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ABSTRACT

While large-scale pretrained language models have obtained impressive results
when fine-tuned on a wide variety of tasks, they still often suffer from overfitting
in low-resource scenarios. Since such models are general-purpose feature extractors,
many of these features are inevitably irrelevant for a given target task. We propose
to use Variational Information Bottleneck (VIB) to suppress irrelevant features when
fine-tuning on low-resource target tasks, and show that our method successfully reduces
overfitting. Moreover, we show that our VIB model finds sentence representations that
are more robust to biases in natural language inference datasets, and thereby obtains
better generalization to out-of-domain datasets. Evaluation on seven low-resource
datasets in different tasks shows that our method significantly improves transfer learning
in low-resource scenarios, surpassing prior work. Moreover, it improves generalization
on 13 out of 15 out-of-domain natural language inference benchmarks. Our code is
publicly available in https://github.com/rabeehk/vibert.

1 INTRODUCTION

Transfer learning has emerged as the de facto standard technique in natural language processing (NLP),
where large-scale language models are pretrained on an immense amount of text to learn a general-purpose
representation, which is then transferred to the target domain with fine-tuning on target task data. This
method has exhibited state-of-the-art results on a wide range of NLP benchmarks (Devlin et al., 2019; Liu
et al., 2019; Radford et al., 2019). However, such pretrained models have a huge number of parameters,
potentially making fine-tuning susceptible to overfitting.

In particular, the task-universal nature of large-scale pretrained sentence representations means that much
of the information in these representations is irrelevant to a given target task. If the amount of target task
data is small, it can be hard for fine-tuning to distinguish relevant from irrelevant information, leading
to overfitting on statistically spurious correlations between the irrelevant information and target labels.
Learning low-resource tasks is an important topic in NLP (Cherry et al., 2019) because annotating more
data can be very costly and time-consuming, and because in several tasks access to data is limited.

In this paper, we propose to use the Information Bottleneck (IB) principle (Tishby et al., 1999) to address
this problem of overfitting. More specifically, we propose a fine-tuning method that uses Variational
Information Bottleneck (VIB; Alemi et al. 2017) to improve transfer learning in low-resource scenarios.

VIB addresses the problem of overfitting by adding a regularization term to the training loss that directly
suppresses irrelevant information. As illustrated in Figure 1, the VIB component maps the sentence
embedding from the pretrained model to a latent representation z, which is the only input to the task-
specific classifier. The information that is represented in z is chosen based on the IB principle, namely that
all the information about the input that is represented in z should be necessary for the task. In particular, VIB
directly tries to remove the irrelevant information, making it easier for the task classifier to avoid overfitting
when trained on a small amount of data. We find that in low-resource scenarios, using VIB to suppress
irrelevant features in pretrained sentence representations substantially improves accuracy on the target task.
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Figure 1: VIBERT compresses the encoder’s sentence representation fϕ(x) into representation z with mean
µ(x) and eliminates irrelevant and redundant information through the Gaussian noise with variance Σ(x).

Removing unnecessary information from the sentence representation also implies removing redundant
information. VIB tries to find the most concise representation which can still solve the task, so even if a fea-
ture is useful alone, it may be removed if it isn’t useful when added to other features because it is redundant.
We hypothesize that this provides a useful inductive bias for some tasks, resulting in better generalization
to out-of-domain data. In particular, it has recently been demonstrated that annotation biases and artifacts
in several natural language understanding benchmarks (Kaushik & Lipton, 2018; Gururangan et al., 2018;
Poliak et al., 2018; Schuster et al., 2019) allow models to exploit superficial shortcuts during training to per-
form surprisingly well without learning the underlying task. However, models that rely on such superficial
features do not generalize well to out-of-domain datasets, which do not share the same shortcuts (Belinkov
et al., 2019a). We investigate whether using VIB to suppress redundant features in pretrained sentence
embeddings has the effect of removing these superficial shortcuts and keeping the deep semantic features
that are truly useful for learning the underlying task. We find that using VIB does reduce the model’s
dependence on shortcut features and substantially improves generalization to out-of-domain datasets.

We evaluate the effectiveness of our method on fine-tuning BERT (Devlin et al., 2019), which we call
the VIBERT model (Variational Information Bottleneck for Effective Low-Resource Fine-Tuning). On
seven different datasets for text classification, natural language inference, similarity, and paraphrase tasks,
VIBERT shows greater robustness to overfitting than conventional fine-tuning and other regularization
techniques, improving accuracies on low-resource datasets. Moreover, on NLI datasets, VIBERT shows
robustness to dataset biases, obtaining substantially better generalization to out-of-domain NLI datasets.
Further analysis demonstrates that VIB regularization results in less biased representations. Our approach
is highly effective and simple to implement, involving a small additional MLP classifier on top of the
sentence embeddings. It is model agnostic and end-to-end trainable.

