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Abstract
Mental disorders, e.g. depression and dementia, are categorized
as priority conditions according to the World Health Organi-
zation (WHO). When diagnosing, psychologists employ struc-
tured questionnaires/interviews, and different cognitive tests.
Although accurate, there is an increasing necessity of devel-
oping digital mental health support technologies to alleviate
the burden faced by professionals. In this paper, we propose
a multi-modal approach for modeling the communication pro-
cess employed by patients being part of a clinical interview or
a cognitive test. The language-based modality, inspired by the
Lexical Availability (LA) theory from psycho-linguistics, iden-
tifies the most accessible vocabulary of the interviewed subject
and use it as features in a classification process. The acoustic-
based modality is processed by a Convolutional Neural Net-
work (CNN) trained on signals of speech that predominantly
contained voice source characteristics. In the end, a late fusion
technique, based on majority voting, assigns the final classifi-
cation. Results show the complementarity of both modalities,
reaching an overall Macro-F1 of 84% and 90% for Depression
and Alzheimer’s dementia respectively.
Index Terms: Depression Detection, Alzheimer’s Disease,
Mental Lexicon, Raw Speech, Multi-modal Approach.

1. Introduction
Mental disorders represent a major public health concern, with
considerable associated socio-economic costs, and are recog-
nized as a major cause of disability affecting a great number of
people. According to the World Health Organization (WHO),
depression and dementia are among the main types of mental
disorders and are categorized as priority conditions [1, 2]. Al-
though the severity of suffering a mental illness is well known
by psychologists, there is an acknowledged necessity for digital
solutions for addressing the burden of mental health diagnosis
and treatment. It is recognized that won’t be possible to treat
people by professionals alone, and even if possible, some peo-
ple might require to use alternative modalities to receive men-
tal health support [3]. Such situation has become more evident
with the current COVID-19 pandemic. Interested readers are
referred to [4, 5, 6] to know efforts towards this direction.

Accordingly, the research community has been interested
in making first steps towards computer-supported detection of
mental disorders during face-to-face interviews/tests [7, 8, 9].
The underlying hypothesis of most of previous work relies on
the notion of the language as a powerful indicator about our per-
sonality, social, or emotional status, and mental health [10, 11].

In dementia, for instance, previous research indicates that as-
sessing the language production represents a useful strategy
in detecting early markers of dementia [12]. Thus, designed
tests for evaluating the language production in elderly patients
such as word association tasks, description of objects in pic-
tures, elicitation exercises, etc., aim at measuring the expository
speech, oral expression, as well as comprehension. Similarly,
for depression, previous research suggest that using excessive
self-focused language, and negative emotions represent impor-
tant markers for screening depressed users [10, 13, 14] and, re-
cent studies have documented how depressed users suffer some
kind of impairment in their speech motor control [15], such as
prosodic abnormalities, articulatory and phonetic errors.

Although multi-modal approaches have been explored be-
fore [7, 16, 17], the key novelty of our work is to leverage
the psycholinguistics theory for approximating the mental lex-
icon1 of analyzed subjects for processing the language-based
modality. The acoustic-based modality aims at modeling the
patients’ speech in an end-to-end fashion from raw waveform-
based CNNs. In conjunction, both modalities allow modeling
the language production process employed by subjects with a
mental disease during a clinical interview/test. We performed
experiments in two well-known clinical datasets, using indi-
vidual modalities, and in a multi-modal fashion, where a voter
makes the final decision through a majority voting mechanism.

2. Methodology
The proposed language-based modality aims at modeling the
vocabulary production of subjects suffering from a mental dis-
order through the Lexical Availability (LA) theory [19]. The
LA test is associated with the category fluency tests and the free
word association tasks, which taps directly into the semantic
information of the mental lexicon [20]. Hence, our main hy-
pothesis establishes that it could be possible to approximate the
available lexicon for a group of people suffering from a mental
disease. Contrary to the traditional LA elicitation test, we aim to
demonstrate that it is possible to approximate the available lexi-
con by analyzing subjects’ responses in a semi-structured com-
munication process (e.g, a clinical interview/test). To the best
of our knowledge, this is the first time the LA theory is adapted
to: i) obtain the available lexicon from utterances produced dur-
ing a clinical test and use the extracted features in a traditional

1The mental lexicon of a community reveals the type, size, and rich-
ness of their vocabulary as well as provides evidence of the community
member’s understanding of a particular culture, or the structure of their
context and the existing regularities present [18].



