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4Université de Lausanne (UNIL), Switzerland

5Norwegian University of Science and Technology (NTNU), Norway

Abstract

Homomorphic Encryption (HE) has become a well-
known tool for privacy-preserving recognition in biometric
systems. Despite some important advantages of HE (such as
preservation of recognition accuracy), there are two main
drawbacks in the application of HE to biometric recogni-
tion systems: first, the security of the system solely depends
on the secrecy of the private (decryption) key; second, the
computational costs of the operations on the ciphertexts
are expensive. To address these challenges, in this paper
we propose a hybrid scheme for the protection of biomet-
ric templates, which combines cancelable biometrics (CB)
methods and HE. Applying CB prior to HE enhances both
the security and privacy of the overall system, since the
protected templates remain irreversible even if the secret
keys are leaked (commonly referred to as the full disclosure
scenario). In addition, we can reduce the dimensionality
of templates using CB before applying HE, which speeds
up the computation over the ciphertexts. We use BioHash-
ing, Multi-Layer Perceptron (MLP) hashing, and Index-of-
Maximum (IoM) hashing as different CB methods, and for
each of these schemes, we propose a method for comput-
ing scores between hybrid-protected templates in the en-
crypted domain. We evaluate our proposed hybrid scheme
using different state-of-the-art face recognition models (Ar-
cFace, ElasticFace, and FaceNet) on the MOBIO and LFW
datasets. The source code of our experiments is publicly
available, so our work can be fully reproduced.

1. Introduction

Biometric recognition systems generally establish the
identities of data subjects (i.e., users) by employing the fea-
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Figure 1: General scheme of the proposed hybrid protection
method

tures extracted from biometric samples (referred to as bio-
metric templates). These features convey privacy-sensitive
information about the identities of users enrolled in the bio-
metric recognition system. Hence, if an adversary gains
access to the unprotected biometric templates stored in the
database of a biometric recognition system, they could ob-
tain critical information about the enrolled individuals. For
example, [26, 38] showed that an adversary can invert deep
facial templates to reconstruct approximations of the under-
lying face images. Similarly, it has been shown that other
biometric modalities can also be reconstructed from stored
templates, e.g., vascular images from the vascular binary
templates [23]. Recent data protection frameworks, such as
the EU General Data Protection Regulation (GDPR) [32],
also consider biometric data as sensitive information and
impose legal obligations to protect this data.

To protect biometric data, several biometric template
protection (BTP) schemes have been proposed in the liter-
ature [34, 33]. In general for a BTP scheme, the ISO/IEC
24745 standard [17] establishes four main requirements:

• Renewability: We should be able to generate a new
protected template for a subject whose template is
compromised.
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Figure 2: Block diagram of the proposed hybrid protection method

• Unlinkability: There should be no leakage of informa-
tion between different protected templates of the same
(unprotected) biometric template.

• Irreversibility: It should be computationally infeasible
to reconstruct the original biometric templates or even-
tually the biometric data from the protected templates.

• Recognition Performance: The protected templates
should be discriminative enough to be used for accu-
rate recognition.

BTP methods are commonly categorized into cancelable
biometrics (CB) and biometric cryptosystems. In cancelable
biometrics protection methods (such as BioHashing [19],
Multi-Layer Perceptron (MLP) Hashing [39], Index-of-
Maximum (IoM) Hashing [20], etc.) a transformation func-
tion (which is dependent on a key) is often utilized to gener-
ate protected templates, and then the recognition is carried
out by comparing the transformed templates [28, 33]. How-
ever, in biometric cryptosystems (such as fuzzy vault [21],
fuzzy commitment [22], etc.), a key is either generated from
a biometric template or bound with a biometric template.
Then, recognition is performed based on the correct gener-
ation or retrieval of the key [42, 31].

As an alternative to cancelable biometrics and biomet-
ric cryptosystems, we could use Homomorphic Encryption
(HE), which allows computations to be carried out on the ci-
phertexts and generates encrypted results. Then, the results
(which are in the encrypted domain) can be decrypted to
plaintexts. The decrypted results will exactly correspond to
the results of the operations performed in the plaintext do-
main (i.e., on the original features). Based on the allowed
types and numbers of operations on the ciphertexts, the HE-
based systems can also be categorized into three classes:

• Partially Homomorphic Encryption (PHE) systems
that support only one type of arithmetic operation (i.e.,

either addition or multiplication) in the encrypted do-
main with no limit on the number of operations (e.g.,
[30, 11]).

