingly, this performance is better than the
monolingual KL-HMM-based hand movement system presented in Table 6.3 (a).

Table 6.7 – RA of the handshape based HMM/GMM system on the SMILE DSGS database

hshp-based HMM/GMM-based
dim. RA

DSGS 48 59.5

Table 6.8 presents the results for cross- and multi-lingual systems when modeling both hand-
shape and hand movement. We observe again that tandem feature based system yields better
cross-lingual and multilingual SLR systems than the KL-HMM approach (see Table 6.5 (a)).
Furthermore, cross-lingual system and multilingual system performances are similar. This again
indicates that domain differences are better compensated by tandem feature-based approach.

Table 6.8 – RA of the cross-/multi-lingual HMM/GMM based systems using hand movement and
handshape subunits

Targeted language: DSGS (SMILE DSGS database)
hmvt MLP
trained on

hshp MLP
trained on

HMM/GMM-based
sign-based MLP SU-based MLP

DGS 1 million hand 77.1 77.8
TSL 1 million hand 77.8 78.3

DGS and TSL 1 million hand 78.0 77.3
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6.5 Summary

The focus of this chapter was on developing approaches to jointly model the multichannel
information inherent in sign languages. In that context, we argued and showed that the methods
developed for articulatory feature modeling in speech processing can be adopted to jointly
model the multichannel information for sign language processing. We studied two approaches:
a HMM/GMM approach and a KL-HMM approach. Through monolingual and cross-lingual
sign language recognition studies, we showed that both approaches succeed in integrating the
handshape and the hand movement channel yielding better sign language recognition performance.
In Chapter 5, we already demonstrated through a cross-lingual study that the hand movement
subunits exhibit sign language sharability property. The cross-/multi-lingual studies in this chapter
clearly show that the derived hand movement subunits are transferable across sign languages.
These findings are promising, as they pave the path for development of sign language processing
systems by sharing multiple sign language resources. We also demonstrated two advantages of the
KL-HMM approaches: the decomposition of the hand movement channel and the interpretability
of the categorical distribution. The interpretability property of the KL-HMM is what differentiates
our framework to other approaches. Indeed, the categorical distribution allows to have a feature
space and a time segmentation, i.e. we have access to the production information of each channel
separately for each time frame/state. In Chapter 5 (Section 5.3.2 and Section 5.4.2), we somewhat
demonstrated this aspect in the context of analysis of hand movement subunits through synthesis
of hand movement in the 3D skeleton space. In existing 2-stages approaches [124, 20, 117, 98,
118] which first extract the visual subunit separately and then use them to classify the sign, this
property is not obvious. In the following chapter, we build on that to develop an explainable sign
language assessment approach.
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7 Phonology-based Sign Language
Assessment Framework

RQ5: How to assess isolated sign productions at the lexeme-level and
the form-level?

Interactive learning platforms are in the top choices to acquire new languages. Such applications
or platforms are more easily available for spoken languages, but rarely for sign languages.
Assessment of the production of signs is a challenging problem because of the multichannel
aspect (e.g., handshape, hand movement, mouthing, facial expression) inherent in sign languages.

In the previous chapter, a HMM-based sign language processing framework was proposed that
enables modeling of the multichannel information present in sign languages, akin to modeling
of multichannel articulatory information in speech production [94]. The present chapter builds
upon that work to propose a sign language assessment approach that, in an integrated manner,
can assess sign production at: (a) lexeme level, i.e. verify whether a produced sign is targeting
the correct reference sign or not and (b) form level, i.e. assessing separately the different form
channels of a sign, such as hand movement and handshape channel. We demonstrate the potential
of the proposed approach through a validation study on Swiss German Sign Language.

The chapter is organized as follows: in Section 7.1, we present the related work. Our proposed
phonology-based sign language assessment approach is explained in Section 7.2. Section 7.3 and
Section 7.4 present the experimental setup and the results and analysis, respectively. Analyses
are presented in Section 7.5, Section 7.6 and Section 7.7. Section 7.8 presents an overview of the
demonstrator and finally the summary is given in Section 7.9. The basic approach was published
in the following publication:
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A phonology-based approach for isolated sign production assessment in sign language,
Sandrine Tornay, Necati Cihan Camgoz, Richard Bowden and Mathew Magimai.-Doss, in:
Companion Publication of the 2020 International Conference on Multimodal Interaction
(ICMI ’20 Companion), 2020

7.1 Related Work

In recent years, there is growing interest in developing assistive systems that can help in bridging
the gap or breaking the barrier between hearing and Deaf communities through multimodal
systems. In that direction, as sign languages are under-studied and under-resourced languages,
there is interest in developing interactive applications that could aid in sign language acquisition.
Currently, the existing platforms test comprehension and vocabulary through pre-recorded videos,
while sign language production tests are realized by online recording for later analysis, which
is both expensive and time consuming. Existing interactive e-learning platforms that contain
production testing use either self-correctness, such as the web-based e-learning resource Sig-
nAssess [23] which allows to compare the recorded user’s video to a pre-recorded reference one,
or real-time sign language verification which assesses if the produced sign is correct or incorrect,
such as SignAll [112] technology or ISARA [49] application. Assessing whether a produced
sign is correct or incorrect would not be sufficient by itself to aid sign language learners. The
reason being that sign language consists of different channels of information corresponding to
manual components (hand position, hand movement and handshape) and non-manual compo-
nents (mouthing, facial gesture, posture). So, for realistic adoption of sign language learning
applications, there is need for a framework that enables assessment of those multiple channels of
information in a linguistically valid manner.

7.2 Proposed Phonology-based Framework for Sign Language As-
sessment

In Chapter 6, a phonological approach for SLR was presented, based on the understanding that,
both sign language and spoken language are communication process that imply: a source, i.e. a
production phenomenon that generates a signal and a receiver, i.e. a perception phenomenon
which interprets the generated signals in terms of elements of “language", e.g. words, phrases.
Based on this understanding, we proposed the KL-HMM approach for sign language recognition.
At a high level, as can be seen in Figure 6.4, the KL-HMM approach can be visualized as an
approach where,
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1. the element of sign language in the perception space modeled through HMM states is
projected onto production space, yielding a "reference" sequence of stacked hand movement
and handshape subunits posterior probability sequence;

2. the input visual signal is projected onto the production space, yielding a "test" sequence of
sequence stacked hand movement and handshape subunits posterior probability sequence;
and

3. matching the reference and test sequences of posterior probability sequences through
dynamic programming (Viterbi algorithm) to determine the match between the element of
language modeled through the HMM and the observed visual signal resulting from sign
production.

The KL-HMM approach can be as it is adopted for sign language assessment by adding a
verification or decision-making step on top of the matching process.

More precisely, in the KL-HMM framework, we can cast the sign language assessment problem
as matching a test sign production (test sequence of probabilities) against an "expected" sign
production (reference sequence of probabilities) and deciding whether the test sign production
is acceptable or not. The decision-making can be carried out in a relatively easy manner,
as comparison of probability distributions using KL-divergence and other measures such as
Bhattacharya distance is equivalent to hypothesis testing [12, 55]. In other words, by simply
applying a threshold on the resulting KL-divergence based matching score the decision about
acceptability of test sign production can be made. We will see later in this section that the
threshold can be applied at different levels such as, at the lexeme level, at the individual channel
level. Thus, leading to an explainable sign language assessment approach that can carry out the
assessment at different levels in an integrated manner.

In principle, besides KL-HMM, the reference/expected sequence of subunits posterior probabili-
ties can be also obtained in an instance-based manner. More precisely, given the visual signal of
an "acceptable" production of a sign, the expected sequence of subunits posterior probabilities for
that sign can be obtained by feeding the visual signal as input to the different subunits posterior
probability estimators, as done for obtaining the test sequence of subunits posterior probabilities
from the test sign production.

To make a distinction between the two methods to obtain the expected sequence of subunits
posterior probabilities, we refer to the KL-HMM based approach as "multiple views based
reference", as the KL-HMM is trained on multiple signers data. While, we refer to the instance-
based approach as "single view based reference", as a single acceptable sign production by a
signer is used to obtain the reference sequence.
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7.2.1 Multiple views reference method

As explained earlier, there are two processes involved in sign language assessment: (a) matching
process and (b) decision-making process.