Figure 1: General overview of the proposed language-based modality.

classification pipeline; ii) fuse its predictions in a multi-modal
fashion with a raw waveform-based acoustic approach.

Figure 1 shows the main components of our LA method.
First, we identify the available lexicon from each popula-
tion (i.e., subjects with a mental disorder and control sub-
jects) and then use it to generate a non-sparse text represen-
tation to train a classification model to distinguish between
mentally ill (D) and control (C) subjects. More formally, let
D = {(d1, y1), . . . , (dh, yh)} be a training set of h-pairs of
documents2 di and class labels yi ∈ Y = {y⊕, y	}. The
first step consists of obtaining the available lexicon (V) for
each category, i.e., Vy⊕ and Vy	 for the documents belong-
ing to D and C categories respectively. The resultant available
lexicon for each category yi is a list of n-pairs of the form
Vyi = {(t1,Dst(t1)), . . . , (tn,D

st(tn))}, where each term tj
is accompanied by its lexical availability score Dst(tj). Details
on how to compute the availability score are depicted in §2.1.

Then, for generating the representation of subject ρ, we de-
fine two sets of features: the availability degree (f avail), and the
correlation degree attributes (f cor). Thus, we first compute the
available lexicon of subject ρ, referred as Vρ, and we calculate
its availability features (f avail) by means of a fusion strategy
among the top k terms from Vy⊕ ∪Vy	 , and Vρ (see §2.2). For
obtaining the correlation features (see §2.3) we compare the
data distributions between ρ and the two classes (y⊕ and y	),
resulting in a representation vector with the following form:

−→ρ = 〈f avail
t1 , . . . , f avail

tj , . . . , f avail
tk |f

cor
Vy⊕

, f cor
Vy	
〉 (1)

Once we have this representation, we can follow the tradi-
tional machine learning pipeline for training a classifier.

2.1. Lexical availability computation

Traditionally, the LA test produces a single word list, i.e., the
available lexicon (with its corresponding availability scores),
for each analyzed community. To compute the availability

2We’ll refer as documents to the transcribed text obtained from the
subjects’ utterances.

scores of this available lexicon, we have to analyze the re-
sponses of each individual in that population (see Fig. 1,
columns 1-3); to that end, we use the formulation proposed by
[21], defined as follows:

Dst
w,k,m(tj) =

n∑
i=1

w(
i−1
k−1 )

m

× fji
I

(2)

where tj represents the lexical term for which we want to know
its availability score; i is the position indicator where tj is men-
tioned in the considered individual responses; n is the max-
imum position reached by term tj in all the considered re-
sponses; I serves as a normalization factor and is defined as
I = max freq, which depicts the highest frequency found in
the vocabulary of the population being analyzed; fji is the num-
ber of participants who produced term tj at position i in their
respective responses; k indicates the position value where the
score will be equal to w; w is the desired weight (normally a
value close to 0) for position k, and m is a parameter that mod-
ulates the weight decay across terms in the final mental lexicon.

Eq. 2 represents a standardized LA metric that allows direct
comparisons among studies independently from the size of the
produced vocabulary lists of different communities [21]. Ac-
cordingly, the Dst equation will assign higher scores (close
to 1) to the most available words produced by the analyzed
subjects. Conversely, it assigns progressively lower scores to
less accessible words until reaching value w in position k, at a
weight decay intensity defined by the parameter m. Intuitively,
the smaller the value of m, the faster the weight decay across
words in consecutive positions. For all our experiments, we de-
fined w = 0.0001 and m = 0.8.

2.2. Availability features

We defined the availability features (f avail) as the single (most
representative) LA score for each term tj ∈ (Vy⊕∪Vy	). Thus,
to obtain the f avail

tj score of term tj we apply the CombMNZ
[22] data-fusion strategy. Data-fusion strategies aim at integrat-
ing many possible answers (scores) for an object into a single



best representative score. Therefore, to compute the represen-
tative score of tj we first obtain the available lexicon Vρ of the
instance ρ applying Eq. 2. Then, for obtaining the f avail

tj we fuse
the scores of word tj from the list Vρ with the available lexicons
Vy⊕ and Vy	 . For this process, we do as follows:

f avail
tj = CombMNZ(tj , k, {Vρ,Vy⊕ ,Vy	}) (3)

where tj is the word for which we want a fused score, k in-
dicates the maximum position where tj will be searched in the
input lists, and the V’s are the set of lists to be considered for the
fusion process. Notice that k has the same interpretation of that
in Eq. 2; intuitively, it indicates the number of words (features)
to be considered for building the representation vector.