• Somewhat Homomorphic Encryption (SWHE) systems
that support both addition and multiplication but with
a limited number of operations (e.g., [4, 43]).

• Fully Homomorphic Encryption (FHE) systems that
support additions and multiplications in the encrypted
domain with no limit on the number of operations (e.g.,
[6, 14, 13]).

Several works in the literature have used FHE for tem-
plate protection in biometric recognition systems. In [3], a
secure face verification system based on HE was proposed.
The application of HE for face identification and face veri-
fication were also investigated in [8] and [25], respectively.
In [24], HE was used for iris verification and identification.
In [15], a multimodal biometric verification system using
HE was proposed, and different fusion strategies were stud-
ied. There are also some works in the literature that focus
on reducing computation and enhancing the efficiency of
applying HE in biometric recognition systems. For exam-
ple, [3] and [12] performed dimensionality reduction on the
biometric features prior to HE. In [29] and [9], indexing
and searching in the system’s database was enhanced (for
the identification application).

Despite several important advantages of HE (such as
preservation of biometric recognition accuracy, as well as
provable security guarantees), there are two main draw-
backs in the application of HE as a BTP scheme. First, if
the private (decryption) key is leaked, then the templates
can be easily decrypted and inverted, which means that the
security of the system solely depends on the secrecy of
the keys. Second, the computational complexity of arith-
metic operations on the ciphertexts is significant. To ad-
dress these shortcomings, in this paper we propose a hybrid



Table 1: Protection of cancelable biometrics (CB), homo-
morphic encryption (HE), and hybrid (CB+HE) protection
against three different threat models in the ISO/IEC 30136
standard.

Protection method Naive/ Standard Full disclosure

Cancelable Biometrics ✓ (✓)
Homomorphic Encryption ✓∗ ✗
Hybrid (CB+HE) ✓∗ (✓)

∗provable secure

BTP scheme using CB methods and FHE to protect biomet-
ric templates (illustrated in Fig. 1). The proposed hybrid
scheme tackles the security challenge in HE-based systems
when the private key is disclosed. In such cases, the CB
provides more security for the system and helps to ensure
that the protected templates remain irreversibile even if an
attacker manages to successfully decrypt the HE-protected
templates. Table 1 compares the protection of cancelable
biometrics (CB), homomorphic encryption (HE), and hy-
brid (CB+HE) protection against three different threat mod-
els introduced in the ISO/IEC 30136 standard [18]:

• Naive threat model is the case where the adversary
has black box knowledge about the protection method,
with no further information about the underlying algo-
rithm and any associated secrets. We can also assume
that the adversary has access to a small set of protected
templates (not a large biometric database).

• Standard threat model is the case where the adver-
sary has full knowledge of the protection algorithm,
but does not know the secrets and, therefore, cannot
execute submodules that require the secrets.

• Full disclosure threat model refers to the case where
the adversary knows everything about the system, in-
cluding all the submodules and secrets.

In addition to improving the security of the protected
biometric system, our experiments show that CB methods
can additionally reduce the dimensionality of templates be-
fore applying HE, thereby decreasing the complexity of op-
erations performed on the ciphertexts. The results in [37]
also showed that we can reduce dimensionality of the out-
put of BioHashing and still achieve the recognition perfor-
mance of the baseline system (which uses unprotected tem-
plates). In the experiment presented in this paper, we use the
following CB methods to generate protected templates prior
to the application of HE: BioHashing [19], Multi-Layer
Perceptron (MLP) hashing [39], and Index-of-Maximum
(IoM) hashing [20]. For each of these CB schemes, we
propose a method for computing scores between probe and
reference templates in the encrypted domain. We evaluate

our proposed hybrid scheme using different state-of-the-art
(SOTA) face recognition models (i.e., ArcFace [7], Elastic-
Face [5], and FaceNet [35]) on the Labeled Faced in the
Wild (LFW) [16] and MOBIO [27] datasets.

To elucidate the contributions of our paper, we summa-
rize them hereunder:

• We propose a generic hybrid BTP scheme using CB
methods and HE. The proposed hybrid scheme pro-
vides more security than applying HE on its own to
biometric templates. In particular, in the full disclo-
sure threat model [18] (where algorithms and secretes
are disclosed to an adversary), the protected templates
remain irreversible.

• In the proposed hybrid scheme, we can reduce the di-
mensionality of the biometric templates using a CB
method, prior to applying HE while preserving recog-
nition performance. This dimensianlity reduction can
decrease the computations on the ciphertexts when ap-
plying HE. To the best of our knowledge, dimensional-
ity reduction prior to HE using cancelable BTP is orig-
inal and was not published before.

