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Abstract
Current speech recognition architectures perform very well
from the point of view of machine learning, hence user inter-
action. This suggests that they are emulating the human bio-
logical system well. We investigate whether the inference can
be inverted to provide insights into that biological system; in
particular the hearing mechanism. Using SincNet, we confirm
that end-to-end systems do learn well known filterbank struc-
tures. However, we also show that wider band-width filters are
important in the learned structure. Whilst some benefits can be
gained by initialising both narrow and wide-band filters, phys-
iological constraints suggest that such filters arise in mid-brain
rather than the cochlea. We show that standard machine learn-
ing architectures must be modified to allow this process to be
emulated neurally.
Index Terms: speech recognition, cochlear models, end-to-end
architectures, filterbanks, SincNet

1. Introduction
Advances in automatic speech recognition (ASR) have led to
performance that is very good in terms of word error rate
(WER), but perhaps at the expense of our own understanding
of how they function. End-to-end (E2E) techniques [1] have re-
moved the need for knowledge of the hearing mechanism. Self-
supervised training [2] has done the same for phonetics. More
generally, large pre-trained models are available [3] removing
the need for even the machine learning (ML) know-how. Given
that these systems work well, the question arises: “what have
they learned?” This is difficult to answer because their compo-
nent parts cannot readily be mapped to biological ones.

In this study, we are interested in the hearing mechanism.
The biological mechanism is quite well understood [4], with im-
portant parts being the logarithmic response to both frequency
and amplitude. For many years, filterbank approaches were
used as models of this process [5, 6]. Whilst many variations
have been studied, the authors’ ad-hoc experience suggests that
the details do not lead to big changes. Recent E2E approaches,
however, have clearly demonstrated that training the filterbanks
can be beneficial [7]. A (1D) convolution layer in the machine
learning field is a filter in the signal processing field. However,
the only validations of which we are aware tend to show that the
component convolutions learn filters with a distribution similar
to a mel filterbank. This in turn tends to reinforce the above
question rather than answer it.

In SincNet, Ravanelli et al. [8] constrained the convolutions
to be a sinc (sin(x)/x) form, leading to a rectangular band-pass
filter. The filter is then defined by two trainable parameters: the
lower frequency and the bandwidth. Whilst not being biolog-
ically accurate, this approach has a distinct attraction of being
interpretable.

In the remainder of this mainly experimental paper, we de-
scribe SincNet and a modest frame-based experimental sce-
nario. We confirm that SincNet learns a mel filterbank, but
also show that wider bandwidth filters are important for perfor-
mance. We argue that such filters arise because of restrictions
of standard ML convolutional architectures, and conclude with
what this infers about how to construct a biologically plausible
hearing model.

2. Background
The study of the human cochlea has interested many researchers
since the beginning of the 20th century. Von Békésy laid the
groundwork of the research on this topic in 1960 [9].

The basilar membrane in the cochlea can be interpreted as a
natural filterbank [10, 11]. Current understanding of the work-
ing of the cochlea is that wave propagation is an active process
[12] and works as an array of Hopf oscillators [13, 14]. How-
ever, in this study, we limit ourselves to passive analogues. The
scaling of this natural filterbank has been analysed from dif-
ferent points of view, leading to several scaling (or warping,
spacing) approaches. The Greenwood scaling [15] is the one
that best represents the scaling of the frequency sensitive hair
cells in the cochlea based on the physical distance on the basilar
membrane of the hair cells. The mel scale [16] is based on fre-
quencies judged to be equally spaced in human perceptual tests.
Bark [17, 18] and ERB (equivalent rectangular bandwidth) [19]
are somewhere between mel and Greenwood, but by contrast
are derived from critical bands of hearing.