In summary, we make the following contributions: 1) Proposing VIB for low-resource fine-tuning of large
pretrained language models. 2) Showing empirically that VIB reduces overfitting, resulting in substantially
improved accuracies on seven low-resource benchmark datasets against conventional fine-tuning and prior
regularization techniques. 3) Showing empirically that training with VIB is more robust to dataset biases
in NLI, resulting in significantly improved generalization to out-of-domain NLI datasets. To facilitate
future work, we will release our code.

2 FINE-TUNING IN LOW-RESOURCE SETTINGS

The standard fine-tuning paradigm starts with a large-scale pretrained model such as BERT, adds a
task-specific output component which uses the pretrained model’s sentence representation, and trains this
model end-to-end on the task data, fine-tuning the parameters of the pretrained model. As depicted in
Figure 1, we propose to add a VIB component that controls the flow of information from the representations
of the pretrained model to the output component. The goal is to address overfitting in resource-limited
scenarios by removing irrelevant and redundant information from the pretrained representation.

Problem Formulation We consider a general multi-class classification problem with a low-resource
dataset D={xi,yi}Ni=1 consisting of inputs xi∈X , and labels yi∈Y. We assume we are also given a
large-scale pretrained encoder fϕ(.) parameterized by ϕ that computes sentence embeddings for the input
xi. Our goal is to fine-tune fϕ(.) onD to maximize generalization.

Information Bottleneck To specifically optimize for the removal of irrelevant and redundant information
from the input representations, we adopt the Information Bottleneck principle. The objective of IB is
to find a maximally compressed representation Z of the input representationX (compression loss) that
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maximally preserves information about the output Y (prediction loss),1 by minimizing:

LIB = βI(X, Z)︸ ︷︷ ︸
Compression Loss

− I(Z, Y )︸ ︷︷ ︸
Prediction Loss

, (1)

where β≥0 controls the balance between compression and prediction, and I(.,.) is the mutual information.

Variational Information Bottleneck Alemi et al. (2017) derive an efficient variational estimate of (1):

LVIB =β E
x
[KL[pθ(z|x), r(z)]]+ E

z∼pθ(z|x)
[−logqφ(y|z)], (2)

where qφ(y|z) is a parametric approximation of p(y|z), r(z) is an estimate of the prior probability p(z) of
z, and pθ(z|x) is an estimate of the posterior probability of z. During training, the compressed sentence
representation z is sampled from the distribution pθ(z|x), meaning that a specific pattern of noise is added
to the input of the output classifier qφ(y|z). Increasing this noise decreases the information conveyed
by z. In this way, the VIB module can block the output classifier qφ(y|z) from learning to use specific
information. At test time, the expected value of z is used for predicting labels with qφ(y|z). We refer to the
dimensionality of z as K, which specifies the bottleneck size. Note that there is an interaction between
decreasingK and increasing the compression by increasing β (Shamir et al., 2010; Harremoës & Tishby,
2007). K and β are hyper-parameters (Alemi et al., 2017).

We consider parametric Gaussian distributions for prior r(z) and pθ(z|x) to allow an analytic computation
for their Kullback-Leibler divergence,2 namely r(z) = N (z|µ0,Σ0) and pθ(z|x) = N (z|µ(x),Σ(x)),
where µ and µ0 are K−dimensional mean vectors, and Σ and Σ0 are diagonal covariance matrices.
We use the reparameterization trick (Kingma & Welling, 2013) to estimate the gradients, namely
z=µ(x)+Σ(x)�ε, where ε∼N (0,I). To compute the compressed sentence representations pθ(z|x),
as shown in Figure 1, we first feed sentence embeddings fϕ(x) through a shallow MLP. It is then followed
by two linear layers, each withK hidden units to compute µ(x) and Σ(x) (after a softplus transform to
ensure non-negativity). We also use another linear layer to approximate qφ(y|z).

3 EXPERIMENTS

Datasets We evaluate the performance on seven different benchmarks for multiple tasks, in particular
text classification, natural language inference, similarity, and paraphrase detection. For NLI, we experiment
with two well-known NLI benchmarks, namely SNLI (Bowman et al., 2015) and MNLI (Williams et al.,
2018). For text classification, we evaluate on two sentiment analysis datasets, namely IMDB (Maas et al.,
2011) and Yelp2013 (YELP) (Zhang et al., 2015). We additionally evaluate on three low-resource datasets
in the GLUE benchmark (Wang et al., 2019):3 paraphrase detection using MRPC (Dolan & Brockett,
2005), semantic textual similarity using STS-B (Cer et al., 2017), and textual entailment using RTE (Dagan
et al., 2006). For the GLUE benchmark, SNLI, and Yelp, we evaluate on the standard validation and test
splits. For MNLI, since the test sets are not available, we tune on the matched dev set and evaluate on
the mismatched dev set (MNLI-M) or vice versa. See Appendix A for datasets statistics and Appendix B
for hyper-parameters of all methods.