Matching process

As illustrated in Figure 7.1, given the expected sign, the KL-HMM generates the reference
sequence of stacked categorical distributions (y1, · · · ,yN ), which is matched with test sequence of
stacked probability distributions (z1, · · · ,zT ) obtained for test sign production using the subunits
posterior probability estimators. Formally, the match is obtained by dynamic programming
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Figure 7.1 – Illustration of the phonology-based assessment framework using the multiple views
reference model.
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(Viterbi algorithm) with the following recursion,

Smulti(n, t ) = l (yn ,zt )+min
[
Smulti(n, t −1)+ ctr,Smulti(n −1, t −1)+ ctr

]
, (7.1)

where ctr =− log(0.5) is the transition cost and l (·, ·) is the local score defined by the Symmetric
Kullback-Leibler (SKL)-divergence between two probability distributions, i.e.,

l (yn ,zt ) =
F∑

f =1
SSK L(yn, f ,zt , f ) , (7.2)
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where yd
n, f and zd

t , f denote d th element in the vectors yn, f and zt , f , respectively, f ∈ {1, · · ·F }

denotes a channel and F denotes the number of channels. The best matching path in the reference
lexeme can be obtained as part of the dynamic programming recursion.

Decision-making process

Given the best matching path, a lexeme-level and a form-level scores, S
multi1

l ex ,S multi1

f or m, f respec-
tively, are estimated by
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and by

S
multi1

f or m, f =
1

T
·

N∑
n=1

t e
n∑

t=t b
n

SSK L(yn, f ,zt , f ) , (7.5)

where t b
n and t e

n are the begin/end time frames, respectively of each state n, of the best matching
path; T is total number of frame; and the form-level score assesses the channel f .

Lexeme-level and form-level assessment can be carried out by simply applying a threshold on
S multi

l ex ,S multi
f or m, f to decide correct/incorrect lexeme and forms.

The decision can also be taken by normalizing the state duration information. More precisely,

S
multi2

lex = 1

N
·

N∑
n=1

∑t e
n

t=t b
n

l (yn ,zt )

t e
n − t b

n +1
, (7.6)
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and

S
multi2

f or m, f =
1

N
·

N∑
n=1

∑t e
n

t=t b
n

SSK L(yn, f ,zt , f )

t e
n − t b

n +1
. (7.7)

We refer to the first one as frame level normalization and the second one as state level normaliza-
tion.

7.2.2 Single view reference method

Similar to the multiple views reference method, there is a matching process followed by a
decision-making process.

Matching process

As illustrated in Figure 7.2, the methodology remains the same as in the multiple views reference
method, where the sequence of stacked categorical distributions of KL-HMM states (y1, · · · ,yN ) of
the reference model are replaced by the sequence of stacked probability distributions (zref

1 , · · · ,zref
T ′ )

obtained from an acceptable production of the expected sign. Formally, the match is obtained by
dynamic programming with the following recursion,

Sspl(t ′, t ) = l (zref
t ′ ,zt )+min

[
Sspl(t ′, t −1),Sspl(t ′−1, t ),Sspl(t ′−1, t −1)

]
, (7.8)

where t ′ denotes the time frame of the reference sequence and l (·, ·) is the local score obtained
by computing SKL-divergence (see Equation (7.2)). The matching process also yields the best
matching path.

Decision-making process

Given the best matching path, the lexeme-level score and form-level score can be obtained like
frame level normalization in the multiple views reference method. More precisely, the lexeme-
level score S

spl
lex is computed by summing the local scores l (·, ·) on the best matching path and

normalizing it by the path length. The form-level score is obtained by summing the channel
specific SKL-divergence score on the best matching path and normalizing it by the path length.

7.3 Experimental Setup

We validated the proposed approach on the linguistically annotated SMILE DSGS database. We
demonstrate the approach using two channels of information for which annotations are available,
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Figure 7.2 – Illustration of the phonology-based assessment framework using the single view
reference model.

namely, hand movement (hmvt) and handshape (hshp).

7.3.1 Database

As described in Section 2.3, the SMILE DSGS database was created in the context of developing
an assessment system for lexical signs of Swiss German Sign Language; thus various annotation-
s/transcriptions is available in this database. In our experimental setup, we only used the data
annotated with the ‘Category of sign produced’ annotation of the SMILE transcription/annotation
scheme presented in [34]. Briefly, this linguistic annotation evaluates, through six categories,
the acceptability of a sign according to linguistic criteria (lexeme, meaning and form), see Ta-
ble 7.1. The cat.1 and cat.2, consisting of acceptable sign productions, was partitioned in a
signer-independent manner into 1125 training set samples from 15 signers, 509 development
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set samples from 7 signers and 581 test set samples from 8 signers. We used the same test set
samples for evaluating both the KL-HMM model-based references (in terms of SLR) and the
proposed sign language assessment systems. The number of test samples of other categories
are given in Table 7.1. The cat.1 and cat.2 were used to build the different components of the
proposed assessment systems.

Table 7.1 – SMILE annotation scheme of the ‘Category of sign produced’ annotation

Category Same lexeme
as target sign?

Same meaning
as target sign?

Same form
as target sign? #test samples

cat.1 yes yes yes
581

cat.2 yes yes slightly different
cat.3 yes yes no

412
cat.4 yes slightly different slightly different
cat.5 no yes no

183
cat.6 no no no

7.3.2 Handshape subunit posterior probability estimation

The handshape feature extraction for sign language assessment presented in Section 3.1.2 was
used in this experiment, where the 30-dimensional vector of both hands and the 31-dimensional
(with transition shape) of both hands are stacked resulting to a 122-dimensional vector.

7.3.3 Hand movement subunits posterior probability estimation

The hand movement estimator used in this study is the sign-based MLP, illustrated in Figure 6.7,
which is built on the sign level hand movements subunits developed in Chapter 5. The feature
observations are the shoulder normalization-based features described in Section 3.1.1.

7.3.4 Sign reference systems

We used five compositions of the production space to develop the reference models, namely,

• the rlS system refers to the case where only the handshape subunit posterior probabilities
of the right and left hands estimated by the residual network-based CNN are stacked and
modeled.

• the M system refers to the case where only the posterior probabilities of hand movement
subunits obtained by combining right and left hand features are modeled. In other words,
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distinction between dominant hand and non-dominant hand is not made.

• the rlM system refers to the case where hand movement subunits are obtained for the left
hand and the right hand separately, i.e. two separated hand movement MLPs classifier are
trained. Then the left and right hand movement subunits posterior probabilities estimated
by the respective MLPs are stacked and modeled.

• the rlS+M and rlS+rlM systems refer to the case of using the concatenation of the hand-
shape and the hand movement subunit probability posteriors depending on the different
setups presented above.

In the single view reference model, a reference sample was randomly chosen for each sign in the
cat.1 data if available otherwise in cat.2; cat.1 and cat.2 correspond to “acceptable sign production”
(see Table 7.1).

In the multiple views reference model, we trained five KL-HMM systems corresponding to each
production space. Data of the cat.1 and cat.2 (see Table 7.1) were used to train and test the
reference models. All the KL-HMM systems were trained using 3 to 30 HMM states per sign.
The system that yielded the best recognition accuracy on the development data was chosen as the
reference.

Evaluation of the KL-HMM-based reference models: As the experiment setup differs from
the SLR studies presented earlier on the SMILE DSGS database, we conducted a sign language
recognition study on the KL-HMM reference model. Table 7.2 presents the RA of the different
KL-HMM systems. It can be observed that the system modeling both hand movement and
handshape information yields the best SLR performance. These results show that the KL-HMM
reference lexeme models are indeed modeling the different signs and are able to discriminate
between them.

Table 7.2 – Sign language recognition accuracy (RA) of the KL-HMM systems used as the
multiple views reference models.

KL-HMM References
rlS M rlM rlS+M rlS+rlM

RA 37.2 56.9 57.4 74.7 75.2

7.3.5 Assessment systems

Lexeme assessment: to evaluate the lexeme assessment, according to the category annotation of
the data summarized in Table 7.1, we separated the test correct/incorrect data as the following:
cat.1-2-3-4 which is correct target signs composed of cat.1 to cat.4 and cat.5-6+ which is incorrect
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target signs composed of cat.5, cat.6 and since these categories contain only few data, we balanced
the incorrect set by creating additional data by matching each sample of the cat.1 and cat.2 data
with a randomly chosen wrong reference.

Form assessment: to evaluate the form assessment, we used the cat.1-2 as correctly produced
form data and since the targeted sign is incorrect for cat.5-6+ we supposed that the produced
form (hand movement and handshape) was incorrect. In the present study, we did not make any
difference between dominant and non-dominant hand.