ASR frontends take either some preprocessed features as
input or, more recently, raw input waveforms. Filterbanks have
been the basis of feature extraction [20] for many years. As
early as 2001, a study [21] showed that a filterbank could be
obtained from a mathematical derivation of a data driven de-
sign. From the resulting filterbank, about half of the filters were
then kept to represent the filterbank motivated by the fact that
those filters were enough to cover the whole frequency range.
For the E2E approaches, CNNs for ASR were introduced by
Hinton et al. [22, 23] and have been used for a decade. Since
2018 some architectures propose a way to combine both the
filterbanks and the E2E architecture, where the filterbanks are
trainable and part of the convolution layers. Zeghidour et al.
[24] proposed an implementation with with Gabor filters and
Ravanelli et al. [25] with rectangular filters (SincNet). Other
work on trainable filterbanks includes that of Seki et al. [26],
who proposed an architecture based on a filter layer combined
with a DNN where the filter features were directly computed
with a log-compression after the filter layer. In that study the
gain, central frequency, bandwidth and filter shape were free to
train, whilst in SincNet only two parameters are free to train,
defining the filters in the first layer.
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Figure 1: Evolution of the baseline implementation of SincNet:
the graph on the top shows the initial filter distribution and the
bottom plot show the filter distribution after training. The x-axis
represents the frequency range and the y-axis the amplitude of
the filters. The filters themselves are represented by their central
frequency (dot) and their bandwidth (bar).

3. Initial Analysis
In an initial, quite basic analysis, the main motivation was to
understand what the trainable filters learn; i.e., which typical
hyperparameters (e.g., the number of filters needed to describe
the signal) can be derived from those trainable filter models,
which initializations are appropriate. For this study, we focus
on SincNet.

3.1. SincNet setup

The SincNet model [25] is built with a 4-layer CNN followed
by a 5-layer DNN. The first layer of the CNN is constructed
with trainable filters. Those filters are initialised as a rectangular
bandwidth mel-scale filterbank, an easily computable type of
filter in the time domain. Since the inverse Fourier transform
of a rectangular low-pass filter is a sinc function, a rectangular
bandwidth filter can be written as the difference of two low-pass
filters as in equation 1.

h[n] = sinc(2πf2n)− sinc(2πf1n), (1)

where h[n] represents a typical filter of the first convolutional
layer. The trainable parameters of the SincNet filters are the
lower frequency (f1) and the bandwidth (f2 − f1), i.e., linear
combinations of f1 and f2. Moreover, in the time domain, fil-
tering a signal is mathematically equivalent to the convolution
of this signal with the filter kernel. Between the different convo-
lution layers the following operations are used: maxpooling for
downsampling, layernorm, ReLU and dropout before passing
through a five-layer DNN. The input of signal is a raw wave-
form of 200 ms at 16 kHz. For this research the experiments are
performed on TIMIT [27] and to verify that the observations are
not database related, the baseline experiments have been double
checked with the mini-Librispeech database [28].

3.2. Baseline

In the default implementation, the number of filters is initialised
to 128 followed by 3 CNN layers of 60 filters each. The filter
distribution for a similar experiment (60 filters on the first layer)
is illustrated on figure 1. We observe that some filters with

Table 1: Filter pruning experiment: numbers of narrow band
filters and related PER in function of the initialization.

Sinc-Layer
num. filters

CNN-layers narrow
band filters

PER (%)

128 60 60 60 39 17.1
100 60 60 60 45 17.1
80 60 60 60 38 17.2
60 60 60 60 32 17.4
40 60 60 60 27 17.5
30 60 60 60 24 17.5

Table 2: SincNet experiment: compare the performance of the
training with the filters fixed and the filters that are free to train.

fixed filters trained filters
num. filters loss PER loss PER

40 2.35 18.3 2.31 17.6
30 2.37 18.0 2.33 17.5

.

a comparatively narrow bandwidth train towards a filterbank.
The others train towards wider bandwidth filters. Concerning
the frequency range, the wide-band filters could in principle be
reconstructed with a linear combination of narrow band filters.
In this paper, those two types of filters will be refered to as nar-
row and wide-band filters. The first part of this study focuses on
the narrow band filters, since a large number of the wide-band
filters seem to overfit the data.