• We show that the scoring functions used in the com-
parison of templates protected via CB schemes (such
as BioHashing, MLP-Hashing, and IoM Hashing) can
be adapted to perform equivalent computations in the
HE domain. Therefore, the hybrid method achieves the
same recognition performance as the CB scheme.

The remainder of this paper is structured as follows.
First, we describe our hybrid biometric template protection
method in section 2. Next, in section 3, we present the ex-
periments and discuss our results. Finally, the paper is con-
cluded in section 4.

2. Proposed template protection method
In general, the input to the proposed template protection

method can be the biometric templates extracted from dif-
ferent biometric modalities (e.g., face, speech, fingerprint,
iris, finger vein, etc.) and with different data formats (e.g.,
binary, integer, float, etc.). In section 2.1, we describe
the general formulation of our proposed hybrid protection
method. Next, in section 2.2, we consider the combina-
tion of different CB methods (including BioHashing, MLP-
Hashing, and IoM Hashing) with an HE algorithm, and we
describe our hybrid template protection scheme.

2.1. General formulation

Let tiu denote the unprotected template extracted from
the biometric data of the subject i. We can generate the CB-
protected template tic using the CB method P(., .) applied
on the unprotected template tiu along with the seed ci:



tic = P(tiu, ci) (1)

To encrypt the CB-protected template tic using HE, we
may need to perform a pre-processing step prior to encod-
ing. Therefore, we can define a mapping function MP(.) to
change the representation of the CB-protected template tic
and generate the mapped CB-protected template tim:

tim = MP(t
i
c) (2)

Next, we can generate the hybrid-protected template tih
(i.e., the ciphertext) by applying HE-based encryption func-
tion EncHE(., .) on the mapped CB-protected template tim,
using the public key kpublic:

tih = EncHE(t
i
m, kpublic) (3)

In the enrolment stage, the hybrid-protected template tih
is then stored in the system database as the reference tem-
plate. In the recognition stage, the hybrid-protected tem-
plate of the probe should be compared to the reference
templates in the homomorphically encrypted domain (i.e.,
the comparison should be between the corresponding ci-
phertexts). To calculate the comparison score between the
hybrid-protected probe template tprobeh and each hybrid-
protected reference template trefh , we should employ an ap-
propriate function CompP

HE(., .), which corresponds to the
utilized CB method P , in the encrypted domain. Hence, we
need to compute the score between the reference and probe
ciphertexts as follows:

sHE = CompP
HE(t

probe
h , trefh ) (4)

Finally, we can decrypt the encrypted score sHE to the
plaintext using the private key kprivate as below:

s = DecHE(sHE, kprivate), (5)

where DecHE(., .) denotes the decryption function of HE.
Fig.2 illustrates the block diagram of the proposed hybrid
BTP scheme. In the subsequent experiments, we will evalu-
ate the proposed protection method on face recognition sys-
tems operating in verification mode only.

2.2. Combinations of different CB methods with HE

In the proposed hybrid protection scheme, we can gen-
erally use different CB methods and different HE algo-
rithms. In this paper, we employ three different CB meth-
ods, including BioHashing [19], Multi-Layer Perceptron
(MLP) Hashing [39], and Index-of-Maximum (IoM) Hash-
ing [20]. For HE, we use the Brakerski/Fan-Vercauteren
(BFV) scheme [13], which supports homomorphic opera-
tions on integer templates. Since the aforementioned CB
methods generate binary and integer values, we do not need

to perform quantization on the CB-protected templates (un-
like when applying HE on unprotected templates that may
contain floating point values). However, we might perform
a mapping (i.e., MP(.)) to change the representation of the
CB-protected templates prior to applying HE so that the cor-
responding comparison function CompP

HE(., .) can be prop-
erly applied on the hybrid-protected templates in the en-
crypted domain. Hereunder, we describe the application of
BioHashing, MLP-Hashing, and IoM Hashing in our pro-
posed method:

BioHashing and MLP-Hashing BioHashing and MLP-
Hashing CB methods generate binary-valued templates
and use Hamming distance for calculating the comparison
scores during recognition [39]. Hence, we propose to en-
crypt the binary-valued templates generated by these CB
methods directly during the HE protection stage, with no
further mapping (i.e., tim = MP(t

i
c) = tic). Then, we can

apply equivalent homomorphic operations to calculate the
sum squared error for CompP

HE(., .) on the hybrid-protected
templates.