We determined the thresholds, δspl
l ex , δmulti

lex and δ
spl
f or m, f , δmulti

f or m, f for f ∈ {hmvt, hshp} on the
development set, which consists of cat.1 and cat.2 data. More precisely, we created a set of
correct sign scores by matching the same sign instances and a set of incorrect match scores by
matching instances of different signs. δspl

lex , δmulti
l ex and δspl

f or m, f , δmulti
f or m, f for each f were set as the

threshold that yielded the best F1 score for lexeme assessment and form assessment, respectively.

The evaluation measure used in this study was the F1 score described in Section 2.4.

7.4 Results and Analysis

Lexeme assessment: Table 7.3 presents the F1 score of the lexeme assessment study using
the single view or the multiple views reference models depending on the production space
used to align the produced sign. As it can be observed, the multiple views reference model

Table 7.3 – F1 scores of the correct lexeme assessment using the single view or the multiple views
reference models according to the five production space setups

Production Space
Reference Model Normalization rlS M rlM rlS+M rlS+rlM
Single view - 0.73 0.84 0.79 0.83 0.80

Multiple views
frame 0.73 0.88 0.84 0.88 0.84
state 0.72 0.88 0.85 0.90 0.87

methods outperform the single view reference model methods. A potential explanation is that
the KL-HMM models the acceptable variation of the sign, while the single view reference model
reference only contain one representation of the sign. Moreover, in the multiple views cases,
combining the hand movement and the handshape channel helps since using rlS+M as reference
gives the best assessment result, while it is the hand movement channel in the single view
case. According to the two proposed normalizations, we can observe that there is no statistical
difference in the model using one modality (rlS, M and rlM). In the two-modalities models, the
state-level normalization gives better lexeme-level assessment than the frame-level. Another
relevant observation is that using combined right and left hand movement (M, rlS+M) is sufficient
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for lexeme assessment in both reference cases.

Form assessment: Table 7.4 presents the F1 score of the forms error assessment study of the
hand movement channel and the handshape channel using the single view or the multiple views
reference models depending on the five production space setups. First, the same observation as the

Table 7.4 – F1 scores of the forms error assessment (hand movement (hmvt) and handshape (hshp))
using the single view or the multiple views reference models according to the five production
space setups

Production Space
Reference Model Normalization Form rlS M rlM rlS+M rlS+rlM

Single view -
hshp 0.74 - - 0.76 0.76
hmvt - 0.87 0.83 0.85 0.83

Multiple views
frame

hshp 0.77 - - 0.80 0.80
hmvt - 0.88 0.85 0.88 0.87

state
hshp 0.77 - - 0.83 0.82
hmvt - 0.90 0.86 0.90 0.87

lexeme-level assessment can be made: the multiple views reference model methods outperform
the single view methods. Thus, indicating that the acceptable production variation of sign modeled
in the KL-HMM is helping the form-level assessment. Moreover, in all the cases, we can observe
that adding the hand movement information helps in the handshape error assessment, while the
reverse is not true. Indeed, using either rlS+M or rlS+rlM does not change significantly and
is better than using rlS for handshape form error assessment. A potential reason for that could
be that the hand movement channel has more temporal variations than the handshape channel.
This can also explain why adding handshape channel to hand movement one does not help in
hand movement error assessment. In fact, hand movement form assessment using M or rlS+M,
or using rlM or rlS+rlM are not significantly different. Furthermore, making no distinction
between dominant and non-dominant hand movement gives better form assessment results. This
aspect could be further explained or understood by separating the one-handed or two-handed sign
assessment results. Concerning the proposed normalizations, we can observe that the form is
better assessed using the state-level normalization.

As the state-level normalization yields better assessment, in the remainder of this chapter, we
used the lexeme-level and the form-level scores estimated based on the state-level normalization
in the multiple views reference method.

89



Chapter 7. Phonology-based Sign Language Assessment Framework

7.5 Impact of Clustered HMM States based Hand Movement Sub-
units

In the assessment studies presented until now, the hand movement subunits are obtained from
sign-level HMM. However, as seen in Chapter 5, the sign-level HMM states can be clustered to
reduce the state space and obtain a different set of hand movement subunits. In the SLR studies,
we found that both methods yield comparable systems. A question that arises is that: does the
same holds for assessment?. We investigated that aspect by using the SU-based MLP estimator
(depicted in Figure 6.7) built on the clustered hand movement subunits developed in Chapter 5.
We denote,

• MSU to refer to the case where only the clustered hand movement subunits obtained by
combining dominant and non-dominant hand features are modeled;

• rlMSU to refer to the case where the clustered hand movement subunits are obtained for
the dominant hand and the non-dominant hand separately;

• rlS+MSU and rlS+rlMSU to refer to the case of using the concatenation of the handshape
and the clustered hand movement subunit probability posteriors depending on the different
setups presented above.

The remainder of the experimental setup is the same as the main study. For easiness of comparison,
in the results reported below we also provide the main study results. Table 7.5 presents the SLR
studies for the KL-HMM system.

Table 7.5 – Sign language RA of the KL-HMM-based references using the clustered hand
movement subunits derivation proposed in Chapter 5 with the dimension of the features (#
feature)

KL-HMM-based References - SLR
MSU M rlMSU rlM rlS+MSU rlS+M rlS+rlMSU rlS+rlM

RA 51.3 56.9 58.6 57.4 68.0 74.7 74.3 75.2
# feature 1577 2075 3503 4214 122+1577 122+2075 122+3503 122+4214

Lexeme assessment: Table 7.6 presents the F1 score of the lexeme assessment study using the
single view or the multiple views reference models according to the production space based on
the clustered hand movement subunit derivation proposed in Chapter 5. It can be observed in both,
the single view or the multiple views reference model, cases that the clustered hand movement
subunits helps in the case where the dominant and non-dominant hand movement subunits are
computed separately (rlM, rlM+rlS). It is interesting to note that the same trend can be observed
in the recognition accuracies of Table 7.5. But, on the whole, we can observe that the clustered
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Table 7.6 – F1 score of the correct lexeme assessment using the single view or the multiple views
reference models according to the production space using the clustered hand movement subunits
estimator (SU-based MLP) proposed in Chapter 5 (MSU, rlMSU)

Production Space
Reference Model MSU M rlMSU rlM rlS+MSU rlS+M rlS+rlMSU rlS+rlM
Single view 0.82 0.84 0.81 0.79 0.79 0.83 0.81 0.80
Multiple views 0.87 0.88 0.87 0.85 0.90 0.90 0.88 0.87

subunits carry sufficiently enough information for lexeme assessment, since there is no large
variation in the lexeme assessment results.

Form assessment: Table 7.7 presents the F1 score of the form assessment study using the single
view or the multiple views reference models according to the production space based on the
clustered hand movement subunit derivation proposed in Chapter 5. We can draw the same
conclusion as the lexeme assessment, i.e. separation of dominant and non-dominant hands helps
and the subunits keep the necessary information on the production of the sign, even with a subunit
reduction of 24% in the MSU case and around 17% in the rlMSU case.

Table 7.7 – F1 score of the forms error assessment using the single view or the multiple views
reference models according to the production space using the clustered hand movement subunits
derivation proposed in Chapter 5 (MSU, rlMSU)

Production Space
Reference Model Form MSU M rlMSU rlM rlS+MSU rlS+M rlS+rlMSU rlS+M

Single view
hshp - - - - 0.77 0.76 0.76 0.76
hmvt 0.82 0.87 0.84 0.83 0.82 0.85 0.83 0.83

Multiple views
hshp - - - - 0.82 0.83 0.82 0.82
hmvt 0.89 0.90 0.88 0.86 0.88 0.90 0.87 0.87

7.6 Impact of Model Selection-based HMM Topology Inference

In Chapter 4, we presented a data-driven HMM-based approach to infer the appropriate number
of states dynamically during the recognition. In the studies presented until now, we have used a
fixed common number of states for all the signs based on the best recognition accuracy on the
development data. We conducted a study with this model selection approach. We denote,

• the rlS# to refer to the case where only the handshape subunit posterior probabilities of
the dominant and non-dominant hands estimated by the residual network based CNN are
modeled.

• M# to refer to the case where only the sign-level hand movement subunits obtained by

91



Chapter 7. Phonology-based Sign Language Assessment Framework

combining dominant and non-dominant hand features are modeled;

• rlM# to refer to the case where the sign-level hand movement subunits are obtained for the
dominant hand and the non-dominant hand separately;

• rlS+M# and rlS+rlM# to refer to the case of using the concatenation of the handshape
and the hand movement subunit probability posteriors depending on the different setups
presented above.

The same experimental setup as in the main study was used in this analysis.