Base Model We use the BERTBase (12 layers, 110M parameters) and BERTLarge (24 layers, 340M
parameters) uncased (Devlin et al., 2019) implementation of Wolf et al. (2019) as our base models,4 known
to work well for these tasks. We use the default hyper-parameters of BERT, i.e., we use a sequence length
of 128, with batch size 32. We use the stable variant of the Adam optimizer (Zhang et al., 2021; Mosbach
et al., 2021) with the default learning rate of 2e−5 through all experiments. We do not use warm-up or
weight decay.

Baselines We compare against prior regularization techniques, including previous state-of-the-art, Mixout:

1In this work, Z,X, and Y are random variables, and z, x and y are instances of these random variables.
2KL(N (µ0,Σ0)‖N (µ1,Σ1))= 1

2
(tr(Σ−1

1 Σ0)+(µ1−µ0)TΣ−1
1 (µ1−µ0)−K+log(det(Σ1)

det(Σ0)
)).

3We did not evaluate on WNLI and CoLA due to the irregularities in these datasets and the reported instability
during the fine-tuning https://gluebenchmark.com/faq.

4To have a controlled comparison, all results are computed with this PyTorch implementation, which might slightly
differ from the TensorFlow variant (Devlin et al., 2019).

3

https://gluebenchmark.com/faq


Published as a conference paper at ICLR 2021

• Dropout (Srivastava et al., 2014), a widely used stochastic regularization techniques used in
multiple large-scale language models (Devlin et al., 2019; Yang et al., 2019; Vaswani et al., 2017)
to mitigate overfitting. Following Devlin et al. (2019), we apply dropout on all layers of BERT.

• Mixout (Lee et al., 2019) is a stochastic regularization technique inspired by Dropout with the
goal of preventing catastrophic forgetting during fine-tuning. Mixout regularizes the learning
to minimize the deviation of a fine-tuned model from the pretrained initialization. It replaces
the model parameters with the corresponding value from the pretrained model with probability p.

• Weight Decay (WD) is a common regularization technique to improve generalization (Krogh &
Hertz, 1992). It regularizes the large weights w by adding a penalization term λ

2‖w‖ to the loss,
where λ is a hyperparameter specifying the strength of regularization. Chelba & Acero (2004)
and Daumé III (2007) adapt WD for fine-tuning of the pretrained models, and propose to replace
this regularization term with λ‖w−w0‖, where w0 are the weights of the pretrained models.
Recently, Lee et al. (2019) demonstrated that the latter formulation of WD works better for fine-
tuning of BERT than conventional WD and can improve generalization on small training sets.

3.1 RESULTS ON THE GLUE BENCHMARK

Table 1 shows results on the low-resource datasets in GLUE.5 We find that a) Our VIBERT model
substantially outperforms the baselines on all the datasets, demonstrating the effectiveness of the proposed
method. b) Dropout decreases the performance on low-resource datasets. We conjecture that regularization
techniques relying on stochasticity without considering the relevance to the output, in contrast to VIB,
can make it more difficult for learning to extract relevant information from a small amount of data. Igl
et al. (2019) observe similar effects in another application. c) Similar to the results of Zhang et al. (2021),
we find less pronounced benefits of the previously suggested methods than the results originally published.
This can be explained by using a more stable version of Adam (Zhang et al., 2021) suggested by the very
recent work in our experiments, which decreases the added benefits of previously suggested regularization
techniques on top of a stable optimizer. In contrast, our VIBERT model still substantially improves the
results and surpasses the prior work in all settings for both BERTBase and BERTLarge models. Due to the
computational overhead of BERTLarge, for the rest of this work, we stick to BERTBase.

Table 1: Average results and standard deviation in parentheses over 3 runs on low-resource data in GLUE.
∆ shows the absolute difference between the results of the VIBERT model with BERT.

MRPC STS-B RTE
Model Accuracy F1 Pearson Spearman Accuracy
BERTBase 87.80 (0.5) 83.20 (0.6) 84.93 (0.1) 83.53 (0.0) 67.93 (1.5)
+Dropout (Srivastava et al., 2014) 87.33 (0.2) 81.90 (0.7) 84.33 (0.9) 82.73(1.0) 65.80 (1.5)
+Mixout (Lee et al., 2019) 87.03 (0.2) 82.63 (0.3) 85.23 (0.4) 83.80(0.4) 67.70 (0.9)
+WD (Lee et al., 2019) 87.57(0.2) 82.83(0.3) 85.0(0.3) 83.6(0.2) 68.63(1.3)