IoM Hashing The IoM Hashing CB scheme generates
integer-valued templates and uses the average number of
collisions for calculating the comparison scores during
recognition [39]. Therefore, we propose to represent each
integer element of IoM-hashed templates using one-hot en-
coding prior to encrypting them via HE (i.e., by one-hot
encoding each integer element of IoM-Hash is mapped to
a vector of zeros and a single one, where the index of the
single one corresponds to the value of the IoM-Hash ele-
ment). Therefore, MP(.) will be a one-hot encoding (i.e.,
MP(t

i
c) = OneHot(tic)). Then, for comparison function

CompPHE(., .) we can apply a series of homomorphic opera-
tions, which is equivalent to calculating the sum squared er-
ror between the probe and reference hybrid-protected tem-
plates.

3. Experiments

In this section, we describe our experiments and evalu-
ate the proposed hybrid BTP scheme. In section 3.1, we
first detail our experimental setup. In section 3.2, we an-
alyze the recognition performance and execution time of
the proposed method in different scenarios and with dif-
ferent configurations. Finally, we discuss our experimen-
tal results in section 3.3. We should note that in this pa-
per we do not evaluate the renewability, unlinkablity, and
irreversibility characteristics of our hybrid method, since
these requirements have already been shown to be satisfied
by the adopted CB methods and HE in the literature (e.g.,
[39, 20, 8]).



3.1. Experimental Setup

Baseline methods In our experiments, we use three
SOTA face recognition models1, including ArcFace [7],
ElasticFace [5], and FaceNet [35]. As our baseline meth-
ods, we consider applying HE on the extracted embeddings
(without first applying CB). Therefore, for the BFV HE al-
gorithm, we need to quantize the embeddings prior to HE in
order to obtain integer values. In our experiments, we use
the equal-probable quantile quantization scheme [10] with
4 quantization levels.

Evaluation Datasets We use the MOBIO [27] and La-
beled Faced in the Wild (LFW) [16] databases to evaluate
the recognition performance of the proposed hybrid BTP
method on SOTA face recognition models. The MOBIO
dataset is a bimodal dataset consisting of face and audio
data acquired using mobile devices from 150 people. In our
experiments, we use the development subset of the mobio-
male protocol2. The LFW database contains 13,233 face
images of 5,749 subjects, where 1,680 subjects have two
or more face images. We use the View 2 protocol3 in our
experiments.

Evaluation Scenarios To evaluate the recognition perfor-
mance of our hybrid BTP method, we consider two scenar-
ios in our experiments: the normal scenario and the full dis-
closure scenario. The normal scenario is the expected sce-
nario in practice, where users’ keys (for the CB scheme) and
HE keys are secret. On the other hand, the full disclosure
scenario (corresponds to the full disclosure threat model in
the ISO/IEC 30136 standard [18]) is the case where we as-
sume that everything about the system (including the pro-
tection algorithm, as well as all submodules and secrets) is
disclosed. In particular, the HE keys are leaked, and we also
assume that the adversary knows the users’ keys for the CB
schemes.

Implementation details and source code To implement
the biometric recognition pipeline in our experiments, we
use the Bob4 toolbox [2, 1]. In addition, we use the open-
source implementations (in Bob) of the BioHashing and
MLP-Hash CB methods [41, 40, 39]. For the IoM Hash-
ing CB method, we adopt the open-source implementation
of the Gaussian Random Projection-based Hashing (IoM-
GRP Hashing) algorithm [20] in Bob [39] with 3 Gaussian

1The implementation of each face recognition model is available at
https://gitlab.idiap.ch/bob/bob.bio.face

2The implementation of the mobio-male protocol for the MOBIO
dataset is available at https://gitlab.idiap.ch/bob/bob.db.
mobio

3The implementation of the View 2 protocol for the LFW dataset is
available at https://gitlab.idiap.ch/bob/bob.db.lfw

4Available at https://www.idiap.ch/software/bob/

random matrices. Hence, each element in IoM-protected
templates belongs to {0, 1, 2}, and therefore we can use
one-hot encoding of 3 bits length as our mapping func-
tion for implementing the proposed hybrid template protec-
tion method. In the following experiments, if the length of
the CB-protected templates tic is not specified, the length
is equal to the length of the unprotected template tiu. To
implement the BFV algorithm, we use the SEAL-Python5

wrapper on Python 3.8, which uses the C++ SEAL open-
source library [36]. The execution times reported in this
paper are measured on a system equipped with an Intel(R)
Core(TM) i7-7700K CPU @ 4.20GHz. The source code
from our experiments is publicly available to help repro-
duce our results6.