Thus, assuming N = len({Vρ,Vy⊕ ,Vy	}), Dc as the
score of tj in list c, and |Dc > 0| as the number of non-zero
scores given to tj by any list c, the final score for each unique
term tj is computed as follows:

CombMNZ(tj , k, {Vρ,Vy⊕ ,Vy	}) =
N∑
c

Dc × |Dc > 0|

(4)
Broadly speaking, the f avail

tj of term tj represent a weight
value indicating to what category it adjust the best.

2.3. Correlation degree features

The correlation degree features aim at measuring the relation-
ship between the two sets of paired words, particularly we com-
pute cor(Vy	 , Vρ), and cor(Vy⊕ , Vρ). The correlation (cor)
value will be an indicator of the association between the avail-
able lexicon form subject ρ and the corresponding Vy	 and Vy⊕
categories. For the experiments performed in this paper, every
f cor
tj feature is formed by two values, the Spearman’s correlation

coefficient and its corresponding p-value.

2.4. Acoustic based method

The acoustic based method directly models raw waveforms to
predict the class-conditional probabilities using a CNN-based
architecture. As described in [23], the architecture consists of
four 1-D convolutional layers, followed a hidden layer and an
output-layer. In order to guide the learning procedure, depend-
ing on the task, different approaches were previously proposed:
We distinguish between sub-segmental and segmental filtering
(see [23] Table 1); raw waveforms can be filtered to extract
voice-source related characteristics to guide the learning proce-
dure. Specifically, for the depression detection task, the primary
method (denoted as 1stAcoustic) uses zero frequency filtering
to get a signal that characterizes the glottal excitation. The sec-
ondary method (denoted as 2ndAcoustic) consists of modeling
speech at a frame level using linear prediction and subtracting
it from the original speech to get the linear prediction residual,
which contains voice source related characteristics, while both
use an input length of 250ms. However, for Alzheimer’s detec-
tion, both systems use 4 second length inputs of zero frequency
filtered signals, where the primary method (denoted as 1stA-
coustic) applies a sub-segmental filtering stage, the secondary
method (denoted as 2ndAcoustic) a segmental filtering stage.

2.5. Late fusion

Once both the language-based and acoustic-based modalities
are trained independently, the late fusion approach consists of a
voter that takes as inputs the predictions made by the language-
based and acoustic-based approaches. The final decision is

DAIC-WOZ ADReSS

Mod. Approach Class. F1-score Class. F1-score
O D C O D C

Te
xt

ua
l

BoW MLP 0.65 0.48 0.83 SVC 0.84 0.83 0.86
LIWC MLP 0.53 0.34 0.72 LR 0.70 0.70 0.70
BERT SVC 0.70 0.53 0.86 MLP 0.73 0.74 0.72

LA-A100 PER 0.58 0.40 0.77 SVC 0.77 0.74 0.79
LA-A500 MLP 0.71 0.58 0.84 LR 0.84 0.83 0.86
LA-A1000 MLP 0.71 0.56 0.87 LR 0.84 0.83 0.86
LA-AC100 PER 0.57 0.41 0.73 MLP 0.77 0.75 0.80
LA-AC500 MLP 0.68 0.53 0.83 LR 0.86 0.85 0.87
LA-AC1000 MLP 0.66 0.45 0.86 LR 0.87 0.86 0.88

A
co

us
tic

1stAcoustic - 0.58 0.41 0.76 - 0.76 0.69 0.90
2ndAcoustic - 0.52 0.32 0.71 - 0.76 0.71 0.88

Table 1: Performance under a 10-CFV strategy on train sets.

made by means of a majority voting mechanism, where if tied,
the output will be always labeled as C (i.e., control).

