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Abstract
Speech representations which are robust to pathology-unrelated
cues such as speaker identity information have been shown to be
advantageous for automatic dysarthric speech classification. A
recently proposed technique to learn speaker identity-invariant
representations for dysarthric speech classification is based on
adversarial training. However, adversarial training can be chal-
lenging, unstable, and sensitive to training parameters. To avoid
adversarial training, in this paper we propose to learn speaker-
identity invariant representations exploiting a feature separation
framework relying on mutual information minimization. Ex-
perimental results on a database of neurotypical and dysarthric
speech show that the proposed adversarial-free framework suc-
cessfully learns speaker identity-invariant representations. Fur-
ther, it is shown that such representations result in a similar
dysarthric speech classification performance as the representa-
tions obtained using adversarial training, while the training pro-
cedure is more stable and less sensitive to training parameters.
Index Terms: Parkinson’s disease, speaker identity, feature
separation, supervised autoencoder, mutual information

1. Introduction
Neurodegenerative disorders such as Parkinson’s disease (PD)
can cause speech dysarthria, resulting in impairments in the
speech production mechanism and reduced communicative
ability [1]. To assist the clinical diagnosis of dysarthria, auto-
matic machine learning techniques have been developed. Such
techniques provide reliable, objective, and cost-effective as-
sessments in contrast to the subjective and time-consuming
auditory-perceptual analyses performed by clinicians [2].

The majority of state-of-the-art automatic dysarthric speech
classification techniques are based on training classical clas-
sifiers on handcrafted acoustic features characterizing differ-
ent impaired speech dimensions [3–9]. Recently, deep learn-
ing approaches aiming to learn high-level speech representa-
tions relevant for such a task have gained attention in the re-
search community [10–18]. Due to the large number of para-
meters in the used networks and the small amount of patho-
logical training data that is typically available, deep learning
approaches for automatic dysarthric speech classification can
be sensitive to pathology-unrelated variabilities such as speaker
identity cues [19]. To increase the number of training sam-
ples, state-of-the-art techniques commonly split available utter-
ances into many short segments and individually classify each
segment as healthy or dysarthric using convolutional neural
networks (CNNs) [10–15]. However, such short segments do
not necessarily contain dysarthric cues and the used CNNs are
not guided to ignore speaker variabilities that are unrelated to
dysarthria. To cope with the small number of available train-
ing utterances while extracting more robust representations, we

proposed using a CNN operating on pairwise distance matrices
constructed from complete utterances [20]. Although advanta-
geous, such an approach relies on having access to utterances
with the same phonetic content from both healthy and patho-
logical speakers. To relax these phonetic constraints while ex-
plicitly learning a representation that is robust to pathology-
unrelated cues such as speaker identity information, we re-
cently proposed to obtain speaker identity-invariant represen-
tations on short (phonetically-unmatched) speech segments us-
ing a supervised representation learning framework [19]. To
this end, we exploited a supervised autoencoder (AE) with an
adversarial speaker identification (ID) module to learn bottle-
neck representations containing no speaker identity cues. Such
representations were then used as input to a neural network
for dysarthria classification. We showed that using speaker-
identity invariant representations for dysarthria classification
yields a significantly better performance than unsupervised rep-
resentations containing speaker identity cues [19]. It should be
noted that besides improving the dysarthria classification per-
formance, another important motivation for suppressing speaker
identity cues arises in the context of voice privacy preserva-
tion [21]. As outlined in the recently organized VoicePrivacy
challenge in [22], recent years have seen increasing pressure
for privacy-preserving speech technologies suppressing speaker
information from speech representations, while preserving the
paralinguistic acoustic cues related to pathological conditions.