3.2. Analysis

Fig. 3 compares the Receiver Operating Characteristic
(ROC) curves of unprotected, HE-protected, CB-protected,
and hybrid-protected (using our proposed BTP scheme)
templates of ArcFace on the LFW dataset for different CB
methods (i.e., BioHashing, MLP-Hashing, and IoM Hash-
ing) in the normal and full disclosure scenarios. As this fig-
ure shows, the proposed hybrid method achieves exactly the
same performance as the CB-protected templates in the nor-
mal and full disclosure scenarios for all CB methods. In ad-
dition, the hybrid-protected templates have a marginal im-
provement to the unprotected templates in the normal sce-
nario. Comparing with HE-protected templates, in the nor-
mal scenario the hybrid-protected templates have slightly
better performance for high values of the False Match Rate
(FMR) and slightly worse performance for low values of
the FMR. However, in each case the performance attainable
using hybrid-protected templates is fairly close to that at-
tainable using HE-protected templates. In the full disclo-
sure scenario, while the recognition performance of HE-
protected templates remains similar to the normal scenario,
the performance of CB-protected templates degrades.

Table 2 reports the average execution time (over 100
executions) and recognition performance of HE and also
the proposed hybrid method in the normal and full disclo-
sure scenarios on the MOBIO and LFW datasets, when the
adopted CB method is BioHashing and the length of the
CB-protected templates (i.e., BioHashes) varies. In this ta-
ble, ℓtm indicates the length of the mapped CB-protected
template and α denotes the ratio of the length of the CB-
protected template ℓtc to the length of the unprotected tem-
plate ℓtu (i.e., α = ℓtc/ℓtu ). Tables 3 and 4 also report
similar evaluation when applying MLP-Hashing and IoM
Hashing, respectively, in our proposed hybrid method. As
these tables show, in general, the hybrid-protected templates

5Available at https://github.com/Huelse/SEAL-Python
6Source code: https://gitlab.idiap.ch/bob/bob.

paper.ijcb2022_hybrid_btp
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Figure 3: ROC curves of the unprotected, HE-protected, CB-protected, and hybrid-protected versions of features extracted
by the ArcFace model on the LFW dataset in the (a) normal (first row) and full disclosure (second row) scenarios using (a)
BioHasing, (b) MLP-Hashing, and (c) IoM Hashing.

Table 2: The average execution time (milliseconds) and recognition performance (in terms of TMR at FMR = 0.001) of HE
and the proposed hybrid method, when applying BioHashing in the normal and full disclosure scenarios, on the MOBIO and
LFW datasets using different face recognition models. In each model, the first row indicates HE protection (no CB) and the
other rows show our hybrid template protection.

FR Model α ℓtm
Average Execution Time (ms) normal scenario full disclosure scenario

CB Encoding Comparison Decoding Total MOBIO LFW MOBIO LFW

ArcFace

- - - 1.24± 0.55 329.04± 3.96 0.38± 0.00 330.66± 4.50 100.00% 95.20% 100.00% 95.20%

(ℓtu=512)

1.00 512 15.08± 2.42 1.24± 0.55 329.04± 3.96 0.38± 0.00 345.74± 5.11 100.00% 97.00% 100.00% 95.93%

0.75 384 9.47± 1.26 1.28± 0.04 263.67± 1.71 0.42± 0.01 274.82± 2.13 100.00% 96.20% 100.00% 95.13%

0.50 256 6.24± 1.92 1.19± 0.04 166.21± 4.40 0.38± 0.00 174.01± 4.83 100.00% 94.83% 100.00% 93.53%

0.25 128 1.77± 0.76 1.19± 0.01 84.43± 0.79 0.38± 0.00 87.75± 1.10 100.00% 84.83% 99.68% 84.67%

ElasticFace

- - - 1.24± 0.55 329.04± 3.96 0.38± 0.00 330.66± 4.50 99.96% 87.97% 99.96% 87.97%

(ℓtu=512)

1.00 512 15.08± 2.42 1.24± 0.55 329.04± 3.96 0.38± 0.00 345.74± 5.11 100.00% 96.47% 100.00% 93.43%

0.75 384 9.47± 1.26 1.28± 0.04 263.67± 1.71 0.42± 0.01 274.82± 2.13 100.00% 95.77% 100.00% 95.13%

