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ABSTRACT

Automatic speech recognition (ASR) allows transcribing the com-
munications between air traffic controllers (ATCOs) and aircraft pi-
lots. The transcriptions are used later to extract ATC named entities,
e.g., aircraft callsigns. One common challenge is speech activity de-
tection (SAD) and speaker diarization (SD). In the failure condition,
two or more segments remain in the same recording, jeopardizing the
overall performance. We propose a system that combines SAD and a
BERT model to perform speaker change detection and speaker role
detection (SRD) by chunking ASR transcripts, i.e., SD with a de-
fined number of speakers together with SRD. The proposed model is
evaluated on real-life public ATC databases. Our BERT SD model
baseline reaches up to 10% and 20% token-based Jaccard error rate
(JER) in public and private ATC databases. We also achieved relative
improvements of 32% and 7.7% in JERs and SD error rate (DER),
respectively, compared to VBx, a well-known SD system.1

Index Terms— Text-based speaker diarization, speaker change
detection, speaker role detection, air traffic control communications,
chunking

1. INTRODUCTION

Air traffic controllers (ATCOs) supervise a portion of airspace by
issuing commands to pilots. Most of these voice-based communica-
tions are conveyed over noisy VHF (very-high frequency) channels,
i.e., low signal-to-noise ratio (SNR). In a typical scenario, the
ATCO (speaker1) issues voice-based commands to pilots (speaker2)
together with pre-defined callsigns (names of the aircraft). Con-
sidering that a big portion of this communication is transmitted
via voice messages, previous studies proposed to apply automatic
speech recognition (ASR) to automatically extract the corresponding
transcripts and high-level entities. In recent years, the ASR systems
were shown to reach maturity in reducing ATCO’s workload, but
for research-only scenarios. Examples are AcListant®-Strips [1]
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Table 1. Conversation between two speakers with correct SAD and
SCD (rows 1 and 2) and SCD fault (row 3, words in bold). †samples
from SOL-Cnt test set.

Speaker Label Detected segment†

ATCO (speaker 1) <s> november six two nine charlie
tango report when established </s>

Pilot (speaker 2) <s> report when established novem-
ber six two nine charlie tango </s>

Mixed (SAD and
SCD failed)

<s> november six two nine charlie
tango report when established report
when established </s> <s> novem-
ber six two nine charlie tango </s>

and MALORCA2 projects. The later shows that novel data-driven
machine learning approaches enable costly adaptations to different
airport environments [2]. Lin [3, 4] reviews ten tasks on spoken
instruction understanding of air traffic control (ATC) data. Semi-
supervised learning has also been explored on the framework of
ATC [5]. HAAWAII3 and SOL-Cnt projects focus on developing
a reliable and adaptable ASR engine for transcribing ATCO-pilot
ATC communications. Previous work has concluded that higher
accent variability and noise level cause ASR systems to yield up to
two times higher word error rates (WER) for pilots’ utterances com-
pared to ATCOs’ utterances [6]. In addition, close and cross-talk
between ATCO and pilots induce acoustic-based speaker diariza-
tion (SD) systems to yield non-acceptable performances. All this
together jeopardizes the speaker change detection (SCD) step and
subsequently the ASR system ends up processing utterances with
multiple speakers.

1.1. Motivation

Already existent acoustic-based SD systems, like [7] or end-to-end
neural-based SD [8], show promising performances for many ap-
plications. However, in ATC communications, given its limitations
such as high speaker rate, close-talk, and noise levels, relying solely
on the acoustic level has shown to be insufficient. Additionally,
standard SD systems add one layer of complexity to the whole ATC

2https://www.malorca-project.de
3https://www.haawaii.de
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pipeline,4 weakening the flexibility to transfer the already tuned
pipelines to other environments (e.g., noise level variation or new
speakers’ accents). That is why applying SD solely on the text
level stands as an interesting solution to target these disadvantages.
Additionally, the proposed SD system is speaker-agnostic because it
fed with text data. This, can drastically reduce the chance of speaker
identification as we remove the possibility to obtain the speaker
identity from acoustic data or features.