3.3. Number of filters

Some filters in the first convolutional layer stay narrow-band
while the others train towards wider bandwidths. Table 1 gives
an overview of the number of narrow band filters as well as
the phone error rate (PER) on TIMIT. To determine the num-
ber of narrow band filters an ad-hoc pruning operation has been
applied after the filter training: the filters with wide band-
widths covering parts of the spectrum that are already covered
by smaller bandwidth filters are discarded and only one filter is
taken into account around the Nyquist frequency.

The number of filters needed by the model to build a fil-
terbank covering the whole frequency range can be determined
by the number of narrow band filters. From table 1 we can de-
duce that above 30 filters, the number of narrow-band filters that
describe the frequency range is around 30 - 40 filters, this cor-
relates with the results obtained by Zeghidour [24] using Gabor
filters.

We also notice that when the first layer is initialized to 30 or
40 filters (corresponding to the number of narrow-band filters of
other layers), some of those filters still train toward larger band
filters. To analyse whether keeping the initilization to the initial
scale performs as well as the combination of narrow and wide-
band filters that the model learns, experiments have been made
on 30 and 40 filters for fixed and non-fixed filters, the results
are given in table 2. This raises the hypothesis that the wide-
band filters are bringing some information not provided by the
narrow band filters.

750



Table 3: Mean Euclidean distance between narrow bandfilter’s
normalized central frequency distribution and different scalings
for different amount of filters (Mel filterbank) and different ini-
tial scalings (30 filters).

Initialized to Compared to
scale - filters Mel Bark ERB Greenwood

Mel - 128 0.0023 0.0047 0.0070 0.0086
Mel - 60 0.0018 0.0044 0.0070 0.0088
Mel - 40 0.0022 0.0039 0.0065 0.0084
Mel - 30 0.0020 0.0043 0.0071 0.0091
Bark - 30 0.0025 0.0037 0.0062 0.0082
ERB - 30 0.0030 0.0029 0.0055 0.0076
Greenwood -30 0.0037 0.0068 0.0095 0.0116

3.4. Scale after training

Given that there are several frequency warpings that can be jus-
tified from a physiological point of view, it is informative (and
simple) to investigate which one is preferred by an E2E system.
It is clear by inspection that it is the narrow band filters that
learn the warped filterbank. In [29] a convolutional variational
autoencoder (CVAE) architecture that learns convolutional fil-
ters from raw waveforms using unsupervised learning was pro-
posed. However, the analysis was only based on the central
frequencies learned by those filters, not the narrow/wide-band
distinction. In the present paper the central frequencies of only
the narrow band filters are taken into account.

3.4.1. Experiment

The experiment consisted simply of analysing which filterbank
the narrow-band filters trained above were learning. The ex-
periment was repeated for several models with different initial-
izations. The metric used to compute the distance between the
initial and trained scale is the mean of the Euclidean distance:

d(x, s) =
1

N

√√√√
N∑

i=0

(xi − si)2 (2)

The narrow band filters of a filterbank initialized to the mel
scale remain mel-scale distributed. When initializing 30 – 40
filters as starting point to different scalings, other scalings also
train towards mel scale. It follows that the mel scaling is an
appropriate choice for filterbank initializations.

3.5. Corollary

The results so far have reinforced that E2E approaches do in-
deed learn what has been known for many years about cochlear
models: that 30 to 40 filters are sufficient and that, regardless of
physical measurements, the mel scale is the one that is percep-
tually important. However, from figure 1 it is clear that SincNet
filters train towards a mixture of narrow and wide-band filters.
Moreover from table 1, in all the experiments done for this sec-
tion, the model always learns wide-band filters. It follows that
these wide-band structures are important. Two questions arise:

1. Can the filters be initialized to wide-band, removing or
reducing the need to train them?

2. Why do wide-band filters appear at all given that they
are, to a first approximation, just linear combinations of
narrow-band filters?
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Figure 2: Filter repartition of superimposed filterbanks before
(top plot) and after (bottom plot) training. In the initialization,
the red filterbank is a narrow-band filterbank composed of 30
filters. The rest are filterbanks of 10, 5 and 1 filters capturing
information that could in principle be reconstructed by a com-
bination of the narrow band filters.