3. Experimental Setup
For the experiments, we use the Distress Analysis Inter-
view Corpus - wizard of Oz (DAIC-WOZ) dataset [24] and
the Alzheimer’s Dementia Recognition through Spontaneous
Speech (ADReSS) dataset [9]. The DAIC-WOZ dataset con-
tain semi-structured clinical interviews, performed by an (hu-
man controlled) animated virtual interviewer, designed to sup-
port the diagnosis of psychological distress conditions such as
anxiety, depression, and post-traumatic disorder. This dataset
was used during the AVEC 2016 challenge [7], and contains
audio-visual interviews of 189 participants: 107 for training, 35
for development, and 47 for test. The ADReSS data, introduced
for the Interspeech 2020 ADReSS challenge [9], consists of
speech recordings and transcripts of spoken picture descriptions
elicited from participants through the Cookie Theft picture from
the Boston Diagnostic Aphasia Exam [25]. It contains speech
and transcripts information from 156 participants: 108 for train-
ing, and 48 for test. In the DAIC-WOZ dataset approximately
≈30% of the subjects are labeled as depressed (D), while the
ADReSS data is perfectly balanced. It is worth mentioning that
the labeling of each datset was done by expert mental healthcare
providers, interested reader is referred to [24, 9].

We evaluate the performance of three well-known text-
based methods. First, a traditional Bag-of-Words (BoW) using
the top 1000 most frequent words under a Term Frequency In-
verse Document Frequency tf-idf weighting scheme. Secondly,
we use the Linguistic Inquiry and Word Count (LIWC) [26]
categories for representing the documents. LIWC psychologi-
cal categories capture the semantic content of the language pro-
duced [27], e.g., allow to detect positive vs. negative emotions,
words referencing family/friends/society, pronouns which can
capture inclusive language vs. exclusive language, and words
referencing how the person is feeling.

As third baseline, we evaluate the impact of recent
transformer-based models [28] as a language representation
strategy. For our experiments we test an English pre-trained
BERT model. As known, the [CLS] token acts an “aggregate
representation” of the input tokens, and is considered as a sen-
tence representation for many classification tasks [29]. Accord-
ingly, for generating the representation of each document, we
split the document into smaller chunks (max length of 512 to-
kens), obtain the [CLS] encoding of each chunk, and we apply



DAIC-WOZ ADReSS

Mod. Approach Class. F1-score Class. F1-score
O D C O D C

Te
xt

ua
l

BoW MLP 0.53 0.32 0.75 LR 0.85 0.84 0.86
LIWC MLP 0.49 0.29 0.69 SVC 0.62 0.57 0.67
BERT MLP 0.51 0.30 0.72 SVC 0.81 0.80 0.82

LA-A100 DT 0.63 0.54 0.73 SVC 0.73 0.70 0.76
LA-A500 MLP 0.54 0.36 0.71 MLP 0.85 0.86 0.85
LA-A1000 DT 0.58 0.40 0.76 LR 0.85 0.85 0.86
LA-AC100 SVC 0.70 0.64 0.76 MLP 0.75 0.71 0.79
LA-AC500 MLP 0.51 0.25 0.79 LR 0.87 0.88 0.86
LA-AC1000 PER 0.60 0.48 0.71 LR 0.81 0.82 0.80

A
co

us
tic

1stAcoustic - 0.69 0.65 0.73 - 0.79 0.82 0.75
2ndAcoustic - 0.55 0.53 0.57 - 0.68 0.72 0.65

Table 2: Obtained performance over the dev and test partitions
for DAIC-WOZ and ADReSS datasets respectively.

a mean pooling to obtain the final representation.
Except for the BERT setup, we applied the following nor-

malization steps; all the common contractions, e.g., we’ll, can’t,
etc., are converted to its formal writing, i.e., we will, can not,
etc. All disfluencies are preserved, non-speech phenomena are
labeled as <non-speech>, punctuation marks are removed,
and number occurrences are labeled as <number>, and, all the
text is lower cased.

4. Results and discussion
As previous research [7, 9, 23, 30, 31], performance is reported
in terms of the F score (F1) for both control (C) and depres-
sion/dementia (D) classes, and the Macro-F for the overall prob-
lem (O). We acknowledge the limitations regarding the small
size of the corpora, however, this is a common shortcoming of
all studies that use clinical datasets. Thus, to achieve stable and
robust results, we applied two validation strategies: i) the aver-
age performance over a stratified 10 cross-fold-validation using
train partition (10-CFV), and, ii) the performance over the dev
partition for the DAIC-WOZ3 dataset and on the test partition
for the ADReSS dataset.