1.2. Contribution

In this work, we fine-tune a pre-trained BERT model [9] to jointly
perform tagging and chunking for SCD and speaker role detection
(SRD). Chunking allows splitting sentences into tokens (or words)
and then merging them in meaningful subgroups. In our case, a
phrase (or entity) is composed of a full single-speaker utterance,
where either ATCO or pilot is the role (see Table 1). By applying
chunking in a multi-speaker and multi-segment (or single-speaker
and single-segment) utterance, one can perform speaker change de-
tection (SCD) and speaker role detection (SRD) simultaneously on
the text level (Figure 1 mid-box). In short, our approach simplifies
the standard SD pipeline, moving up the task from the acoustic level
to text level, i.e., post ASR. We stack the BERT model on top of a
speech activity detection (SAD) module to create a text-based SD,
which from now on we call ‘BERT SD system’. Our approach is
proved on public and private databases. We developed a simple yet
effective data augmentation pipeline to counteract the class imbal-
ance within the train sets. The BERT SD system (i.e, combination of
SAD, SRD, and SCD) yielded acceptable token-based JER of about
10% for seen domains (i.e., text transcripts provided to fine-tune the
BERT model) and no more than 20% JER for databases that have not
seen during training (in this case, the model has been fine-tuned on
the SD task with other in-domain text data). Finally, we also experi-
mented by directly feeding the BERT-based SD with transcripts gen-
erated by our in-domain hybrid-based ASR system for ATC [10, 11].
We obtained competitive performances compared to acoustic-based
SD baselines.

2. RELATED WORK

Speaker diarization systems answer the question “who spoke
when?”. SAD, segmentation or SCD, embedding extraction, clus-
tering and labeling are the main parts of a SD system.

Traditional acoustic-based diarization: feature representa-
tions of speakers are one of the main factors in the accuracy of
a SD system. Mel frequency cepstral coefficients (MFCCs) are
commonly used for the task of SD. In comparison to MFCC, mel
filterbank slope (MFS) and linear filterbank slope (LFS) features
have more speaker discriminability power caused by emphasis on
higher-order formants [12]. The agglomerative information bottle-
neck (aIB) approach to SD has shown competitive performance [13].
Here, for clustering the fixed-length audio segments, a bottom-up
clustering approach is applied in the posterior space represented by
a mixture of Gaussians. Speaker discriminative embeddings such as
x-vectors are investigated in [14]. For finding the speaker clusters
in a sequence of x-vectors, the variational Bayesian hidden Markov
model (VBx) was investigated in [15, 7]. For continuously learning
speaker discriminative information, “Remember-Learn-Transfer”

4A standard ATC pipeline is composed of signal processing, SAD and
SD, ASR, natural language understanding and post-processing.

was proposed in [16]. Applying lexical and acoustic information for
SD was investigated in [17].

Neural-based diarization: in the last years, there has been an
increasing interest in end-to-end (E2E) and sequence-to-sequence
architectures for different speech-related tasks. SD and its derivates,
e.g., SCD, have also seen the benefits from this trend. For exam-
ple, [18] builds on top of their proposed baseline for SD (ASR and
SD are run in parallel and then the output is merged). They perform
joint ASR and SD, claiming that word-level DER can be improved
up to 15.8% in cross-domain evaluations. Afterward, the end-to-
end neural diarization (EEND) was introduced in [8], where a full
SD model is trained jointly to perform extraction and clustering.
Later, the same authors upgraded the system by replacing the bidi-
rectional long short-term memory (BLSTM) layers by self-attention
modules [19]. Subsequent work has targeted EEND for unknown
number of speakers [20], SD for long conversations [21], streaming
EEND [22], SD constrained by turn detection (i.e., SCD) in [23], or
even leveraging EEND for ASR [24].

Text-based speaker role detection: early text-based techniques
for SRD or SCD relied on handcrafted lexicons, dictionaries, and
rules. They are prone to human errors and not robust against noisy
labels, e.g., produced by standard ASR systems (e.g., [25]). Col-
lobert et al. [26] introduced machine learning methods for text pro-
cessing in part-of-speech tagging, chunking, and semantic role la-
beling. In [27], domain-based chunking of sentences is addressed,
which is similar to the approach proposed in this paper. In gen-
eral, chunking is used to parse phrases from unstructured text. In
our case, tagging and chunking an ATC utterance allows us to per-
form jointly SCD and SRD. The reader might relate chunking to
named entity recognition (NER). NER is a chunking sub-task that
aims at identifying entities on text, e.g., locations, organizations, or
names [28, 29, 30]. Examples of named entities in ATC commu-
nications are callsigns, command types, etc. These entities carry
rich information that gives cues about the speaker’s role (ATCO or
pilot). A recent work aligned to ATC domain is reviewed in [31].
Here, a grammar-based approach performs SRD on single-speaker
utterances. In [32] a text-based SRD for multiparty dialogues is pro-
posed, but limited to SRD. Finally, text-based diarization has been
proposed in the past by [22, 24]. However, these previous works do
not take into account the text structure, grammar, and syntax.