The adversarial training framework used in [19] to obtain
speaker-identity invariant representations is challenging, since
it can be very sensitive to training parameters and it can result in
oscillating, unstable, and divergent models [23]. Furthermore,
it has been shown that adversarial training can be unnecessary
and counter-productive [24]. To avoid adversarial training, in
this paper we propose an adversarial-free framework to obtain
speaker identity-invariant representations using feature separa-
tion through mutual information (MI) minimization. The pro-
posed adversarial-free framework consists of two encoders and
one decoder. The first encoder generates a bottleneck repre-
sentation containing speaker identity cues, whereas the second
encoder generates a speaker identity-invariant bottleneck repre-
sentation. To ensure the presence of speaker identity cues in the
first bottleneck representation (generated by the first encoder),
the performance of a speaker ID auxiliary classifier operating
on this representation is maximized. To reduce the presence
of speaker identity cues in the second bottleneck representa-
tion (generated by the second encoder), the MI between the two
bottleneck representations is minimized. To avoid information
loss, a decoder fed by both encoded representations is simul-
taneously trained to minimize the reconstruction loss. Such a
training procedure avoids adversarial training and yields a rep-
resentation (generated by the second encoder) with suppressed
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Figure 1: Proposed feature separation framework.

speaker identity cues, which is consequently a more robust rep-
resentation for dysarthric speech classification.

MI minimization to separate latent representations into
(ideally) independent components while avoiding adversarial
training has been exploited for several applications, e.g., unsu-
pervised domain adaptation for image classification tasks, voice
style transfer (voice conversion), and speech synthesis [25–27].
As estimating the MI between high dimensional continuous
variables is a difficult task, different estimators of the upper
and lower bounds of MI using neural network architectures have
been proposed and considered for optimization instead [25,28].
To minimize the MI in the proposed adversarial-free frame-
work, we use the neural network-based MI estimator in [25].

Experimental results on a Spanish database of neurotypical
and PD speakers show that the proposed adversarial-free frame-
work successfully learns a speaker identity-invariant represen-
tation, while being more robust than the adversarial framework
to the choice of training parameters. Further, it is shown that us-
ing this representation for dysarthric speech classification yields
a substantially better performance than unsupervised represen-
tations containing speaker identity cues.

2. Adversarial-Free Representation
Learning for Dysarthria Classification

To suppress speaker identity cues while avoiding adversarial
training, we propose to use the feature separation framework
schematically illustrated in Figure 1. In this framework, chunks
of time-frequency input representations are projected onto a pair
of bottleneck representations using two encoders. A decoder
is simultaneously trained to generate a reconstructed version
of the input using the concatenated bottleneck representations
to avoid information loss. The first bottleneck representation
zid should only contain information about speaker identities,
while the second (residual) bottleneck representation zr should
contain no information about speaker identities. To this end,
zid is directly supervised by a speaker ID classifier, while zr
is separated from zid by minimizing a MI criterion between
them. Since all modules, i.e., the two encoders, the decoder,
and the auxiliary speaker ID classifier, are jointly trained, it is
expected that the bottleneck representation zr encodes speaker
identity-invariant cues, making zr a more robust representa-
tion for dysarthria classification. In the following, the architec-
ture and training procedure for the proposed speaker identity-
invariant representation learning are presented.

2.1. Modules

Adapted from [19], each encoder contains three convolutional
layers (filter size: 6 × 6, stride: 1), with the number of fea-

ture maps on each layer being twice the number of feature
maps on the previous layer (starting with 32 maps in the first
layer). Each convolutional layer is followed by max-pooling
(filter size: 3 × 3, stride: 3), batch normalization, and a ReLU
activation function. The output of the last convolutional layer is
further processed by a fully connected layer (with 128 hidden
units) to form the bottleneck representation of dimension 128.
The architecture of both encoders in the framework is the same.
The outputs of the two encoders are concatenated and fed to
a decoder. The decoder components are stacked in reverse or-
der of the encoder components, where transposed convolutional
and interpolation layers are used instead of convolutional and
max-pooling layers. The parameters of the two encoders gen-
erating the representations zid and zr are denoted by θide and
θre, respectively, and the decoder parameters are denoted by θd.
For the speaker ID classifier, the same architecture as in [19] is
used. The number of output units, i.e., the number of units in
the final layer of the speaker ID module, is equal to the number
of speakers used for the speaker ID task (cf. Section 4.2). The
parameters of this module are denoted by θid. As described in
the following, the proposed framework also consists of an MI
estimator module which is needed for estimating and minimiz-
ing the MI between zid and zr.