VIBERTBase 89.23 (0.1) 85.23 (0.2) 87.63 (0.3) 86.50 (0.4) 70.53 (0.5)
∆ +1.43 +2.03 +2.7 +2.97 +2.6
BERTLarge 88.47 (0.7) 84.20 (1.3) 86.87 (0.2) 85.70 (0.1) 68.67 (0.8)
+Dropout (Srivastava et al., 2014) 87.77 (0.4) 82.97 (0.2) 86.47 (0.1) 85.33 (0.2) 65.77 (0.6)
+Mixout (Lee et al., 2019) 88.57 (0.7) 84.10 (1.1) 86.70 (0.2) 85.43 (0.3) 70.03 (1.0)
+WD (Lee et al., 2019) 88.97(0.5) 84.87(0.4) 86.9(0.1) 85.67(0.1) 69.27(0.9)

VIBERTLarge 89.10 (0.4) 85.13 (0.6) 87.53 (0.8) 86.40 (0.9) 71.37 (0.8)
∆ +0.63 +0.93 +0.66 +0.7 +2.7

Impact of Random Seeds: Following Dodge et al. (2020), we examine the choice of random seed and
evaluate the performance of VIBERT and BERT by fine-tuning them across 50 random seeds on GLUE. To
comply with the limited access to the GLUE benchmark online system, we split the original validation sets
into half and consider one half as the validation set and use the other half as the test set. We first perform
model selection on the validation set to fix the hyper-parameters and then fine-tune the selected models
for 50 different seeds. Figure 2 shows the expected test performance (Dodge et al., 2019) as the function

5Note that the test sets are not publicly available and the prior work reports the results on the validation set of
the GLUE benchmark (Lee et al., 2019; Dodge et al., 2020). We, however, report the results of their methods and
ours on the original test sets by submitting to an online system.

4



Published as a conference paper at ICLR 2021

1 10 20 30 40 50
# of Random Seeds

83

84

85

86

87

88

89

E
xp

.T
es

tA
cc

.

MRPC

VIBERT
BERT

1 10 20 30 40 50
# of Random Seeds

88.2

88.4

88.6

88.8

89.0

89.2

89.4

89.6

E
xp

.T
es

tP
C

C
.

STS-B

VIBERT
BERT

1 10 20 30 40 50
# of Random Seeds

66

68

70

72

74

76

E
xp

.T
es

tA
cc

.

RTE

VIBERT
BERT

Figure 2: Expected test performance (solid lines) with standard deviation (shaded region) over the number
of random seeds allocated for fine-tuning. Our VIBERT model consistently outperforms BERT. We report
the accuracy for RTE and MRPC and the Pearson correlation coefficient for STS-B.

of random trials. The results demonstrate that our VIBERT model consistently obtains better performance
than BERT on all datasets. As anticipated, the expected test performance monotonically increases with
more random trials (Dodge et al., 2020) till it reaches a plateau, such as after 30 trials on STS-B.

3.2 VARYING-RESOURCE RESULTS

To analyze the performance of our method as a function of dataset size, we use four large-resource NLI
and sentiment analysis datasets, namely SNLI, MNLI, IMDB, and YELP to be able to subsample the
training data with varying sizes. Table 2 shows the obtained results. VIBERT consistently outperforms
all the baselines on low-resource scenarios, but the advantages are reduced or eliminated as we approach
a medium-resource scenario. Also, the improvements are generally larger when the datasets are smaller,
showing that our method successfully addresses low-resource scenarios.

Table 2: Test accuracies in the low-resource setting on text classification and NLI datasets under varying
sizes of training data (200, 500, 800, 1000, 3000, and 6000 samples). We report the average and standard
deviation in parentheses across three runs. We show the highest average result in each setting in bold.
∆ shows the absolute difference between the results of VIBERT with BERT.

Data Model 200 500 800 1000 3000 6000

SNLI

BERT 58.70 (1.3) 68.12 (1.5) 73.29 (0.9) 74.69 (1.1) 79.57 (0.4) 80.85 (0.4)
+Dropout 58.95 (0.4) 69.33 (1.1) 73.22 (1.2) 74.20 (0.5) 79.48 (0.7) 81.71 (0.6)
+Mixout 58.52 (1.3) 68.26 (1.7) 72.81 (1.0) 74.09 (0.5) 78.7 (0.3) 80.61 (0.5)
+WD 59.23 (1.5) 68.54 (1.9) 73.72 (1.0) 74.78 (0.8) 79.83 (0.5) 81.32 (0.5)