Contrasting with previous work: different to other systems,
e.g., EEND or traditional acoustic-based SD, our model is fed di-
rectly with text data (for instance, transcripts). The field of ATC
holds some limitations and advantages regarding SD, where already
existent acoustic-based EEND systems could fail. Some limitations
are: ATC audio is noisy (below 15 dB SNR) with close and cross-
talk speech. Some advantages are: the number of speaker roles are
known (in our case two, ATCO and pilot) and the grammar between
the two speaker roles slightly differs. Our main idea is to leverage
those advantages in order to show that a fully text-based joint SCD
and SRD system can perform on par or even better than traditional
acoustic-based SD. As a clarification, similar scenarios where our
approach can be applied are call-centers or patient–physician con-
versations, where the number of speaker roles are defined before-
hand and their grammar structure also differs.

To summarize, the main difference between our BERT SD
system and EEND roots on the fact that we use a standard BERT
model [9] fine-tuned to ATC text data instead of crafting a SD neural
network system. BERT5 is known for its ease and powerful ability
to be fine-tuned on many tasks and corpus with minimum effort

5We use BERT-base-uncased (110M params) for all the experiments.



Table 2. Amount of train and test data (# train utterances / # test ut-
terances) for each class. ATCO and pilot columns are single-speaker
samples, while Mixed are utterances with two or more segments.
†real-life ATC set where speech activity detection failed.

Database ATCO Pilot Mixed Ref

Private databases

SOL-Cnt† 662 / 138 945 / 204 535 / 205 [33]
HAAWAII 18724 / 1954 21099 / 2299 - / - [34]

Public databases

ATCO2 - / 1772 - / 1350 - / - [11]
LDC-ATCC 12694 / 1515 14216 / 1446 - / - [35]
UWB-ATCC† 4577 / 1157 6669 / 1713 735/174 [36]

(e.g., amount of labeled data). It also performs well in low-resource
scenario, which is the case in ATC. Finally, as our system removes
the ‘acoustic level’ complexity and moves it to the text level, we
demonstrate that mapping to the target domain when we have spe-
cific speaker roles is more efficient in the text level. For instance,
data augmentation on text is simpler than on the acoustic level or one
can modify easily the training data to adapt it to another scenario by
merely altering the text.

3. DATABASES AND EXPERIMENTAL SETUP

This research experiments on five databases in the English language
with various accents and data quality. With the aim of encourag-
ing open research on ATC (which has lagged behind due to privacy
clauses and contracts6) we identified and experimented with three
public databases, as referenced in Table 2. All experiments use 10%
of the train set as validation set. We release a GitHub repository 7

with training scripts to replicate the results on the public databases.
To the author’s knowledge, this is the first open release of code in
the field of natural language processing for air traffic control.

3.1. Private databases

SOL-Cnt: private database recorded and collected over EU-
funded industrial research project that aims to reduce ATCOs’ work-
load with an ASR-supported aircraft radar label. Voice utterances
of ATCOs and pilots have been recorded in the operations’ room at
the air navigation service provider (ANSP) site of Austrocontrol in
Vienna, Austria8 [33].

HAAWAII: private data set that has been collected and an-
notated from ATC communications from London and Icelandic
airspace.9 This data is of higher quality (≥ 15 dB SNR) compared
to SOL-Cnt. All the data is correctly split, i.e., one speaker per
segment. Previous benchmark and results are covered in [37, 34].

3.2. Public databases

LDC-ATCC: public ATC corpus gathered from three different
airports in the US. LDC-ATCC10 comprises recorded speech with

6Nearly all ongoing and former projects in the area of ATC prohibit the
release of code and models due to privacy issues.