2.2. MI minimizer

The MI I(zid, zr) between zid and zr is defined as the
Kullback-Leibler divergence between the joint distribution and
the product of marginal distributions of the two variables, i.e.,
I(zid, zr) = DKL

(
p(zid, zr)||p(zid)p(zr)

)
. Since MI com-

putation is challenging for high-dimensional variables with
unknown probability distributions, variational contrastive log-
ratio upper bound (vCLUB) is used in [25] as an upper bound
for MI, i.e.,

IφvCLUB(zid, zr) =Ep(zid,zr) [logqφ(zid|zr)] (1)
− Ep(zid)Ep(zr) [logqφ(zid|zr)] ,

where qφ(zid|zr) is the Gaussian variational approximation of
p(zid|zr) with mean µ(zr) and variance σ2(zr). The mean and
variance estimation is done through neural networks with pa-
rameters denoted by φ. The networks consist of a fully con-
nected layer with 64 hidden units, a ReLU activation func-
tion, and a 128–dimensional output vector representing µ(zr)
or σ2(zr) [25]. For the variance estimating network, a Tanh
(hyperbolic tangent) activation function is applied after the out-
put. The network parameters φ are approximated by maximiz-
ing the log-likelihood loss Lll(φ) = logqφ(zid|zr) as in [25].
After obtaining an estimate φ̂ of the network parameters, we
use the vCLUB as our MI objective to be minimized, i.e.,
LMI(θ

id
e , θ

r
e, φ̂) = I φ̂vCLUB(zid, zr).

2.3. Feature separation

Learning the speaker identity-invariant representation zr is
achieved through minimizing the objective function

E(θide , θ
r
e, θd, θid, φ) = Lae(θ

id
e , θ

r
e, θd) + λLid(θ

id
e , θid)

(2)

+ βLMI(θ
id
e , θ

r
e, φ),

with Lae and Lid being the AE reconstruction and speaker ID
loss functions, respectively, and λ and β being the weights of
the speaker ID and MI loss functions (cf. Section 4.2). Be-



cause of the MI estimator module, optimal parameters in (2) are
approximated using an alternating training procedure, i.e.,

(θ̂ide , θ̂
r
e, θ̂d, θ̂id) = arg min

θide ,θ
r
e,θd,θid

E(θide , θ
r
e, θd, θid, φ̂), (3)

φ̂ = argmin
φ
−Lll(φ, θ̂

id
e , θ̂

r
e). (4)

2.4. Dysarthric Speech Classification

As in [19], the learned speaker identity-invariant representation
zr is used as input for a dysarthric speech classifier. The archi-
tecture of this classifier is identical to the speaker ID classifier
in Section 2.1, except for the number of output units being 2
(since we are dealing with binary classification, i.e., dysarthric
vs. neurotypical speech). The final decision for an unseen (test)
speaker is made by averaging the classifier prediction scores for
all input representations belonging to that speaker.

3. Adversarial Representation
Learning for Dysarthria Classification

For completeness, in the following we briefly describe the
adversarial training framework for learning speaker identity-
invariant representations from [19].

Considering the schematic representation in Figure 1, the
adversarial training framework consists only of the first encoder
θide , the decoder θd, and the speaker ID module. The architec-
ture of these modules is as described in Section 2.1, with the
only difference being the size of the first decoder layer (since
differently from the proposed feature separation framework,
only one bottleneck representation is encoded and decoded in
the adversarial framework).1 To obtain an encoded represen-
tation where speaker identity cues are suppressed, a gradient
reversal layer is included before the speaker ID module. Hence,
the adversarial training optimization objective consists of only
the AE reconstruction and speaker ID loss, with a sign reversal
for the speaker ID loss, i.e.,

Eadv(θ
id
e , θd, θid) = Lae(θ

id
e , θd)− λLid(θ

id
e , θid). (5)

Optimization of (5) is done in an alternating fashion, where in
the first step, the AE parameters θide and θd are updated assum-
ing fixed speaker ID parameters θid, and in the second step, the
parameters θid are updated assuming fixed parameters θide and
θd obtained in the first step.

4. Experimental Results

In this section, the performance of dysarthric speech classifica-
tion using the proposed adversarial-free representation learning
framework is evaluated and compared to using the adversarial
representation learning framework from [19]. Furthermore, the
efficacy of the speaker ID and MI minimizer modules in the
proposed framework is also investigated. Empirical insights re-
garding the stability of model training with respect to several
training parameters are also provided.