SLR accuracies: Table 7.8 presents the sign language RA of the KL-HMM-based references
using the data-driven HMM-based structure derivation proposed in Chapter 4 with the correspond-
ing mean of the number of states with the corresponding number of states. It can be observed, the

Table 7.8 – Sign language RA of the reference KL-HMM systems using the data-driven HMM-
based structure derivation proposed in Chapter 4 with the corresponding mean of the number of
states (mean / # state)

KL-HMM References
rlS# rlS M# M rlM# rlM rlS+M# rlS+M rlS+rlM# rlS+rlM

RA 35.1 37.2 56.5 56.9 55.9 57.4 73.3 74.7 73.8 75.2
mean / # state 17 26 26 18 26 24 17 29 17 28

model selection based HMM structure derivation does not gains over the fixed HMM topology
obtained based on the recognition accuracy on the development set in the SLR framework. It
is interesting to notice that the mean of the number of states is lower than the fixed number of
states derived from the development data in all the KL-HMM-based references containing the
handshape information while in the hand movement KL-HMM-based references case it is upper.
But as depicted in Figure 7.3, in the case of the rlS+rlM# model, the most chosen number of
states is 26 and the fixed number of states of the rlS+rlM model is 28.

Table 7.9 and Table 7.10 present lexeme assessment and form assessment results, respectively.
Although there is slight drop in SLR accuracy, the model selection approach does not really affect
lexeme assessment and form assessment.

Table 7.9 – F1 score of the correct lexeme assessment using the KL-HMM-based reference
adapted with the data-driven HMM-based structure derivation proposed in Chapter 4

KL-HMM References
rlS# rlS M# M rlM# rlM rlS+M# rlS+M rlS+rlM# rlS+rlM
0.74 0.72 0.88 0.88 0.86 0.85 0.90 0.90 0.87 0.87
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Figure 7.3 – Frequency of the selected number of states of the rlS+rlM# model.

Table 7.10 – F1 score of the forms error assessment using the KL-HMM-based references adapted
with the data-driven HMM-based structure derivation proposed in Chapter 4

KL-HMM References
Form rlS# rlS M# M rlM# rlM rlS+M# rlS+M rlS+rlM# rlS+rlM
hshp 0.77 0.77 - - - - 0.83 0.83 0.82 0.82
hmvt - - 0.90 0.90 0.86 0.86 0.88 0.90 0.88 0.87

7.7 Interpretable Assessment Score

Until now, we have used the lexeme-level score and form-level score obtained based on SKL-
divergence for decision-making. While this is sufficient from assessment perspective, an inter-
pretable score is desirable for providing feedback. For instance, in scenarios like sign language
learning, besides providing the final decisions of lexeme-level and form-level assessments, it
would be good to provide a score that indicates the "confidence" with which the decision was
taken. In this section, we show that the SKL-based lexeme-level score and form-level score can
be converted into a posterior-based confidence measure. As KL-divergence yields an estimate of
log-likelihood ratio [12]. One way to obtain posterior-based confidence measure Conf is,

Conf= 2

1+exp(S )
, (7.9)

where S ∈ { S multi
l ex , S

spl
lex , S

spl
f or m, f , S multi

f or m, f }. As KL-divergence varies between 0 and +∞,
Conf varies between 1 and 0.

Figures 7.4 compares the histogram of the SKL scores S multi
l ex and the derived Conf score of the

rlM+rlS model according to the cat.1-2, cat.3-4 and cat.5-6o data, the corresponding threshold is

93



Chapter 7. Phonology-based Sign Language Assessment Framework

drawn as a dashed line. Firstly, we can notice that the SKL scores of the correct lexeme production

Figure 7.4 – Histograms of the SKL scores S multi
lex and the derived Conf scores of the rlM+rlS

model.

of sign (cat.1-2-3-4) and the incorrect (cat.5-6o) are separable and that the method used to set
the threshold is adapted to the task. Secondly, same inferences can be done at lexeme-level and
form-level, if we apply a threshold on the posterior-based confidence measure. We can see on
the Conf score histogram that the Conf scores never reaches 1.0. In other words, we obtain an
under estimate. This is due to the fact that a perfect match i.e. KL-divergence equal to 0 is quite
improbable, since we are comparing probability distributions. One way to address that issue is to
add an offset value α when computing the confidence score as follows

Confα = 2

1+exp(S −α)
. (7.10)

In the present experiment, we set α as the minimum SKL score obtained on the cat.1-2 develop-
ment data. Figure 7.5 compares the histogram of the Conf and the Confα scores of the rlM+rlS
model. As depicted by the figure, the offset value α has the expected effect.

We carried out lexeme assessment and form assessment studies using Confα. We denote the
respective models using the posterior-based confidence measure Confα as,

• the rlSconf to refer to the case where only the handshape subunit posterior probabilities of
the dominant and non-dominant hands estimated by the residual network based CNN are
modeled.

• Mconf to refer to the case where only the sign-level hand movement subunits obtained by
combining dominant and non-dominant hand features are modeled;

• rlMconf to refer to the case where the sign-level hand movement subunits are obtained for
the dominant hand and the non-dominant hand separately;
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Figure 7.5 – Histograms of the Confα scores and the Conf scores of the rlM+rlS model.

• rlS+Mconf and rlS+rlMconf to refer to the case of using the concatenation of the handshape
and the hand movement subunit probability posteriors depending on the different setups
presented above.

The remainder of the experimental setup is the same as the main study.

Table 7.11 and Table 7.12 present the lexeme assessment and form assessment results. As
expected, confidence score-based assessment does not really affect the performance.

Table 7.11 – F1 score of the correct lexeme assessment using the posterior-based confidence
measure Confα and using the single view or the multiple views reference models

Production Space
Reference Model rlSconf rlS Mconf M rlMconf rlM rlS+Mconf rlS+M rlS+rlMconf rlS+rlM
Single view 0.73 0.73 0.84 0.84 0.79 0.79 0.83 0.83 0.78 0.80
Multiple views 0.71 0.72 0.88 0.88 0.85 0.85 0.88 0.90 0.87 0.87

Table 7.12 – F1 score of the form error assessment using the posterior-based confidence measure
Confα and using the single view or the multiple views reference models

Production Space
Reference Model Form rlSconf rlS Mconf M rlMconf rlM rlS+Mconf rlS+M rlS+rlMconf rlS+rlM

Single view
hshp 0.74 0.74 - - - - 0.76 0.76 0.75 0.76
hmvt - - 0.87 0.87 0.83 0.83 0.85 0.85 0.83 0.83

Multiple views
hshp 0.77 0.77 - - - - 0.83 0.83 0.82 0.82
hmvt - - 0.91 0.90 0.86 0.86 0.90 0.90 0.87 0.87

7.8 Demonstrator

The goal of the SMILE project was to develop an advanced platform which allows to assess
Swiss German Sign Language (DSGS). Specifically, a sign language system that can assist Swiss
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German Sign Language learners as well as aid in standardizing a vocabulary production test
that can be aligned with levels A1 and A2 of the Common European Framework of Reference
for Languages (CEFR). In this context, in collaboration with our SMILE project partners, a
demonstrator that integrates the proposed sign language assessment approach and provides
feedback to users was developed.

The system flowchart depicted in Figure 7.6 summarizes this system. Briefly a capture software
extracts the 3D poses skeleton of the user sign production by using a Kinect camera. Then, these
3D poses with the video are fed to the handshape and the hand movement subunit probability
estimators. These posterior features are time aligned by DTW algorithm with the KL-HMM-
based references to obtain the assessment scores based on the SKL-divergence. Finally, a
visualisation of the feedback based on these assessment results is provided to the user (details of
the visualisation are presented later in the section).

Figure 7.6 – Flowchart of the demonstrator of the project SMILE.

All the project partners contributed to the development of the demonstrator. More precisely,

• DSGS Dataset: creation of DSGS sign language resources and tools, and DSGS data
collection were done by HfH and USurrey;

• DSGS Dataset: data annotation, lexicon management and the development of the assess-
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ment famework was done by HfH;

• Capture Software: development of the data capture tools, body tracking and hand pose
estimation was done by USurrey;

• Handshape Analyser, Trained CNN: development of the handshape estimator was done by
USurrey;

• Hand Motion Analyser, Trained ANN: development of the hand movement estimator was
done by us at Idiap;

• Reference KL-HMM, Time Alignment, Assessment Process: development of the sign
assessment system was done by us at Idiap;

• Visualisation: development of the front-end software, feedback video and integration of all
the components was done by USurrey.

HfH refers to the Hochschule für Heilpädagogik (in Zürich), USurrey refers to the University of
Surrey (UK) and Idiap refers to the Idiap Research Institute (Martigny).