7https://github.com/idiap/bert-text-diarization-atc
8PJ.16-W1-04: https://www.sesarju.eu/projects/cwphmi
9https://www.haawaii.de

10https://catalog.ldc.upenn.edu/LDC94S14A

the aim of supporting research in robust ASR. The recordings con-
tain several speakers, and they were collected over noisy channels.
The database is formatted in NIST Sphere format, where full tran-
scripts, start and end times of each transmission are provided [35].

UWB-ATCC: public ATC corpus containing recordings of com-
munication between ATCOs and pilots. The speech is manually
transcribed and labeled with the information about the speaker (pi-
lot/controller, not the full identity of the person). The audio data is
single channel sampled at 8kHz. Similar to SOL-Cnt, UWB-ATCC
contains around 900 utterances where segmentation failed and two
or more segments and/or speakers ended up in the same recording.
This database can be downloaded for free in their website 11 [36].

ATCO2 corpus: public ATC corpus recently released in ATCO2
project.12 ATCO2 developed a pipeline to pseudo-annotate (ASR
transcripts, language and diarization labels) large amounts of ATC
speech audio for training robust ASR models. We use the entire
database only as test set (over 4000 utterances), thus we consider
this as an out-of-domain evaluation. The ATCO2 corpus is one of the
few open-source and public databases that has been used by other re-
searchers to benchmark their ASR engines [11, 38]. The full corpus
is available for purchase through ELDA in http://www.elra.
info/en/catalogues/.

3.3. Annotation protocol

In addition to manual speech transcripts, speaker labels and time seg-
mentation (e.g., ATCO/pilot/mixed) are also available. The BERT
model starts by tagging each word of the transcript (ground truth or
ASR transcript) with a set of tags that follows the well-known IOB
format (Inside-Outside-Beginning). In IOB format, each entity (a
full sentence in our case) is composed of two tags: (i) the Beginning
defines which token/word is the start of the sentence ‘B-’, and (ii)
the Inside tag ‘I-’ defines which tokens/words belongs to that spe-
cific sentence. We define ATCO recordings as Speaker1, while pilot
segments as Speaker2 (green and red in Figure 1, respectively). We
do not use the Outside tag, because we know that each word is al-
ways from one of two predefined speakers. In total, we have four
tags, two per class (ATCO and pilot).

3.4. Data augmentation

We implemented a simple yet effective data augmentation pipeline
to counteract the class imbalance in the train sets (see Table 2). First,
we split the training sets on either ATCO (speaker 1) or pilot (speaker
2) subset. Then, we generate new sentences from the initial set of ut-
terances for each database (e.g., HAAWAII ∼39k utterances). Each
new sample depends on: (i) the number of sentences to be concate-
nated, and (ii) the speaker label of each sentence. In general, a new
sample is composed of one to four sentences, each with an equal
chance of being drawn from the ATCO or pilot dictionary. The pro-
cess is repeated until gathering ∼350 MB of text data (∼1M sen-
tences). We emphasize that in ATC, there is no need to have a cor-
relation between previous and next sentences/utterances. This is due
to the fact that speaker 1 (ATCO) communicates to several speak-
ers 2 (pilots). The stream of information received and transmitted
by the speakers is not dependent on ‘left’ or ‘right’ context. There-
fore, concatenating various segments randomly would not degrade

11https://lindat.mff.cuni.cz/repository/xmlui/
handle/11858/00-097C-0000-0001-CCA1-0

12ATCO2 corpus: https://www.atco2.org/data
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Fig. 1. Left block: proposed data augmentation pipeline. Augmented samples contain between one and four utterances (probabilities of
40%, 30%, 20% and 10% for one to four, respectively). New sentences have equal chance to be sampled from the ATCO or pilot dictionary.
Central block: proposed pipeline to fine-tune a BERT model that performs tagging and chunking for joint SCD and SRD. Right block:
proposed approach to compare acoustic-based SD (VBx) and BERT joint SRD and SCD.

substantially the WERs.13 The left block in Figure 1 depicts the pro-
posed data augmentation pipeline.

3.5. Modules

The performance of our BERT-based SRD and SCD system is con-
trasted with a standard acoustic-based SD system. We use an out-of-
the-box VBx system to evaluate the SOL-Cnt and UWB-ATCC test
sets, which contain real-life ATC audio where segmentation failed.
For both, BERT and acoustic-based SD systems, we use the same
multilingual ASR-based SAD module [39] to remove the silence in
the recording files.