Table 4: Summary of experiments using narrow and/or wide-
band filters

filters filter type fixed loss PER

10 - 5 - 1 wide yes 2.410 18.6%
30 narrow yes 2.374 18.0%
30 - 10 - 5 - 1 narrow & wide yes 2.335 17.7%
30 - 10 - 5 - 1 narrow & wide no 2.306 17.5%

These are addressed in the following section.

4. Wide-band filter analysis
4.1. Wide-band initialization

4.1.1. Hypothesis

Wide-band filters are important; it follows that the training can
be optimized by initializing a narrow band filterbank as be-
fore and adding wide-band filters in addition of those filters.
This hypothesis can be confirmed by an experiment compris-
ing initializing several frozen superimposed filterbanks where
the wide-band filters are combinations of several narrow band
filters.

4.1.2. Experiment

Figure 2 shows the initialization and training of a model built
with 4 ranges of filters illustrated on the upper plot. An estima-
tion of the filter distribution after training of this new initiali-
sation is illustrated in the bottom plot. Four experiments using
those filters are summarized in table 4:

Using only the narrow band filters gives a final PER of
18%, the combination of narrow and wide-band filters give for
frozen filters a PER of 17.7% and for trained filters a PER of
17.5%. A combination of narrow and wide-band frozen filters
already gives an improvement of 0.3% WER. The same effect
is observed on the loss: the loss for a combination of narrow
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and wide-band filters is lower than for only narrow band filters.
The new initialization is consequently closer to what the model
learns compared to the baseline initialization. Aside, it is in-
teresting to notice from figure 2 that when trained most of the
narrow band filters stay narrow band and most of the wide-band
filters stay wide-band.

Thus the hypothesis is demonstrated. We conclude that it
can indeed be beneficial to provide a mixture of narrow and
wide-band filters in an ASR front-end.

4.2. Why wide-band filters?

Wide-band filters are in principle linear combinations of sev-
eral narrow band filters; the network should be able to learn
such a combination trivially, much as we assume it is learn-
ing the energy feature that was commonly used in HMM-based
models. The most plausible explanation for the network’s fail-
ure to do so arises from the interaction of harmonic (voiced)
and aperiodic (unvoiced) components. Harmonic components
in the same filter add constructively in the magnitude domain.
Aperiodic components, however, add as random variables; the
variances add leading to a magnitude reduction by a factor of√
N for N discrete components. The wider band filters hence

tend to favour the voiced components.
In complex narrowband (e.g., Fourier transform based) fil-

ters, the squaring operation leads to both harmonic and aperi-
odic components adding in the same ratio in the magnitude or
power domain, inhibiting emphasis of the harmonic component.
SincNet comprises real-valued filters; however, the subsequent
network architecture can inhibit the behaviour. Each convolu-
tional layer is followed by four typical operations: max-pooling
(downsampling), layernorm, ReLU (activation function) and
dropout that have some influence on the signal. Of these, the
maxpooling function and ReLU activation bring some distor-
tions to the signal.

4.2.1. Hypothesis

It is possible to design a simple experiment to examine whether
the above non-linearities inhibit simulation of wideband filters.
The experiment encompasses three intuitive hypotheses:
1. Using average-pooling instead of maxpooling removes the
noise artifacts that are created by maxpooling on the filtered
signal, but since we continue to use a pooling function, aliasing
still happens for the high frequencies. In [30] some experiments
showed that using average pooling reduced the WER but with-
out explaining the possible reasons.
2. Moving the first downsampling factor towards a further
layer inhibits downsampling just after the filtering of the signal,
this removes both the effect of aliasing and signal distortion (al-
though it increases the data size at several convolution layers).
3. By inspection, using a tanh or sigmoid function removes
some low frequency artifacts created by the ReLU function.
However, it is well known that the cochlea contains a rectifier
function [31], implying that ReLU is the right physiologically
plausible solution. It is not clear a-priori which of these proper-
ties is more important.

4.2.2. Experiment

Table 5 summarises the performance of the experiments implied
above after the first convolution layer: use average pooling,
move the first downsampling factor to a later layer and check
that ReLU is appropriate.