7.8.1 Assessment process of the demonstrator

The assessment process used in the demonstrator carries out assessment at form-level in time
local manner. In other words, the demonstrator localizes the error to a specific segment of the
sign such as a wrong handshape. To achieve that, the form assessment is carried out at KL-HMM
state level as opposed to whole sign level, i.e.,

S multi
f or m, f (n) =

∑t e
n

t=t b
n

SKL(yn, f ,zt , f )

t e
n − t b

n +1
. (7.11)

A threshold is then applied on each of the state scores, i.e. on S
f

f or m(n), ∀n. This yields intervals
of time frame which contain form error(s).

The demonstrator assesses four aspects of the isolated sign production: the handshape, the hand
movement, the hand position and the hand location. The hand position refers to the position of
the dominant and the non-dominant hand relative to each other, i.e. if the combination of the two
hands is correct. This aspect is relevant for two-handed signs. For example, if for a right-handed
signer, the left hand is upper than the right one in the sign NOM (name) in Swiss French Sign
Language (see Figure 7.7), it is a hand position error since the left hand has to be below the right
hand. The hand location refers to the localisation of the production of the sign in the signing
space. For example, there is a hand localisation error if the sign BRAVO (well done) in Swiss
French Sign Language is done at the chest-level instead of the head-level (see Figure 7.8).
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Figure 7.7 – The sign production of the sign NOM (name) in Swiss French Sign Language

Figure 7.8 – The sign production of the sign BRAVO (well done) in Swiss French Sign Language

The proposed assessment approach detects the hand movement related error. But, it does not
reveal if it is a hand movement, a hand position or a hand location error. To assess if it is a hand
movement, a hand position or a hand location error, we integrated an additional criterion based
on the (x,y) coordinate, called space-based criterion. More precisely, for each hand we compare
the x-position of the user hand in the head coordinate center to the x-position of the reference
sign (a cat.1 sample). As well as the y-position in the shoulder coordinate center (see Figure 7.9).
If one x or y location differs from the reference sign, we label it as incorrect.

Figure 7.9 – Illustration of the additional assessment space-based criterion that allows to distin-
guish hand movement, hand position and hand location error
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More precisely, there are two assessment criteria, one is time-based and the second is space-based.
As shown in Figure 7.10: firstly the assessment scores are computed for the hand movement
channel for the dominant and the non-dominant hand separately (written R for right-dominant
and L for left-non-dominant in Figure 7.10). Then, the time frame interval [a,b] in which the
hand movement error appears is obtained, as explained above. When an error is detected in a
frame interval [a,b], the space-based criterion is applied to detect if the space location of each
hand is correct or not. Given both criteria results, the final assessment is made in the following
manner:

• time-based: R and L no error detected ⇒ no hand movement, hand position and hand
location error;

• time-based: R (or L) error detected,

– space-based: R and L no error detected ⇒ hand movement error;

– space-based: R (or L) error detected ⇒ R (or L) hand position error;

– space-based: R and L error detected ⇒ hand movement error or R (or L) hand
position error;

• time-based: R and L error detected,

– space-based: R and L no error detected ⇒ hand movement error;

– space-based: R (or L) error detected ⇒ R or L hand position error;

– space-based: R and L error detected ⇒ hand location error.

Hand Motion’s Confidence Score
R | L

Correct Sign

X | X

[a,b] | [ ]
Location?

WRONG
Mov.

X | X

WRONG
R Pos.

× | X

WRONG
Mov. or R pos.

X or × | ×

× | X or X | ×

[a,b] | [a′,b′]
Location?

WRONG
Mov.

X | X

WRONG
R or L Pos.

× | X or X | ×

WRONG
Location

× | ×

× | ×

Figure 7.10 – Diagram of the integration of both, time-based and space-based, assessment criteria
to determine if there is a hand movement, a hand position or a hand location error.

A production score of the handshape and the hand movement is computed based on the school
grading mechanism, where in Switzerland the success threshold is 4

6
∼= 0.66. To obtain this score,
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the total number of frames labelled as correct during the time-based criteria is counted and divided
by the total number of frames for each channel, i.e. the handshape and the hand movement of
each hand. A global production score is obtained based on these production scores by averaging
them.

7.8.2 Front-end overview

The demonstrator front-end overview is depicted in Figure 7.11. After the welcome screen which
is composed of a welcome video in DSGS, there are two modes proposed to the user: a practice
mode (the left column of Figure 7.11) and a test mode (the right column).

Figure 7.11 – Front-end overview of the demonstrator composed of a practice mode (left) and a
test mode (right).

• In the practice mode, the user is directed to the lexicon catalogue, where the user can chose
which sign she/he wants to practice. Three signs were available, namely VIOLETT (violet),
SOMMER (summer) and METALL (metal). The user can also choose at this stage if she/he
wants to see an example of the reference video before practicing. The next step plays the
reference video if the option was chosen. Then a countdown finishes on the video recording
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of the user with the capture tool. After processing a detailed feedback, see Figure 7.12, is
provided to the user. The feedback screen includes

– on the left: the video of the user sign production with the joint skeleton drawn on it;

– in the middle: a reference video with also the joint skeleton drawn on it;

– on the right: both skeletons aligned with below the production scores of both hand-
shape and both hand movement;

– down: a time line of the production of the reference and the user;

Figure 7.12 – Detailed feedback screen of the demonstrator.

A per-frame feedback is projected on the user production video with a red circle around
the hand when the handshape is incorrect and a red line on the forearm when the hand
movement is incorrect. The circles/lines are coloured based on the SKL scores. A per-hand
score is given by the production scores and a feedback on the speed production is given by
the time lines of the production.

• In the test mode, the users are asked to record each sign of the catalogue which are
randomly selected. Before starting it, the user has the possibility to choose the video option
to see an example of the reference video, before each recording. At the end of the test, a
feedback screen, see Figure 7.13, is to the user which is a feedback table on the handshape
(Hand), the hand location (Bewegung), the hand position (Position) and the hand movement
(Geschwindigkeit) of each hand where each sign is an entry. A tick or a cross gives the
assessment for each column. Besides the table, the average of the global production score
of each sign gives the success percentage of the test. Furthermore, the user can select each
sign to see the detailed feedback screen presented in the practice mode (see Figure 7.12).
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Figure 7.13 – Overview feedback screen of the test mode of the demonstrator.

The demonstrator was tested on the available linguistically annotated data and was presented to
the public1.

7.9 Summary

This chapter presented a phonologically motivated sign language assessment approach that allows
to assess two different linguistic aspects of a produced sign: the lexeme and the form. In this
approach, a produced sign is matched to a reference model and a decision is made based on
the best matching path. Two reference models were developed: a multiple views reference
model based on KL-HMM and a single view reference model based on a single instance (one
shot) of an acceptable production of the sign. A validation study on the SMILE DSGS database
yielded promising lexeme-level assessment and form-level assessment results. We found that,
although the multiple views reference model yields better performance, the single view reference
model gives relatively good performance, despite the fact that the reference is based on a single
instance of sign production. Our studies also showed that the different components of the
proposed assessment system can be built only using cat.1 and cat.2 data. Further analysis studies
investigating with clustered hand movement subunits and selection of HMM topology through
model selection showed that those developments extend to sign language assessment task. The
proposed sign language assessment was successfully integrated into a real-time demonstrator that
assesses isolated sign production at form-level and provides feedback.

1https://www.idiap.ch/project/smile/news/smile-how-it-works (visited on 02/19/2021)
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8 Conclusion and Future Directions

The goal of the thesis was to develop an explainable framework for sign language recognition
and assessment, where the sign language is acquired through a camera. To do so, we focused on
developing a HMM-based framework that can carry out recognition/verification and linguistically
valid assessment in an integrated manner. One of the main motivations behind using HMM was
that HMM allow integration of both prior knowledge and data, and makes the system modular and
interpretable. Having said that, when applying HMM some level of prior knowledge is needed to
determine the topology. Such prior knowledge is not readily available for sign languages. So, as
a first step, in Chapter 4, this thesis focused on addressing this challenge by proposing a model
selection approach, where each sign is modeled by HMM with different number of states and the
system infers the most likely topology during the recognition phase. This approach was found to
yield better system when compared to presetting the HMM topology based on k-means. In the
later part of the thesis, it was found that a similar model selection criterion can be applied on the
development data to determine the HMM topology.