1It should be noted that the architecture of the adversarial training
framework used here differs from the one in [19] such that the adver-
sarial and adversarial-free training frameworks can be fairly compared
under the same architecture.

4.1. Database

We consider Spanish recordings from 50 PD patients (25 males,
25 females) and 50 neurotypical speakers (25 males, 25 fe-
males) from the PC-GITA database [29]. Each speaker utters
24 words, 10 sentences, and 1 text recorded at a sampling fre-
quency of 44.1 kHz. After downsampling to 16 kHz, speech-
only segments are manually extracted from the word recordings
and using an energy-based voice activity detector for all other
recordings [30]. The average length of the speech material con-
sidered for each speaker is 59.9 s.

4.2. Training, evaluation, and baseline systems

Training. Representations are learned from Mel-scale input
representations of 500 ms segments of speech with the same set-
tings as in [19]. For training and evaluation, we use a stratified
speaker-independent 10-fold cross-validation. In each training
fold, a development fold of the same size as the test fold is
set aside for early-stopping when training the final dysarthric
speech classifier. For the speaker ID module, utterances from
the healthy speakers in the training set (i.e., 45 speakers) are
split without overlap into 50% train, 25% development, and
25% test sets. Cross-entropy is used for the speaker ID loss Lid

and for the final dysarthric speech classifier, whereas the mean
square error of the reconstructed representation is used for the
AE loss Lae.

All parameters are estimated using the ADAM opti-
mizer [31]. Preliminary results showed that the learning rate
for each module of the considered frameworks should be differ-
ent. Using different learning rates is particularly important for
the adversarial training framework. For the results presented
in the following, learning rates are empirically set to 10−5 for
the AE module, 10−3 for the speaker ID classifier module, and
10−3 for the MI estimator network. The representation learning
frameworks are trained with a batch size of 128 for 50 epochs.
The final dysarthric speech classifier is trained using a learn-
ing rate of 10−4 after freezing the encoder parameters. This
learning rate is halved each time the classification loss on the
development set does not decrease for 5 consecutive iterations.
Training is stopped either after 50 epochs or after the classi-
fier learning rate has decreased beyond 0.1 of the initial learn-
ing rate. To investigate the suppression of speaker identity cues
in the learned representations, a speaker ID classifier (with the
same architecture as the speaker ID module in Section 2.1) is
also trained with an initial learning rate of 10−3 following the
same early-stopping procedure described above.

Evaluation. Dysarthric speech classification performance
is evaluated in terms of accuracy (i.e., percentage of correctly
classified neurotypical and PD speakers) and the AUC. The per-
formance of the speaker ID classifier is also evaluated in terms
of accuracy (i.e., percentage of correctly identified speakers)
and AUC. To reduce the impact of random initialization, all
networks are trained with 5 different random seeds. The perfor-
mance values reported in the following are the mean and stan-
dard deviation of the performance across different seeds.

Baseline systems. We compare the representation obtained
by the proposed adversarial-free framework to the representa-
tion obtained via adversarial training from [19].2 Comparisons
are done in terms of dysarthric speech classification perfor-
mance as well as speaker ID performance. An advantageous

2Note that experimental results demonstrating the advantages of
suppressing speaker identity cues as opposed to state-of-the-art ap-
proaches are provided in [19].



representation should result in a low speaker ID performance
(i.e., meaning that speaker ID cues are suppressed) and a high
dysarthric speech classification performance. The adversarial-
free and adversarial representation learning frameworks require
setting the loss weights λ and β (cf. (2) and (5)). In the follow-
ing, these weights are set using grid-search over a set of 8 values
between 10−4 and 0.5, with the final weights for each frame-
work selected as the ones yielding the highest mean dysarthric
speech classification accuracy on the development set. To in-
vestigate the effects of the auxiliary modules in the proposed
framework, we also consider baseline systems generated by ex-
cluding the supervision of these modules. Without using the
speaker ID and MI minimizer modules in training, i.e., setting
λ = β = 0 in (2), we obtain an unsupervised baseline system.
Keeping the speaker ID module while removing the MI mini-
mizer during training, i.e., setting β = 0 in (2), we obtain a
partially supervised baseline system.