Replacing the max-pooling with average-pooling leads to

Table 5: The effects of modifying the downsampling and pool-
ing schemes. The numbers in the second column refer to the
downsampling rate at each of the pooling operations in the con-
volutional layers (1 implies no downsampling).

filters downsampling pooling
1st layer

act. function PER

30 3-3-3-2 max ReLU 17.5%
30 3-3-3-2 avg ReLU 17.1%
30 1-3-3-6 - ReLU 16.8%
30 1-3-3-6 - sigmoid 18.1%

an improvement in performance. Displacing the downsampling
by one layer, in principle allowing the network to combine fil-
ters, leads to a further improvement. This broadly demonstrates
the first two points of our hypothesis. Changing the activation
function to sigmoid deteriorates the PER. This tends to confirm
that the physiologically-implied rectifier — yielding a simple
spectral envelope — is also the right solution in the artificial so-
lution. We note that, even with the best performing architecture,
the system still learns some wide-band filters. This implies that
our solution is not perfect.

5. Conclusion
E2E training of filterbanks for ASR leads to filters that resem-
ble a standard filterbank. However, wider bandwidth filters are
learned too, and are important for good ASR performance. The
central frequencies of the narrow-band filters tend to a mel spac-
ing, regardless of the initialisation. This confirms a well under-
stood mechanism, suggesting that it exists in the biological sys-
tem. There appears to be an optimal number of filters — around
30 to 40 — that also correlates with acknowledged literature.

We suggest that wide-band filters are learned to distinguish
voiced (harmonic, coherent) components from either back-
ground noise or unvoiced (aperiodic, stochastic) components.
In principle, a network should be able to learn such wide-band
components by combining narrow-band ones. We argue that
this capability is precluded by the (otherwise standard) ML ar-
chitecture; in particular the phase will be lost by maxpooling.
This argument is borne out by experiments showing that a struc-
ture retaining a more formal down-sampling mechanism can
lead to better performance.

We are not aware of structures in the inner-ear or cochlea
that can emulate physical wide-band filters. However the phase
information is retained in our current best understanding of
cochlear operation, retaining also the possibility that such filters
are emulated in mid-brain. Proving this would be difficult, per-
haps requiring some combination of selective stimulii with MRI
or EEG sensing. It remains as a hypothesis for the neuroscience
community. Our own future work will focus on more biologi-
cally plausible architectures. This experimental study indicates
that any such model will need to retain phase in order for the
subsequent network to take advantage of both narrow-band and
wide-band features.
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[14] A. Hudspeth, F. Jülicher, and P. Martin, “A critique of the criti-
cal cochlea: Hopf–a bifurcation–is better than none.” Journal of
neurophysiology, vol. 104 3, pp. 1219–29, 2010.

[15] D. Sridhar, O. Stakhovskaya, and P. A. Leake, “A frequency-
position function for the human cochlear spiral ganglion,” Audiol-
ogy and Neurotology, vol. 11, no. Suppl. 1, pp. 16–20, 2006.

[16] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the
measurement of the psychological magnitude pitch,” The journal
of the acoustical society of america, vol. 8, no. 3, pp. 185–190,
1937.

[17] E. Zwicker, “Subdivision of the audible frequency range into crit-
ical bands (frequenzgruppen),” Journal of the Acoustical Society
of America, vol. 33, no. 2, p. 248, Feb. 1961.

[18] J. O. Smith and J. S. Abel, “Bark and erb bilinear transforms,”
IEEE Transactions on speech and Audio Processing, vol. 7, no. 6,
pp. 697–708, 1999.

[19] B. C. Moore and B. R. Glasberg, “Suggested formulae for cal-
culating auditory-filter bandwidths and excitation patterns,” The
journal of the acoustical society of America, vol. 74, no. 3, pp.
750–753, 1983.

[20] B. J. Shannon and K. K. Paliwal, “A comparative study of fil-
ter bank spacing for speech recognition,” in Microelectronic engi-
neering research conference, vol. 41. Citeseer, 2003, pp. 310–12.
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