In recent years, exploiting the discrete nature of handshape, different ways to model handshape
information for sign language recognition has emerged. However, a sign is not entirely defined by
handshape. There are other manual channels such as, hand movement that needs to be modeled.
One of the main challenges in modeling hand movement channel is that it is continuous in
nature. We addressed that challenge in Chapter 5 to develop methods to model hand movement
as discrete subunits. More precisely, we developed an approach where, given only pairwise
comparison between sign productions, hand movement subunits are derived from 3D skeleton
information by building sign-level HMM and clustering those HMM states through a measure of
discrimination. Our studies showed that both the sign-level HMM and clustered set of HMM states
can serve as discrete hand movement subunits. Furthermore, cross-lingual and multilingual sign
language recognition studies showed that these subunits are transferable across sign languages.
Thus, paving the path to model hand movement information exploiting multiple sign language
resources, like modeling of handshape information. In addition, we also showed that the proposed
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approach for subunits derivation is abstract. In the sense that it can be applied to other problems,
like in speech processing to discover subword units or phone set and develop pronunciation
lexicon. As part of the investigations to understand the derived hand movement subunits, we also
developed a visualization approach inspired from movement synthesis in 3D space in robotics.

Sign language consists of different channels of information corresponding to manual components
(hand position, hand movement and handshape) and non-manual components (mouthing, facial
gesture, posture). Besides extraction of the information related to these components from the
visual signal, there is need for methods that can effectively model these components jointly for
sign language processing. In that respect, we argued that this challenge is similar to the challenge
of modeling multichannel speech production (phonological) information or articulatory features in
speech processing. In Chapter 6, we showed that the HMM-based methods developed in speech
processing for modeling articulatory features can be adopted for modeling the multichannel
information in sign languages. We proposed two phonology-based approaches to model jointly
different visual subunits: tandem-feature based approach and KL-HMM based approach. Through
extensive studies on modeling hand movement and handshape channels for monolingual, cross-
lingual and multilingual sign language recognition, we showed that joint modeling of hand
movement and handshape channels through both the approaches consistently improves over
stand-alone hand movement channel modeling and stand-alone handshape channel modeling.

Chapter 7 built on the phonological framework developed in Chapter 6 for joint modeling of
multichannel information to develop an explainable sign language assessment approach. Specifi-
cally, we showed that the KL-HMM based phonological approach can be naturally extended for
sign language assessment. This approach carries out assessment of sign at two different levels:
at lexeme level and at form level. Extensive studies on SMILE DSGS database showed that (a)
with the proposed approach sign language assessment can be carried in a linguistically valid
manner, (b) the KL-HMM can be replaced by a single instance of acceptable sign production of
the expected sign, and (c) interpretable assessment scores can be generated. The investigations in
this chapter also led to development of a real-time demonstrator where isolated sign productions
are assessed at form level and feedback is provided. It is worth mentioning that it is one of the
first works where hand movement and handshape are automatically assessed at different levels.

There are potential directions for future research,

• This thesis focused on modeling two channels in sign language: hand movement and hand-
shape. However, phonology-based sign language recognition and assessment approaches
developed in this thesis as such are not restrictive to handshape and hand movement infor-
mation. Other information such as facial expression, mouthing could be modeled by feature
augmentation. One such potential direction could be the facial action coding system [25]
which describes the facial muscular positioning into basic universal emotions. Such system
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can give relevant information on eye/eye-brown movements, mouth movements, head
movements and emotions/expressions.

• The research and development in this thesis focused only on isolated signs. However,
in sign language communication, similar to spoken language, there is use of continuous
signing. When compared to isolated sign production, one of the differences in continuous
signing is that there is a "co-articulation" effect when transiting from one sign/lexeme to
another sign/lexeme. Thus, further research is needed to scale the sign language recognition
and assessment approaches developed in this thesis to continuous signing. One potential
way to handle the co-articulation effect between the signs is to use the transition model
proposed in Chapter 4.

• In this thesis, we have mainly used an acquisition system that is based on Kinect camera.
However, in the recent years, in the computer vision community RGB cameras have
gained increased attention and considerable progress has been made in the area of human
motion/action recognition [121]. Scaling of the proposed approaches to a RGB camera
acquisition system is open for future research.

• As demonstrated in Chapter 5, hand movements can be synthesized in the 3D skeleton
space by using the subunits-based HMM inferred for signs as a generative model. The hand
movement synthesis could potentially be used as input to a sign production system such as
an avatar system [37] or a neural-based sign production system [107, 106]. Another area of
interest could be robotics, where a robot performing manual component of sign could be
conceived through generation of both hand movement and handshape information.

• The sign language assessment system developed in this thesis presumes that the signs are
produced by adult signers. Computer-aided sign language learning tool can be of interest
to children as well. So, an interesting research question arises is how to scale such a system
to children?
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A Subunits Extraction for Spoken Lan-
guage Application

State-of-the-art methods for development of Automatic Speech Recognition (ASR) systems
and Text-to-speech Synthesis (TTS) systems presume that the target language has a written
form and there exists a phonetic lexicon that transcribes the written form into sequence of
phonemes/phones. Given the written form of words, a phonetic lexicon can be developed with
the help of linguistic expertise or knowledge of the target language [1, 56]. As a first step,
a human expert manually transcribes each word into a phoneme sequence by observing the
grapheme sequence (i.e. orthographic transcription). Once a base lexicon is available, a rule-
based approach [30, 31] or a learning-based approach (e.g., grapheme-to-phoneme conversion [82,
11, 119]) can be adopted to augment the lexicon with new words and pronunciation variants.

In the world, there are approximately 6900 languages and only about 5-10% of them employ a
writing system [1]. Furthermore, not all of the languages that have a writing system may have
a well developed phonetic dictionary. Studying these languages manually, to acquire linguistic
knowledge and phonetic dictionary from the acoustic data, is a highly challenging and non-trivial
task. Availability of computational methods can immensely help both the linguistic research
community as well as the speech technology research community. One potential venue for that
is the area of zero-resource speech processing,1 which originally started with the problem of
unsupervised speech pattern discovery [83, 84], and was then extended to automatic subword
units discovery [113] and spoken term discovery [50], and more recently cast as a problem of
automatic language acquisition by machines [114, 32], taking inspirations from how infants and
children acquire spoken language at the very early stages of life.

Instead of a completely unsupervised approach, yet another approach could be addressing
a somewhat simplified question with light supervision: given only a set of utterances and
the knowledge that any two pair of utterances correspond to the same word or not, how to

1https://zerospeech.com/2015/index.html (visited on 02/19/2021)
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Appendix A. Subunits Extraction for Spoken Language Application

automatically infer the phone set inventory and a lexicon? Irrespective of whether the target
language is known or not or whether it has a written form or not this question can be posed.
Furthermore, linguish notions such as minimal pairs are built on pairwise comparison. We can
pose subword unit extraction in a similar manner. Availability of such a data with pairwise
comparisons can very well be envisaged in field linguistics. For instance, collection of speech
utterances of day-today life objects/entities (e.g. food, cloth, numbers) possibly without the
necessity to speak the unknown spoken language by showing them. Also, if only acoustic data of
an unknown language is available, such form of light supervision, i.e. whether two utterances
correspond to the same word or not, could be obtainable from people with some speech expertise
through listening tests. Furthermore, such a question can be posed in the above mentioned zero
resource speech processing framework after unsupervised spoken term for phone set or automatic
subword unit inventory discovery and pronunciation model extraction. The same question could
be posed in the case of sign languages to derive subunits and model signs as a sequence of
subunits as presented in Chapter 5.

In this appendix, we applied the HMM-based abstract framework presented in Chapter 5 for
linguistic resource development for speech processing, by building upon the inherent ability of
HMM to segment time series into stationary segments and recent works on resource-constrained
speech processing using auxiliary multilingual resources. We demonstrate with the spoken
language study that the framework can lead up to phone set discovery and pronunciation lexicon
development.

A.1 Spoken Subunit derivation and Lexicon Development

This section presents the subunit based lexicon development (see Chapter 5) applied to spoken
languages. Specifically, given the pairwise comparison data, in this methodology,

Step 1: first, a sequence of feature vectors is extracted for each utterance. The feature vectors are
short-term cepstral features, which tend to model information related to vocal tract system;

Step 2: given the sequence of feature vectors for each utterance, a HMM is obtained for each
unknown word in the set;

Step 3: next, the states are clustered into subunits by pairwise comparison and a sequence model in
terms of clustered subunits is obtained for each unknown word; and finally

Step 4: phone set and pronunciation model for the unknown words are inferred by learning a
probabilistic subunit-to-phone relationship exploiting auxiliary speech data with linguistic
resources.
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Methodology of steps 2 and 3 remain the same as in the sign language application; i.e. in Step 2
word-level HMM are determined and given the single Gaussians of the words HMM states, Step
3 clusters them through the Bhattacharrya distance, a measure of discrimination.