VIBERT 61.42 (1.3) 70.75 (0.6) 74.71 (0.5) 75.84 (0.1) 79.56 (0.3) 81.29 (0.4)
∆ +2.72 +2.63 +1.42 +1.15 -0.01 +0.44

MNLI

BERT 49.93 (1.4) 59.76 (2.0) 63.63 (1.6) 65.21 (1.4) 70.67 (0.7) 73.11 (0.9)
+Dropout 50.74 (2.1) 59.58 (2.1) 62.82 (0.8) 65.71 (1.4) 71.11 (0.8) 72.88 (1.1)
+Mixout 50.05 (1.8) 58.69 (2.8) 63.31 (1.7) 64.58 (1.5) 70.60 (0.8) 72.56 (0.7)
+WD 49.92 (1.4) 60.36 (2.0) 64.41 (1.5) 65.3 (1.0) 71.47 (0.8) 72.94 (0.7)

VIBERT 53.58 (0.9) 63.04 (1.1) 64.87 (0.6) 66.41 (1.2) 71.86 (0.9) 74.22 (0.3)
∆ +3.65 +3.28 +1.24 +1.2 +1.19 +1.11

IMDB

BERT 78.96 (1.9) 83.68 (0.2) 84.04 (0.9) 84.80 (0.0) 86.17 (0.2) 86.98 (0.4)
+Dropout 81.19 (1.6) 83.30 (0.2) 84.52 (0.3) 85.01 (0.3) 86.20 (0.2) 87.31 (0.2)
+Mixout 79.17 (4.2) 83.55 (0.3) 84.37 (0.3) 84.50 (0.1) 86.15 (0.1) 86.97 (0.1)
+WD 79.78 (2.2) 83.95 (0.2) 84.29 (0.6) 84.97 (0.2) 86.13 (0.3) 87.2 (0.1)

VIBERT 83.05 (0.3) 84.46 (0.4) 84.83 (0.4) 85.03 (0.4) 86.27 (0.4) 87.15 (0.3)
∆ +4.09 +0.78 +0.79 +0.23 +0.1 +0.17

YELP

BERT 41.60 (0.9) 44.12 (1.4) 45.67 (1.6) 46.77 (0.5) 50.14 (0.7) 51.86 (0.4)
+Dropout 41.30 (0.3) 44.37 (0.6) 46.49 (0.8) 46.21 (1.5) 51.09 (0.2) 52.39 (0.5)
+Mixout 41.52 (0.9) 43.60 (1.1) 45.65 (1.9) 46.98 (1.1) 50.68 (0.5) 51.51 (0.3)
+WD 41.66 (0.6) 44.43 (1.2) 46.26 (1.4) 47.37 (0.6) 50.7 (0.5) 51.9 (0.6)

VIBERT 42.30 (0.2) 46.65 (0.5) 46.60 (0.1) 48.03 (0.6) 50.37 (0.4) 51.34 (0.4)
∆ +0.7 +2.53 +0.93 +1.26 +0.23 -0.52
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3.3 OUT-OF-DOMAIN GENERALIZATION

Besides improving fine-tuning on low-resource data by removing irrelevant features, we expect VIB to
improve on out-of-domain data because it removes redundant features. In particular, annotation artifacts
create shortcut features, which are superficial cues correlated with a label (Gururangan et al., 2018; Poliak
et al., 2018) that do not generalize well to out-of-domain datasets (Belinkov et al., 2019a). Since solving
the real underlying task can be done without these superficial shortcuts, they must be redundant with the
deep semantic features that are truly needed. We hypothesize that many more superficial shortcut features
are needed to reach the same level of performance as a few deep semantic features. If so, then VIB should
prefer to keep the concise deep features and remove the abundant superficial features, thus encouraging
the classifier to rely on the deep semantic features, and therefore resulting in better generalization to out-
of-domain data. To evaluate out-of-domain generalization, we take NLI models trained on medium-sized
6K subsampled SNLI and MNLI in Section 3.2 and evaluate their generalization on several NLI datasets.

Datasets: We consider a total of 15 different NLI datasets used in Mahabadi et al. (2020), including
SICK (Marelli et al., 2014), ADD1 (Pavlick & Callison-Burch, 2016), JOCI (Zhang et al., 2017), MPE (Lai
et al., 2017), MNLI, SNLI, SciTail (Khot et al., 2018), and three datasets from White et al. (2017) namely
DPR (Rahman & Ng, 2012), FN+ (Pavlick et al., 2015), SPR (Reisinger et al., 2015), and Quora Question
Pairs (QQP) interpreted as an NLI task as by Gong et al. (2017). We use the same split used in Wang
et al. (2017). We also consider SNLI hard and MNLI(-M) Hard sets (Gururangan et al., 2018), a subset
of SNLI/MNLI(-M) where a hypothesis-only model cannot correctly predict the labels and the known
biases are avoided. Since the target datasets have different label spaces, during the evaluation, we map
predictions to each target dataset’s space (Appendix C). Following prior work (Belinkov et al., 2019a;
Mahabadi et al., 2020), we select hyper-parameters based on the development set of each target dataset
and report the results on the test set.