Speaker role and speaker change detection module: the SRD
and SCD systems are built on top of a pre-trained BERT model [9]
downloaded from HuggingFace [40, 41]. The model is later fine-
tuned with either the original or the augmented databases, on the
tagging and chunking task (following IOB format). We append a
linear layer with a dimension of 4 (following the classes structure
from Section 3.3) on top of the last layer of the BERT model. Then,
we fine-tune each model on an NVIDIA GeForce RTX 3090 for 3k
steps, with a learning rate scheduler that first warms up the learning
rate until γ = 5e−5 for 500 steps, and then it linearly decays. We
employ AdamW [42] optimizer (β1=0.9, β2=0.999, ϵ=1e−8) and
dropout [43] of dp = 0.1 for the attention and hidden layers. We use
GELU activation function [44]. We train all models with batch size
of 32, and gradient accumulation of 2, i.e., effective batch size of 64.

Acoustic-based diarization: for details of the VBx model,
the reader is referred to [7]. This model uses a Bayesian hidden
Markov model (BHMM) to find speaker clusters in a sequence of
x-vectors. Here, the x-vector extractor uses DNN architecture based
on ResNet101. The input to the ResNet is 64 log Mel filter bank
features extracted every 10 msec using 25 msec window. In the first

13We measure WERs by decoding with the in-domain ASR system the
original and augmented test sets to corroborate this assumption.The relative
WER degradation was less than 1% for all test sets.

step, Agglomerative Hierarchical Clustering (AHC) is applied to the
extracted x-vectors. Then, Variational Bayes HMM over x-vectors
is applied using the AHC output. For achieving the best perfor-
mance on the database with short duration files with a maximum
of two speakers, we tuned the probability of not switching speakers
between frames (loopP) and speaker regularization coefficient (Fb)
to 0.7 and 6, respectively.

Automatic speech recognition: a state-of-art hybrid-based
ASR system for ATC speech was developed with Kaldi toolkit [45].
The system follows the standard recipe, e.g., uses MFCC and i-
vectors features with standard chain training based on lattice-free
MMI. We use the same ASR system for audio from both speakers
(i.e., ATCO and pilot). The training recipe and databases (including
the train sets in Table 2) are covered in [11, 46, 47, 37].

3.6. Evaluation protocol

The experiments are prepared to answer three questions: (i) how
reliable is the BERT-based SRD and SCD system on ground truth
transcripts? (ii) How is the performance impacted when using auto-
matically generated (ASR) transcripts instead of ground truth tran-
scripts?14 And, (iii) which system performs better on real-life ATC
speech data, text or acoustic-based SD?

Acoustic-based diarization: to score acoustic-based diariza-
tion, we use DER and Jaccard Error Rate (JER) as metrics. DER
measures the fraction of time that the segment is not attributed cor-
rectly to a speaker or to non-speech which is defined in Equation 1:

DER =
false alarm + miss detection + speaker confusion

Total duration of speech in the reference file
, (1)

where false alarm is the duration of non-speech incorrectly classi-
fied as speech, missed detection is the duration of speech incorrectly

14This is a real-life scenario where ASR transcripts are fed to the BERT
SD system instead of ground truth transcripts.



Table 3. Jaccard error rate (JER) in percentages (%) from predictions using different train (column 1) and test sets. All the experiments use
the same model (BERT-base-uncased) and same set of hyperparameters. We report the mean of five runs with different seeds and its standard
deviations (mean ± STD). Bold refers to the best performance over public databases, while underline denotes the highest performance per
column. Metrics reported on token level of ground truth transcripts.

Model Public Private

Database # samples ATCO2 UWB-ATCC LDC-ATCC HAAWAII SOL-Cnt

Public databases

LDC-ATCC 26.9k 31.3 ± 2.4 35.8 ± 2.0 8.1 ± 0.7 28.7 ± 3.1 52.6 ± 1.3
UWB-ATCC 11.2k 21.6 ± 0.7 10.7 ± 0.6 18.7 ± 2.6 15.2 ± 1.4 18.7 ± 1.7
↪→ + LDC-ATCC 38.1k 19.8 ± 0.9 11.3 ± 0.4 7.1 ± 1.3 14.2 ± 1.4 24.0 ± 1.9