In Step 4, the goal is to establish a link to linguistic knowledge to ascertain the identity of the
automatic subword units. Since spoken language can be written in terms of phones, this can
be done by learning a probabilistic relationship between the derived subword units and phones
through acoustic signal. More precisely, as illustrated in Figure A.1, this involves,

1. training of a phone posterior probability estimator on auxiliary data or languages that have
well-developed phonetic resources;

2. training of KL-HMM [4, 3] with the phone posterior probability as feature observations
and the states being represented by the derived automatic subword units. Each state of the
KL-HMM is parameterized by a categorical distribution of the same dimension as phone
probability feature vector, which capture a probabilistic relationship between the automatic
subword units and the phones; and

3. inference of phone-based pronunciation by using the trained KL-HMM as a generative
model and decoding the resulting sequence of probability through an ergodic HMM of
phones.

It is worth mentioning that the proposed approach of inferring phonetic identities of the automatic
subword units, and consequently a phonetic lexicon is inspired from the approach of acoustic
data-driven grapheme-to-phoneme conversion using KL-HMM [95].

Figure A.1 – Illustration of the phoneme inference according to the derived subword units.

A.2 Experimental Setup

We validated the proposed approach on a spoken language through ASR system level studies,
as ASR relies on discrimination between words, and pronunciation lexicon level studies. We
used a part of the PhoneBook database for the study. We used 39 dimensional Perceptual Linear
Prediction (PLP) [46] cepstral features (c0 −c12 +∆+∆∆) extracted with a window size of 25 ms
and with a window shift of 10ms as the feature vectors.

109



Appendix A. Subunits Extraction for Spoken Language Application

A.2.1 PhoneBook database

PhoneBook is a speaker-independent phonetically-rich isolated-word telephone-speech English
database [89]. PhoneBook consists of more than 92,000 utterances and almost 8,000 different
words, with an average of 11 different speakers/word. The database has been split into 106 word
lists, each composed of around 75 words. Furthermore, the set of speakers is different for each
word list. The word list contains uncommon English words and proper names (e.g., Witherington,
Gargantuan). For our investigation, we used the small size (75 words) vocabulary setup; more
precisely the ad word list that we separated into training, development and test sets as follows:

We selected speaker m0k who has uttered 74 words out of the 75 words as the development
set. The development set is used for determining the number of HMM states per word in Step
2 and the clustering threshold τ in Step 3. With the ten remainder speakers, we performed a
speaker independent experiment, where a leave-one-speaker out protocol was applied. Thus, ten
experiments were conducted, where in each experiment, the data of one speaker was used for
testing and the data of the remaining speakers are used for automatic subword units inference
and for training ASR system. For each of the experiment, the average number of utterances for
training, development and testing are 621, 74 and 69, respectively.

For lexical level validation studies, as part of Step 4, we used 21 word lists: aa, ah, am, aq,
at, ba, bh, bm, bq, bt, ca, ch, cm, cq, ct, da, dh, dm, dq, dt, ea to train phone-based classifier.
This word list was originally defined in a study on task-independent speaker-independent speech
recognition [33]. Task-independent because the words in each word list are different and speaker-
independent as the speakers in each word list are different. For example, words and speakers in
word list ad are entirely different than the words and speakers in the 21 word lists. As done in [33],
we use 42 context-independent phones (including silence) from the PhoneBook dictionary.

We also conducted a study where the phone posterior probability estimator is trained with
multilingual data without English. For that we used the Swiss French, Swiss German, Italian
and Spanish part of the SpeechDat(II) corpus. Each language has about 12 hours of speech. The
lexicons are based on SAMPA phone set.2 We created a multilingual phone set by merging the
phone sets across the four languages. This resulted in 104 context-independent phones including
silence. It is worth mentioning that 35 phones out of the 104 phones are common to English
SAMPA phone set.

A.2.2 Systems

We built HMM/GMM [92] and hybrid HMM/ANN [14] systems to evaluate the automatic sub-
word units based lexicon at ASR level. We built KL-HMM systems for lexical level validation.

2https://www.phon.ucl.ac.uk/home/sampa/ (visited on 02/19/2021)
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In each case, we built two systems: (a) using word-level HMM states obtained in Step 2 as
subword units, referred to as word level system and (b) using the clustered HMM states in Step 3
as subword units, referred to as clustered subword units based system. The motivation behind
building word level system is that Step 2 obtains a word level HMM with fixed number of states
n through discrimination like in Step 3, so the states of the word level HMM can also regarded as
subword units without being clustered. Such a comparison would help us to determine whether
the clustering step is indeed yielding meaningful subword units or not. The HMM were trained
and tested with the HTK toolkit [130]. The KL-HMM system studies were conducted using
an in-house modified version of HTK. The neural networks, more precisely MLP, for hybrid
HMM/ANN and KL-HMM systems were trained using the Quicknet software [52].

HMM/GMM Systems: All the HMM/GMM systems are left-to-right HMM using a single
Gaussian distribution with diagonal covariance matrix as the emission distribution. In the case of
the word level system, the number of states is chosen according to the model that saturates on the
training and development data (Step 2). The range of the number of states was from 3 to 30. In
the subword unit-based model, the clustering step was conducted with the hyper-parameter, τ,
in the range of 0.8 to 3.2 with a 0.2 step, each leading to a different lexicon. An HMM/GMM
system was trained for each lexicon and the final one was chosen according to the maximum
recognition accuracy on the development set (Step 3). The resulting word level system and
clustered subword unit based system was tested on the test set. This process was repeated for
each speaker-independent fold.

Hybrid HMM/ANN Systems: For building the hybrid HMM/ANN systems, we first obtained
the alignments in terms of the HMM states respectively from the word level and the clustered
subword units-based HMM/GMM systems for each speaker-independent fold. We then trained
MLPs classifying HMM states with output non-linearity of softmax and minimum cross-entropy
error criterion. We used the 39-dimensional PLP cepstral features with four frames preceding
context and four frames following context as the MLP input. In our experiments we trained MLPs
with different number of hidden units (600, 800, 1000) and hidden layers (0, 1, 2, 3). The number
of hidden units and hidden layers as well as other hyper-parameters such as learning rate and the
batch size were chosen according to the frame-level accuracy on the development set.

We estimated the scaled likelihoods in the hybrid HMM/ANN systems by dividing the posterior
probabilities derived from MLPs with the prior probabilities of the classes estimated from relative
frequencies in the training data. These scaled likelihoods were then used as emission probabilities
for HMM states.
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KL-HMM Systems: First a single hidden layer MLP was trained to classify 42 context-
independent phones, including silence. We used the 39-dimensional PLP cepstral features
with four frames preceding context and four frames following context as the MLP input. The
number of hidden nodes was 800. The KL-HMM parameters were then training by forward
passing the training portion of the ad list data through the MLP and using resulting 42 dimen-
sional phone posterior probability distribution per frame as the feature observations. We trained
word level system and clustered subunits based system for each speaker-independent fold. After
training the KL-HMM system, we tested the performance at ASR level on the test data. For
lexical level validation, we generated the pronunciation of each word in terms of the 42 phones, as
described earlier in Step 4. For each word, we then computed the Levenshtein distance between
the inferred pronunciation and the pronunciation given in the PhoneBook dictionary.

We trained a multilingual KL-HMM system for each speaker-independent fold where, we first
trained a multilingual phone classifier on the SpeechDat(II) and then for each fold trained the
KL-HMM parameters on the training portion of the ad list data, by forward passing it through the
multilingual phone classifier and using the resulting multilingual phone posterior probabilities as
feature observation.

A.3 Results and Analysis

In this section, we first present ASR level validation studies followed by lexical level validation
studies. We then present as part of analysis: (i) impact of number of utterances on the proposed
methodology on phone set and pronunciation model inference and (ii) investigations using
language independent multilingual data.

A.3.1 Automatic speech recognition level validation

First, the ASR study on the PhoneBook database is conducted to validate the assumption that the
proposed approach derived discriminative subword units. Table A.1 presents the average RA over
the ten fold experiments of the clustered subword unit-based and word level systems as well as
the average number of units used per system. It can be observed that, in the case of HMM/GMM

Table A.1 – Clustered subword unit-based and word level systems RA on the PhoneBook database
using PLP cepstral features with HMM/GMM and hybrid HMM/ANN systems

Clustered subword unit-based
System

Word level
System

HMM/GMM 94.1 ± 5.6 96.1 ± 4.0
Hybrid HMM/ANN 97.8 ± 2.0 98.3 ± 2.1

Average # units 810 1125
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study, word-level system outperforms clustered subword units based system. However, in the case
of hybrid HMM/ANN system, the performances are better than respective HMM/GMM system
performance and are comparable. As a whole, the results indicate that the clustered subword
units retain discrimination information across the words even with a reduction of around 28% of
the number of HMM states.