4.3. Results

Table 1 presents the performance values obtained using repre-
sentations learned from the unsupervised baseline framework
(i.e., λ = β = 0), partially supervised baseline framework (i.e.,
β = 0), proposed adversarial-free framework, and state-of-the-
art adversarial framework. First, it can be observed that using
the representations from the unsupervised and partially super-
vised baselines, a relatively high speaker ID performance and
a low dysarthric speech classification performance is achieved.
This is to be expected since in both models, no supervision
is used for isolating speaker identity cues from zr, making zr
an unrobust representation for dysarthria classification. Sec-
ond, it can be observed that the representation learned by the
proposed method (where both speaker ID and MI minimizer
modules are included in training) gives a substantially higher
dysarthric speech classification performance and a substantially
lower speaker ID performance. These results confirm the ef-
ficacy of the proposed adversarial-free framework to obtain a
speaker identity-invariant representation, and therefore, a more
robust representation for dysarthria classification. Third, com-
paring the results of the proposed adversarial-free framework
and the state-of-the-art adversarial framework, it can be ob-
served that the dysarthria classification and speaker ID perfor-
mance values are similar. Statistical significance analysis con-
ducted as in [7] using a corrected resampled t-test show that the
slight difference in performance between the two frameworks is
not statistically significant for a considered threshold of 0.05.

To demonstrate the training advantages of the proposed

Table 1: Mean and standard deviation of dysarthric speech
classification and speaker ID accuracy and AUC values ob-
tained using differently learned representations.

λ β PD classification ↑ speaker ID ↓

Accuracy (%) AUC Accuracy (%) AUC

57.2± 5.4 0.72± 0.02 58.3± 2.1 0.98± 0.00
X 61.4± 3.4 0.75± 0.02 49.6± 3.2 0.98± 0.00

Proposed adversarial-free feature separation framework

X X 75.2± 3.5 0.82± 0.03 5.0± 5.2 0.67± 0.09

Adversarial framework from [19]

– – 77.0± 4.2 0.85± 0.03 5.2± 2.2 0.67± 0.05
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Figure 2: Speaker ID accuracy of the speaker identity-invariant
representations obtained from the proposed feature separation
and the adversarial training in [19] for different a) loss weight
values and b) learning rates of speaker ID module.

adversarial-free framework as opposed to the adversarial frame-
work, in the following we investigate the suppression of speaker
ID cues in the learned representations as a function of two dif-
ferent training parameters, i.e., loss weight λ and learning rate
of the speaker ID module (cf. (2) and (5)). For the proposed
adversarial-free framework, we use β = 0.5. The suppression
of speaker ID cues is evaluated through the speaker ID accu-
racy, with low accuracy values implying a high suppression and
vice-versa. Figure 2a shows the speaker ID accuracy obtained
from the representations of both frameworks for different loss
weights λ. It can be observed that compared to adversarial
training, the suppression of speaker ID cues in the proposed
framework is less sensitive to λ. Figure 2b shows the speaker
ID accuracy obtained from the representations of both frame-
works for different learning rates of the speaker ID module and
λ = 0.01. It can be observed that compared to adversarial train-
ing, the adversarial-free framework achieves a low speaker ID
accuracy independently of the learning rate of the speaker ID
module. These results confirm that the suppression of speaker
identity cues in the proposed adversarial-free framework is less
sensitive to training parameters than in the adversarial frame-
work.

In summary, the presented results show that the pro-
posed adversarial-free training framework successfully learns a
speaker identity-invariant representation which is advantageous
for dysarthric speech classification, while being less sensitive to
training parameters than the existing adversarial training frame-
work.

5. Conclusion
In this paper, we have proposed a supervised representation
learning framework for dysarthric speech classification. To sup-
press speaker identity cues unrelated to dysarthria, we have ex-
ploited an adversarial-free feature separation framework based
on training a dual encoder and a single decoder. To enforce
speaker identity cues to be present only in one of the encoded
representations, we have supervised one of the representations
with a speaker ID auxiliary task while minimizing a MI crite-
rion between the two representations. Experimental results have
shown that the proposed framework is successful in learning a
speaker identity-invariant representation, while being more ro-
bust to training parameters when compared to the state-of-the-
art adversarial framework.
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