Private database

HAAWAII 39.8k 23.9 ± 0.6 22.3 ± 1.7 14.1 ± 1.2 6.5 ± 0.7 48.5 ± 1.4
↪→ +LDC+UWB 77.9k 17.5 ± 0.2 11.5 ± 0.5 7.5 ± 0.6 6.2 ± 0.3 26.8 ± 2.0

classified as non-speech, confusion is the duration of speaker confu-
sion, and total is the total duration of speech in the reference. JER
is a recently proposed metric [48] that avoids the bias towards the
dominant speaker, i.e., evaluating equally all speakers. The JER is
defined in Equation 2:

JER = 1− 1

#speakers

∑
speaker

maxcluster
|speaker ∩ cluster|
|speaker ∪ cluster| , (2)

where speaker is the selected speaker from reference and maxcluster

is the cluster from the system with maximum overlap duration with
the currently selected speaker.

Speaker role detection: we evaluate SRD with JER on the to-
ken level (which is more aligned to SD) on the five proposed test
sets. To clarify, SOL-Cnt and UWB-ATCC databases contain ut-
terances with more than one speaker per utterance. Thus, we test the
SD capabilities of the proposed BERT-based system on these two
test sets. Results are shortlisted in Table 4. We first analyzed the
model performance on the ideal case, i.e., we used the ground truth
audio annotations to obtain JERs per test set, thus assuming we have
access to a perfect ASR system (0% WER). These results are listed
in Table 3. We employ the Scikit-learn15 Python library to calculate
these scores.

Speaker change detection: in addition to SRD, the BERT sys-
tem performs SCD, i.e., central block in Figure 1. We evaluated this
task with DER and JER on one private (SOL-Cnt) and one public
(UWB-ATCC) test set, which contains utterances with one or two
speakers. The MIXED column in Table 4 list the results correspond-
ing to SCD only on the multi-speaker segments. For creating the
segments from the BERT-based SCD system, we used forced align-
ment between audio and ground truth text using the trained ASR
module. This module is explained in Section 3.5. Similarly, time
information from the ASR output transcripts was used to create the
segments of the BERT-based SD system on the ASR transcripts.

4. RESULTS AND DISCUSSION

Baseline performance of BERT SD: we discuss the results listed
in Table 3. Here, we aim at evaluating two aspects of the BERT

15We use weighted Jaccard error rate score. It calculates metrics for each
class (i.e., ATCO and pilot), and finds their average weighted by support (the
number of true instances for each class). This accounts for label imbalance.

SD system. First, we assess how well the model behaves on out-of-
domain corpora. We fine-tune BERT models on each database and
evaluate it on all five test sets. We call this: transferability between
corpora. Second, we establish baselines on both, public and private
databases. Each model is fine-tuned five times with different seeds,
hence we report the mean and standard deviation across runs. Not
to our surprise, test data that matched the fine-tuning one performed
particularly well. LDC-ATCC and UWB-ATCC test sets reached
less than 10% JER, while ∼20% JER for ATCO2.

One aspect that can shed light on new research is how public
databases transfer to private ones. This can help future research to
set a starting point, thus reducing the costs inherit by developing
tools from scratch, e.g., SD system for ATC. We noted that UWB-
ATCC corpus was more challenging for the BERT SD model com-
pared to LDC-ATCC and HAAWAII corpora (6.5% and 8.1% JER,
respectively). However, this system performed consistently better
on all the other test sets, if we compare the model fine-tuned on
UWB-ATCC versus the ones on LDC-ATCC and HAAWAII. We be-
lieve that the transferability to new domain of UWB-ATCC corpus is
higher compared to LDC-ATCC and HAAWAII (see ‘UWB-ATCC’
row in Table 3 and compare it with LDC-ATCC or HAAWAII).

Does adding more data help? Here, we evaluate the BERT SD sys-
tem by performing an ablation where the amount of fine-tuning data
is incremental. In total, 9 models per database are studied, as de-
picted in Figure 2 (each data point represents one model). We report
token-based JERs which are more aligned to standard SD. For the
public databases, we obtained 65, 43, and 37% relative improvement
in JERs on LDC, UWB, and ATCO2, respectively, by scaling up the
fine-tuning data from 100 to 2000 samples. This number goes up to
more than 50% relative JERs improvement if we use 10k samples
(69% relative improvement for LDC). We note the same behavior
on the private databases. At least 50% relative improvement is seen
by scaling up the data from 100 samples → 2000 samples, on both,
HAAWAII and SOL-Cnt experiments. To our surprise, UWB-ATCC
models transfer particularly well on the two out-of-domain test sets
(i.e., ATCO2 and SOL-Cnt). This gives insights that our approach
works well on both, public and private databases. We believe this
is an acceptable starting point for the future research on text-based
SRD and SCD (not only aligned to ATC).