Results: Table 3 shows the results of VIBERT and BERT. We additionally include WD, the baseline
that performed the best on average on SNLI and MNLI in Table 2. On models trained on SNLI, VIBERT
improves the transfer on 13 out of 15 datasets, obtaining a substantial average improvement of 5.51 points.
The amount of improvement on different datasets varies, with the largest improvement on SPR and SciTail
with +15.5, and +12.5 points respectively, while WD on average obtains only 0.99 points improvement. On
models trained on MNLI, VIBERT improves the transfer on 13 datasets, obtaining an average improvement
of 3.83 points. The improvement varies across the datasets, with the largest on ADD1 and JOCI with
16.8 and 8.3 points respectively, substantially surpassing WD. Interestingly, VIBERT improves the results
on the SNLI and MNLI(-M) hard sets, resulting in models that are more robust to known biases. These
results support our claim that VIBERT motivates learning more general features, rather than redundant
superficial features, leading to an improved generalization to datasets without these superficial biases. In
the next section, we analyze this phenomenon more.

Table 3: Test accuracy of models transferring to new target datasets. All models are trained on SNLI or
MNLI and tested on the target datasets. ∆ are absolute differences with BERT.

SNLI MNLI
Data BERT VIBERT ∆ WD ∆ BERT VIBERT ∆ WD ∆

SICK 48.47 54.68 +6.2 48.37 -0.1 59.16 69.17 +10.0 63.87 +4.7
ADD1 78.81 84.75 +5.9 80.62 +1.8 66.15 82.95 +16.8 67.18 +1.0
DPR 50.78 50.14 -0.6 50.41 -0.4 49.95 49.95 0.0 49.95 0.
SPR 50.21 65.68 +15.5 51.90 +1.7 59.16 65.61 +6.5 57.21 -1.9
FN+ 50.78 53.44 +2.7 50.58 -0.2 46.28 49.94 +3.7 46.34 +0.1
JOCI 42.03 50.66 +8.6 43.91 +1.9 45.60 53.94 +8.3 46.49 +0.9
MPE 58.30 58.10 -0.2 58.10 -0.2 55.10 50.30 -4.8 58.2 +3.1
SCITAIL 62.32 74.84 +12.5 65.10 +2.8 72.58 75.68 +3.1 75.73 +3.2
QQP 65.19 70.67 +5.5 65.90 +0.7 67.88 70.50 +2.6 68.75 +0.9

SNLI Hard 65.72 68.35 +2.6 66.82 +1.1 56.98 60.29 +3.3 57.8 +0.8
MNLI Hard 46.31 53.17 +6.9 47.42 +1.1 59.74 61.19 +1.4 60.08 +0.3
MNLI-M Hard 46.12 52.38 +6.3 46.82 +0.7 60.55 61.03 +0.5 59.77 -0.8

SNLI 80.54 81.81 +1.3 81.26 +0.7 64.32 67.87 +3.6 65.44 +1.1
MNLI-M 60.51 64.88 +4.4 62.11 +1.6 72.42 73.06 +0.6 72.76 +0.3
MNLI 61.79 66.76 +5.0 63.42 +1.6 72.73 74.67 +1.9 72.89 +0.2

Average — — +5.51 — +0.99 — — +3.83 — +0.93
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4 ANALYSIS

Analysis of the Removed Features Elazar & Goldberg (2018) propose a challenging framework to
evaluate if debiasing methods have succeeded in removing biases from the sentence representation. After
debiasing, the trained encoder is frozen and the classifier is retrained to try to extract the biases. If
the classifier reaches high accuracy given only bias features, then the encoder’s representation has not
been successfully debiased. We follow the framework of Elazar & Goldberg (2018) to analyze whether
known biases in NLI data have been removed in the trained sentence representations. In particular,
following Belinkov et al. (2019b), we train a classifier which only sees the representation of the hypothesis
sentence and see if it can predict the class of the sentence pair, which is an established criterion to measure
known biases in NLI datasets (Gururangan et al., 2018). Thus, we freeze the trained encoders from our
model and the BERT baseline and retrain a hypothesis-only classifier on hypotheses from the SNLI and
MNLI datasets.6 For reference, we compare to a hypothesis-only model with a BERT encoder trained
end-to-end. Table 4 shows the results. With the baseline (BERT), the retrained classifier is not able to
recapture all the biases (H-only), but it captures much more than with our method (VIBERT). VIBERT is
so successful at reducing biases that performance of the hypothesis-only classifier is close to chance (33%).

Table 4: Hypothesis-only accuracy when freezing the encoder from models trained on SNLI/MNLI in
Table 2 and retraining a hypothesis-only classifier (BERT, VIBERT), and baseline results when the encoder
is not frozen (H-only). Lower results show more successful debiasing.