Table A.2 presents the average RA of the clustered subword unit-based and word level KL-HMM
systems. As it can be seen, both systems yield comparable RAs, again indicating that clustered
subword units retain discrimination across the words.

Table A.2 – KL-HMM-based subword unit- and word level -based systems results on the Phone-
Book database using posterior distributions as features

Clustered subword unit-based
system

Word level
system

KL-HMM 99.0 ± 1.8 99.4 ± 1.2

A.3.2 Lexical level validation

As explained earlier in Section A.1 (see Figure A.1), we inferred the pronunciation of each word
in the lexicon using the KL-HMM as a generative model, and decoding the resulting sequence of
phone posterior probabilities for each word using a 42 phone fully connected ergodic HMM to
get the pronunciation model. We compared the inferred pronunciations with the pronunciation
provided in the PhoneBook dictionary, and computed Levenshtein distance (LEV) [67] and Phone
Recognition Rate (PRR). PRR is calculated as

1.0− (#i nser t i on +#del et i on +#substi tuti on)

Nr e f
, (A.1)

where # denotes ‘number of’ and Nr e f denotes the number of phones in the reference phonetic
transcription. Table A.3 presents the average LEV and PRR for pronunciations inferred by
clustered subword unit based KL-HMM and word level KL-HMM. It can be observed that the
inferred pronunciations are close to the original pronunciations in the manual pronunciation
dictionary. Further analysis of the lexicon showed that the phonetic lexicon inferred using
clustered subword unit based system cover 39 phones out of the 42 phones, while the manual
dictionary for the words in ad list covers 38 phones. More precisely, with an exception of one
extra phone, all the phones in the manual dictionary were inferred.

113



Appendix A. Subunits Extraction for Spoken Language Application

Table A.3 – Levenshtein distance (LEV) and phone recognition rate (PRR) results of the lexicon
inferred from clustered subword unit-based KL-HMM system and word level KL-HMM system

Clustered subword unit-based
system

Word level
system

LEV ± std 1.9 ± 0.2 1.5 ± 0.1
PRR ± std 70.3 ± 2.6 76.4 ± 1.1

A.3.3 Further analysis

Impact of number of utterances: In the experiments presented above, we had nine speakers
utterances per word to derive subword units. In realistic under-resourced language scenario, it may
not be possible to get so many speaker utterances per word. So we studied the impact of number
of speaker utterances on the proposed approach by developing two additional systems: (a) using
only six speaker utterances per word (denoted as six-utterances) and (b) using only four speaker
utterances per word (denoted as four-utterances) in a gender balanced manner. We compared the
performances to the case where all the training utterances (denoted as all-train-utterances) are
used. It is worth mentioning that after deriving automatic subword unit lexicon the HMM/GMM
system was trained with all the utterances so that we can fairly compare the resulting lexicons.
If the HMM/GMM systems were trained with four utterances or six utterances, separating the
differences due to lexicon and data sparisty would have been a non-trivial task. Table A.4 presents
the average RA for HMM/GMM system. It can be observed that the amount of data used to infer
automatic subword unit based pronunciation lexicon does not seems to affect the performance at
ASR level. Interestingly, we can observe improvement with six-utterances based lexicon.

Table A.4 – Clustered subword unit-based and word level HMM/GMM systems results on the
PhoneBook database depending on the three different setups used to infer the lexicon (all-train-
/six-/four-utterances based lexicon) using PLP cepstral features

HMM/GMM-based system
Lexicon Average RA ± std Average # units

Clustered subword
unit-based

system

all-train- utterances 94.1 ± 5.6 810 (-28%)
six-utterances 95.7 ± 4.5 1365 (-9%)

four-utterances 95.4 ± 5.9 1019 (-3%)

Word level
system

all-train-utterances 96.1 ± 4.0 1125
six-utterances 96.3 ± 4.0 1500

four-utterances 96.0 ± 5.5 1050

Table A.5 presents the results with KL-HMM system at ASR level and lexical level. In this case,
the automatic subword units based lexicon is derived using all-training-, four- or six- utterances
and the KL-HMM is also trained on all-train-, four- or six- utterances, respectively. We can again
observe that reduction in number of utterances is not affecting Step 2, Step 3 and Step 4. Similar
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to the HMM/GMM study, at the ASR level, the number of samples are not impacting the RA. At
the LEV and PRR level, we can observe improvement with the six-utterances based lexicon.

Table A.5 – Clustered subword unit-based and word level KL-HMM systems RA, Levenshtein
distance (LEV) and phone recognition rate (PRR) on the PhoneBook database depending on the
three different setups used to infer the lexicon (all-train-/six-/four-utterances -based lexicon)

Monolingual KL-HMM-based system
Lexicon Average RA ± std LEV ± std PRR ± std

Clustered subword
unit-based

system

all-train-utterances 99.0 ± 1.8 1.9 ± 0.2 70.3 ± 2.6
six-utterances 99.3 ± 1.2 1.5 ± 0.1 76.2 ± 1.7

four-utterances 99.0 ± 1.4 1.8 ± 0.1 71.5 ± 1.0

Word level
system

all-train-utterances 99.4 ± 1.2 1.5 ± 0.1 76.4 ± 1.1
six-utterances 99.3 ± 1.2 1.4 ± 0.0 77.5 ± 0.7

four-utterances 99.1 ± 1.4 1.8 ± 0.1 72.1 ± 0.8

Multilingual study: In the above studies, the ASR level and lexical level studies were conducted
in matched condition in term of language. In other word although the words and the speakers are
not shared across word lists, the language is still English. So we studied the possibility to use
language-independent multilingual resources. For that, we performed ASR and pronunciation
inference study using the multilingual KL-HMM system, where the 104 dimensional multilingual
posterior probabilities estimated by MLP trained on Swiss French, Swiss German, Italian and
Spanish portions of SpeechDat(II) are used as the feature observation to learn the relationship
between the automatic subword units and the multilingual phones. Table A.6 presents the ASR
performance in terms of RA. For all the case, there is slight drop in performance when compared
to the monolingual MLP. The trend remains same word level system and clustered subword
units based system yield comparable systems. We also observe that reducing the number of
utterances for derivation of automatic subword units and KL-HMM training does not impact the
performance of the systems. This suggests that there exists a systematic relationship between the
derived subword units and multilingual phones.

Table A.6 – Clustered subword unit-based and word level KL-HMM systems results on the
PhoneBook database using multilingual phoneme classifier (without English)

Multilingual KL-HMM-based system
Lexicon Average RA ± std

Clustered subword
unit-based

system

all-train-utterances 98.4 ± 1.5
six-utterances 98.5 ± 1.6

four-utterances 98.4 ± 2.5

Word level
system

all-train-utterances 98.7 ± 2.1
six-utterances 98.5 ± 1.6

four-utterances 98.4 ± 2.5
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We inferred the pronunciation based on the 104 multilingual SAMPA phone set. We found that
all-train-utterances based lexicon covers 40 phones out of the 104 phones. 27 out of the inferred
40 phones belong to or shared to English SAMPA phone set, while 13 are borrowed from other
languages. We were not able to carry out lexical level validation using LEV and PRR measures,
as PhoneBook lexicon and SpeechDat(II) lexicon are based on two different Bets. It was not
possible to map all the phones precisely, especially multilingual phones. Table A.7 presents some
examples of the phonetic inference in PhoneBook Bet for the monolingual case and SAMPA Bet
for the multilingual case. We can observe that, unlike monolingual inference, the multilingual
phone inference is somewhat noisy. This can potentially be due to the mismatch in the database
conditions.

Table A.7 – Examples of phonetics inference according to the monolingual KL-HMM and
multilingual KL-HMM

Word True
Monolingual-based

Inferrence
Multilingual-based

Inferrence
yarns y a r n z y a r n z j o n

speechwriter s p i C r Y t X s p i C r Y t X s p i tS u a OY e l
infrequently I n f r i k w x n t l i I n f r i k w x t l i i e n f w i k u e

oops u p s w u p t s n u
quail k w e l k w e l u w e i o

bonbon b a n b a n b @ a n b a x n o n b o n
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