Robustness of BERT speaker diarization on ASR transcripts: we
evaluated the BERT SD system on SOL-Cnt and UWB-ATCC test
sets, which contain utterances with more than one speaker (mixed



Table 4. Comparison of acoustic-based VBx SD and text-based SD on ATCO, PILOT, and MIXED subsets of SOL-Cnt, and UWB-ATCC
test sets. Bold refers to the best performance. †the performance of acoustic diarization system. ††proposed BERT model trained on all the
available data with data augmentation and evaluated on ground truth annotations (_GT) or ASR transcripts (_ASR).

Sol-Cnt test set UWB-ATCC test set
DER (%) ↓ JER (%) ↓ DER (%) ↓ JER (%) ↓

Model AT / PI / MIX AT / PI / MIX AT / PI / MIX AT / PI / MIX

Acoustic-based speaker diarization
Acoustic_VBx† 5.8 / 7.8 / 10.3 7.0 / 10.9 / 22.2 0.8 / 1.2 / 14.4 0.6 / 0.7 / 39.4

Text-based speaker diarization
BERT_GT†† 2.4 / 2.4 / 8.9 1.0 / 2.2 / 15.0 1.2 / 1.7 / 5.8 1.1 / 1.1 / 16.6
BERT_ASR†† 3.0 / 3.7 / 9.5 1.5 / 3.2 / 15.1 1.6 / 1.5 / 6.9 1.2 / 1.2 / 20.1
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Fig. 2. Jaccard error rates (JER) in percentages (%) for nine mod-
els fine-tuned with increased amount of samples per database. We
evaluate models on two configuration. HAAWAII, LDC-ATCC and
UWB-ATCC are in domain experiments, which means that the train
and test splits are from the same database. ATCO2 and SOL-Cnt are
out of domain test sets, i.e., the train and test data differs. For the
two later (blue and yellow dashed lines), we report the results of the
model fine-tuned with UWB-ATCC database.

subset). The BERT SD system is fed with the 1-best transcript ob-
tained from our in-domain hybrid-based ASR system [37]. Table 4
highlights the main results for the BERT SD model, an additional
line for ‘ASR output’. In the single-speaker case (either ATCO or pi-
lot), the degradation (ASR transcripts instead of ground truth text) in
SD from the BERT SD was no more than 1% absolute JER and DER
(worse, Pilot subset 2.4 → 3.7% DER reduction in SOL-Cnt set). In
the MIXED case, the degradation varied 0.1% JER and 0.6% DER
absolute in SOL-Cnt set, and 3.5% JER and 1.1% DER absolute in
UWB-ATCC set. This behavior is mainly due to the noisy labels pro-
duced by the ASR system (see [38]), i.e., 13% and 14% WER on
SOL-Cnt and UWB-ATCC test sets.

Breaking the paradigm, acoustic or text-based speaker diariza-
tion? On challenging tasks such as ATC, where the rate of speech
is high and contains mainly close-talk recordings, the standard
acoustic-based SD systems are prone to fail and merge two or more
segments together. An example is SOL-Cnt database (see Table 2)
where ∼38% of the test set contains more than one speaker or/and