Model SNLI MNLI
Train Dev Test Train Dev Test

H-only 81.3 61.89 62.17 87.15 53.46 53.63

BERT 66.40 53.73 53.17 58.5 44.68 44.03
VIBERT 38.20 36.65 37.10 42.03 36.43 35.75

Impact of VIB on Overfitting To analyze the effect of VIB on reducing overfitting, we analyze the
effect of the β parameter on training and validation error since β controls the trade-off between removing
information from the sentence embedding (high β) and keeping information that is predictive of the output
(low β). We fix the bottleneck size (K) based on the models selected in Section 3.1, and we train VIBERT
on the GLUE benchmark for varying values of β and plot the validation and training loss in Figure 3.

For small values of β, where VIB has little effect, the validation loss is substantially higher than the training
loss, indicating overfitting. This is because the network learns to be more deterministic (Σ≈0), thereby
retaining too much irrelevant information. As we increaseβ, where VIB has an effect, we observe better gen-
eralization performance with less overfitting. As β becomes too large, both the training and validation losses
shoot up because the amount of preserved information is insufficient to differentiate between the classes.
This pattern is observable in the MRPC and RTE datasets, with a similar pattern in the STS-B dataset.
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Figure 3: Validation and training losses of VIBERT for varying β and a fixed bottleneck size on GLUE.

Efficiency Evaluation Table 5 presents the efficiency evaluation in terms of memory, number of
parameters, and time for all the methods measured on RTE. Our approach has several attractive
properties. First, while our method is slightly larger in terms of parameters compared to the other standard
regularization approaches due to an additional MLP layer (Figure 1), the difference is still marginal, and
for BERTBase model with 109.48M trainable parameters, that is less than 1.22% more parameters. Second,

6Note that with VIBERT, the frozen encoder pθ(z|x) outputs a distribution, and the hypothesis-only classifier
is trained on samples from this distribution.
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Table 5: Performance evaluation for all methods. ∆% are relative differences with BERT.
Model Memory ∆% #Parameters ∆% Time ∆%
BERT 290.91 GB — 109.48 M — 4.50 min —
+Mixout 407.65 GB 40.13 % 109.48 M 0% 5.15 min 14.44%
+WD 331.78 GB 14.05% 109.48 M 0% 4.91 min 9.11%
+Dropout 290.91 GB 0% 109.48 M 0% 4.68 min 4%

VIBERT 292.57 GB 0.57 % 110.83 M 1.22% 4.67 min 3.77%

our approach presents a much better memory usage with low-overhead, close to Dropout, while WD and
especially Mixout cause substantial memory overhead. In dealing with large-scale transformer models like
BERT, efficient memory usage is of paramount importance. Third, in terms of training time, our method
is similar to Dropout and much faster than the other two baselines. Relative to BERT, VIBERT increases
the training time by 3.77%, while WD and Mixout cause the substantial training overhead of 9.11% and
14.44%. Note that our method and other baselines require hyper-parameter tuning.

Ablation Study As an ablation, Table 6 shows results for our model without the compression loss
(VIBERT (β=0)), in which case there is no incentive to introduce noise, and the VIB layer reduces to
deterministic dimensionality reduction with an MLP. We optimize the dimensionality of the MLP layer
(K) as a hyper-parameter for both methods. This ablation does reduce performance on all considered
datasets, demonstrating the added benefit of the compression loss of VIBERT.

Table 6: Average ablation results over 3 runs with std in parentheses on GLUE. BERT and VIBERT’s
results are from Table 1.

MRPC STS-B RTE
Model Accuracy F1 Pearson Spearman Accuracy
BERT 87.80 (0.5) 83.20 (0.6) 84.93 (0.1) 83.53 (0.0) 67.93 (1.5)

VIBERT (β=0) 88.57 (0.6) 84.27 (0.7) 87.10 (0.4) 86.00 (0.5) 69.63 (1.3)
VIBERT 89.23 (0.1) 85.23 (0.2) 87.63 (0.3) 86.50 (0.4) 70.53 (0.5)

5 RELATED WORK

Low-resource Setting Recently, developing methods for low-resource NLP has gained attention (Cherry
et al., 2019). Prior work has investigated improving on low-resource datasets by injecting large unlabeled
in-domain data and pretraining a unigram document model using a variational autoencoder and use its
internal representations as features for downstream tasks (Gururangan et al., 2019). Other approaches
propose injecting a million-scale previously collected phrasal paraphrase relations (Arase & Tsujii, 2019)
and data augmentation for translation task (Fadaee et al., 2017). Due to relying on the additional source
and in-domain corpus, such techniques are not directly comparable to our model.