For the proposed Lexical Availability method, we per-
formed a series of experiments using: i) only the availability
degree features (LA-A), and ii) the combination of availabil-
ity and correlation (LA-AC) as in Eq. 1. Table 1 summarizes
our results for the experiments using a 10-CFV strategy; Ta-
ble 2 shows the performance of the experiments performed on
the dev and test partitions, and Table 3 shows the results of the
fused predictions. Given our space restrictions, we only report
results from the best learning algorithm (Class. column).4 For
the experiments using the LA-A/LA-AC methods, the number
in the sub-index indicates the value of the k parameter.

Clearly, from Tables 1 and 2 we conclude that our LA
method outperforms all the proposed textual-based baselines,
including very recent transformer-based models (i.e., BERT).
Also, observe that adding the correlation features helps improv-
ing the classification, best performance is obtained under the
LA-AC configuration for both tasks (see Table 2) with k = 100

3DAIC-WOZ test partition is not publicly available.
4Classifiers parameters: Logistic Regresor (LR - solver=lbfgs),

Multilayer Perceptron (MLP - activation=relu, alpha=1e-5,
solver=lbfgs, max iter=300), Support Vector Machines (SVC -
kernel=linear), Decision Trees (DT - criterion=entropy, and
Perceptron (PER - max iter=50, tol=1e-3). All classifiers were set with
random state=42.

Dataset Fused approaches F1-score
O D C

D
A

IC
-W

O
Z [LA-AC100, LA-A100, 1stAcoustic,

2ndAcoustic]†
0.84 0.80 0.89

[LA-AC100, LA-A100, BoW, 1stAcoustic,
2ndAcoustic]†

0.82 0.77 0.86

[LA-AC100, LA-A100, BERT, 1stAcoustic,
2ndAcoustic]

0.79 0.74 0.84

Al Hanai,T., et al. (2018) [16] 0.77 - -

A
D

R
eS

S

[LA-AC500, LA-A500, 1stAcoustic,
2ndAcoustic]

0.90 0.90 0.89

[LA-AC500, LA-A500, BoW, 1stAcoustic,
2ndAcoustic]

0.85 0.87 0.84

[LA-AC100, LA-A100, BERT, 1stAcoustic,
2ndAcoustic]

0.90 0.90 0.89

Mahajan, P. & Baths, V., (2021) [17] - 0.70 0.75

Table 3: Obtained performance of the late fusion approach. The
reported performance in [7] for depression was F1=0.58, while
for ADReSS, in [9] the best reached score was F1=0.75.

for DAIC-WOZ, and k = 500 for ADReSS. This variation in
the value of k is related to the size of the respective datasets.
For instance, the DAIC-WOZ corpus, contrary to the ADReSS
dataset, contains more samples of the communicative process
(i.e., several utterances from interviewed subject) with a smaller
variability of lexical units (i.e., small vocabulary), hence paying
attention to a reduced set terms is enough for the LA method.

For the multi-modal experiments (Table 3) we took the best
configurations based on the performance on the dev/test sets
(Table 2). We compare our results against two recent multi-
modal approaches. For depression, we considered the work of
[16], which evaluates the performance of a multi-modal LTSM
recurrent network. For dementia, [17] combines the outputs of
CNN-LSTM model and a Speech-GRU cell for making the pre-
dictions. As can be observed, our late fusion strategy, outper-
forms very recent approaches by an important margin.5

5. Conclusions
We addressed the problem of detecting mental disorders from
clinical tests. Inspired by the LA theory, our method approxi-
mates the mental lexicon through the identification of the avail-
able lexicon for mentally ill and control subjects, and use it in a
classification process to detect depression/dementia. Addition-
ally, based on previous studies that demonstrated the suitability
of raw waveform CNNs, we designed a multi-modal approach,
where a voter makes the final decision using a majority vote
mechanism. A thorough evaluation in two well known clinical
datasets (DAIC-WOZ and ADReSS), shows that the LA method
fused with the raw waveform-based CNN is able to outperform,
by a large margin, very recent deep NN techniques.
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