segment per utterance (i.e., ‘Mixed’). We compare acoustic-based
and BERT SD on private (SOL-Cnt) and public (UWB-ATCC) test
sets. Similar to SOL-Cnt, UWB-ATCC set contains more than one
speaker per utterance. We list the results in Table 4. In order to
contrast both approaches, we compute the JER on the extracted seg-
ments, not on the text-level tokens (as done before). Both systems
use the same SAD for segmentation. The acoustic-based SD, uses
the Hungarian algorithm [49] for assigning the system clusters to
the reference speakers. As a result, it evaluates SCD and clustering
without identifying the speaker roles. For estimating the DER, we
align the text with audio data and prepare the labeled segments from
it. Using this alignment, the output of the BERT SD system is com-
parable to the acoustic-based diarization system. For computing the
scores in all systems, the collar of 150 msec was considered. We
found out that in noisy conditions, acoustic-based SD mistakenly
oversplits the segments with one speaker (either ATCO or pilot).
However, the BERT SD seems to be very robust on these segments
(3.0/3.7% → 5.8/7.8% DER for ATCO/pilot of SOL-Cnt test set).
Even in the mixed scenario of this set, the BERT SD system (9.5%
DER) extended with data augmentation outperformed the acoustic-
based model (10.3% DER) by 7.7%, relatively. On a cleaner set
with shorter segments, VBx system shows the best performance
on the segments with one speaker. However, in the mixed seg-
ments, the BERT SD system outperformed the VBx by a marginal
improvement.

5. CONCLUSION

In this work, we demonstrated that acoustic-based tasks such as
speaker diarization can be enhanced or even replaced by natural lan-
guage processing techniques. Even including challenging tasks such
as SD for ATC communications. Our results, obtained on examples
where SAD failed, validated this hypothesis, as presented in Table 3
and Table 4. Additionally, we developed a simple and flexible data
augmentation pipeline for ATC text data. To the authors’ knowledge,
this is the first time that a BERT-based SD could fully replace an
acoustic-based SD in the field of ATC. We evaluated our approach
on public and private datasets in the ATC domain. Our BERT SD
model reached up to 10% and 20% token-based JER in public and
private ATC databases. We compared our model with the well-
known acoustic-based SD system (VBx). On the noisy sets, VBx
oversplits the segments with one speaker, however, the BERT SD
system shows robust performance on these segments. In addition,
BERT SD model outperforms VBx by a large margin in segments
with more than one speaker (MIXED). Finally, we also performed
an ablation of the amount of data samples versus performance.
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Šarūnas Murauskas, “Robust Command Recognition for
Lithuanian Air Traffic Control Tower Utterances,” in Inter-
speech, 2021, pp. 3291–3295.

[34] Juan Zuluaga-Gomez, Amrutha Prasad, Iuliia Nigmatulina,
Saeed Sarfjoo, Petr Motlicek, Matthias Kleinert, Hartmut
Helmke, Oliver Ohneiser, and Qingran Zhan, “How does pre-
trained wav2vec2.0 perform on domain shifted asr? an exten-
sive benchmark on air traffic control communications,” IEEE
Spoken Language Technology Workshop (SLT), Doha, Qatar,
2023.

[35] John Godfrey, “The Air Traffic Control Corpus (ATC0) -
LDC94S14A,” 1994.

[36] Luboš Šmídl, Jan Švec, Daniel Tihelka, Jindřich Matoušek, Jan
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detection: Matching air surveillance data with air traffic spo-
ken communications,” in Multidisciplinary Digital Publishing
Institute Proceedings, 2020, vol. 59.

[39] Seyyed Saeed Sarfjoo, Srikanth Madikeri, and Petr Motlicek,
“Speech activity detection based on multilingual speech recog-
nition system,” in Interspeech, 2021, p. 4369–4373.

[40] Thomas Wolf et al., “Transformers: State-of-the-art natural
language processing,” in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations. 2020, pp. 38–45, Association for Com-
putational Linguistics.

[41] Quentin Lhoest et al., “Datasets: A community library for nat-
ural language processing,” in Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing:
System Demonstrations, 2021, pp. 175–184.

[42] Ilya Loshchilov and Frank Hutter, “Decoupled Weight Decay
Regularization,” in International Conference on Learning Rep-
resentations, 2019.

[43] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov, “Dropout: a simple
way to prevent neural networks from overfitting,” The journal
of machine learning research, vol. 15, no. 1, pp. 1929–1958,
2014.

[44] Dan Hendrycks and Kevin Gimpel, “Gaussian error linear units
(GELUs),” arXiv preprint arXiv:1606.08415, 2016.

[45] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr
Motlicek, Yanmin Qian, Petr Schwarz, et al., “The kaldi speech
recognition toolkit,” in IEEE workshop on automatic speech
recognition and understanding. IEEE Signal Processing Soci-
ety, 2011, number CONF.

[46] Juan Zuluaga-Gomez, Petr Motlicek, Qingran Zhan, Karel
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