Information Bottleneck IB has recently been adopted in NLP in applications such as parsing (Li &
Eisner, 2019), and summarization (West et al., 2019). Voita et al. (2019) use the mutual information to
study how token representations evolve across layers of a Transformer model (Vaswani et al., 2017). This
paper – to the best of our knowledge – is the first attempt to study VIB as a regularization technique to
improve the fine-tuning of large-scale language models on low-resource scenarios.

Regularization Techniques for Fine-tuning Language models In addition to references given
throughout, Phang et al. (2018) proposed to perform an extra data-rich intermediate supervised task
pretraining followed by fine-tuning on the target task. They showed that their method leads to improved
fine-tuning performance on the GLUE benchmark. However, their method requires pretraining with a
large intermediate task. In contrast, our goal is to use only the provided low-resource target datasets.
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6 CONCLUSION AND FUTURE DIRECTIONS

We propose VIBERT, an effective model to reduce overfitting when fine-tuning large-scale pretrained lan-
guage models on low-resource datasets. By leveraging a VIB objective, VIBERT finds the simplest sentence
embedding, predictive of the target labels, while removing task-irrelevant and redundant information. Our
approach is model agnostic, simple to implement, and highly effective. Extensive experiments and analyses
show that our method substantially improves transfer performance in low-resource scenarios. We demon-
strate our obtained sentence embeddings are robust to biases and our model results in a substantially better
generalization to out-of-domain NLI datasets. Future work includes exploring incorporating VIB on mul-
tiple layers of pretrained language models and using it to jointly learn relevant features and relevant layers.
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A EXPERIMENTAL DETAILS

Datasets Statistics Table 7 shows the statistics of the datasets used in our experiments.

Table 7: Datasets used in our experiments.

Dataset #Labels Train Val. Test
Single-Sentence Tasks

IMDB 2 20K 5K 25K
YELP 5 62.5K 7.8K 8.7K

Inference Tasks
SNLI 3 550K 10K 10K
MNLI 3 393K 9.8K 9.8K
RTE 2 2.5K 0.08K 3K

Similarity and Paraphrase Tasks
MRPC 2 3.7K 0.4K 1.7K
STS-B 1 (Similarity score) 5.8K 1.5K 1.4K

Computing Infrastructure We run all experiments on one GTX1080Ti GPU with 11 GB of RAM.

VIBERT Architecture The MLP module used to compute the compressed sentence representations
(Figure 1) is a shallow MLP with 768, 2304+K

4 , 768+K
2 hidden units with a ReLU non-linearity, where

K is the bottleneck size. Following Alemi et al. (2017), we average over 5 posterior samples, i.e., we
compute p(y|x)= 1

5Σ5
i=1qφ(y|zi), where zi∼pθ(z|x). Similar to Bowman et al. (2016), we use a linear

annealing schedule for β and set it as min(1, epoch×β0) in each epoch, where β0 is the initial value.

B HYPER-PARAMETERS

The GLUE Benchmark Experiment Results on GLUE benchmark are reported in Table 1. We
fine-tune all the models for 6 epochs to allow them to converge. We use early stopping for all models
by choosing the model performing the best on the validation set with the evaluation criterion of average
F1 and accuracy for MRPC, accuracy for RTE, and average Pearson and Spearman correlations
for STS-B. For VIBERT, we sweep β over {10−4, 10−5, 10−6} and K over {144, 192, 288, 384}.
For dropout, we use dropping probabilities of {0.25, 0.45, 0.65, 0.85}. For Mixout, we consider
mixout probability of {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. For WD, we consider weight decay of
{10−6,10−5,10−4,10−3,10−2,10−1,1}.

Varying-resource Experiment Results on varying sizes of training data are reported in Table 2. We
fine-tune all models for 25 epochs to allow them to converge. We use early stopping for all models based
on the performance on the validation set. We also perform hyper-parameter tuning on the validation set.
Since we consider datasets of a different number of training samples, we need to account for a suitable
range of bottleneck size and we sweep K over {12,18,24,36,48,72,96,144,192,288,384} and β over
{10−4,10−5}. For dropout, we consider dropping probabilities of {0.25,0.45,0.65,0.85}. For Mixout,
we consider mixout probability of {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. For WD, we consider weight
decay of {10−6,10−5,10−4,10−3,10−2,10−1,1}.

Ablation Experiment Ablation results are shown in Table 6. For VIBERT (β=0), we sweep K over
the same range of values as VIBERT, i.e., {144,192,288,384}

C MAPPING

We train all models on SNLI or MNLI datasets and evaluate their performance on other target datasets.
The SNLI and MNLI datasets contain three labels of contradiction, neutral, and entailment. However,
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some of the considered target datasets have only two labels, such as DPR or SciTail. When the target
dataset has two labels of entailed and not-entailed, as in DPR, we consider the predicted contradiction
and neutral labels as the not-entailed label. In the case the target dataset has two labels of entailment and
neutral, as in SciTail, we consider the predicted contradiction label as neutral.
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