0.50 256 6.24± 1.92 1.19± 0.04 166.21± 4.40 0.38± 0.00 174.01± 4.83 100.00% 94.63% 99.88% 88.43%

0.25 128 1.77± 0.76 1.19± 0.01 84.43± 0.79 0.38± 0.00 87.75± 1.10 99.68% 86.93% 86.27% 80.67%

FaceNet

- - - 1.19± 0.01 84.27± 0.08 0.38± 0.00 85.83± 0.08 98.41% 88.97% 98.41% 88.97%

(ℓtu=128)

1.00 128 1.2± 0.69 1.19± 0.01 84.27± 0.08 0.38± 0.00 87.03± 0.70 99.92% 95.33% 92.86% 78.33%

0.75 96 0.49± 0.65 1.19± 0.01 64.22± 2.91 0.38± 0.00 66.28± 2.98 99.64% 88.73% 73.93% 75.60%

0.50 64 0.36± 0.17 1.19± 0.06 43.71± 1.11 0.38± 0.02 45.64± 1.13 98.69% 73.87% 83.69% 52.47%

0.25 32 0.12± 0.01 1.19± 0.01 23.14± 0.05 0.38± 0.00 24.82± 0.05 85.83% 48.3% 32.26% 23.17%

can achieve superior recognition performance compared to
the HE-protected templates in the normal scenario. In the
full disclosure scenario, hybrid-protected templates (with

α = 1) have competitive performance with HE-protected
templates. Notwithstanding of the good performance of
HE-protected templates in the full disclosure scenario, we



Table 3: The average execution time (milliseconds) and recognition performance (in terms of TMR at FMR = 0.001) of HE
and the proposed hybrid method, when applying MLP-Hashing in the normal and full disclosure scenarios, on the MOBIO
and LFW datasets using different face recognition models. In each model, the first row indicates HE protection (no CB) and
the other rows show our hybrid template protection.

FR Model α ℓtm
Average Execution Time (ms) normal scenario full disclosure scenario

CB Encoding Comparison Decoding Total MOBIO LFW MOBIO LFW

ArcFace

- - - 1.24± 0.55 329.04± 3.96 0.38± 0.00 330.66± 4.50 100.00% 95.20% 100.00% 95.20%

(ℓtu=512)

1.00 512 56.07± 10.83 1.19± 0.04 328.30± 0.32 0.39± 0.00 385.93± 10.83 100.00% 96.73% 99.84% 88.10%

0.75 384 48.39± 10.25 1.19± 0.04 247.20± 1.87 0.39± 0.01 297.16± 10.42 100.00% 96.43% 99.76% 88.33%

0.50 256 39.86± 5.09 1.24± 0.02 172.30± 0.76 0.41± 0.01 213.80± 5.15 100.00% 93.27% 98.61% 80.87%

0.25 128 37.59± 6.23 1.23± 0.03 87.03± 1.56 0.40± 0.01 126.24± 6.43 98.77% 86.57% 85.40% 53.37%

ElasticFace

- - - 1.24± 0.55 329.04± 3.96 0.38± 0.00 330.66± 4.50 99.96% 87.97% 99.96% 87.97%

(ℓtu=512)

1.00 512 56.07± 10.83 1.19± 0.04 328.30± 0.32 0.39± 0.00 385.93± 10.83 100.00% 94.50% 99.68% 87.97%

0.75 384 48.39± 10.25 1.19± 0.04 247.20± 1.87 0.39± 0.01 297.16± 10.42 100.00% 95.07% 99.60% 82.43%

0.50 256 39.86± 5.09 1.24± 0.02 172.30± 0.76 0.41± 0.01 213.80± 5.15 100.00% 92.00% 97.90% 69.17%

0.25 128 37.59± 6.23 1.23± 0.03 87.03± 1.56 0.40± 0.01 126.24± 6.43 99.01% 78.17% 74.56% 44.37%

FaceNet

- - - 1.19± 0.01 84.27± 0.08 0.38± 0.00 85.83± 0.08 98.41% 88.97% 98.41% 88.97%

(ℓtu=128)

1.00 128 1.62± 0.24 1.17± 0.01 84.11± 0.08 0.37± 0.01 87.27± 0.25 99.33% 86.53% 47.34% 50.53%

0.75 96 1.51± 0.27 1.17± 0.01 63.76± 0.06 0.36± 0.00 66.8± 0.28 98.57% 79.90% 47.54% 35.07%

0.50 64 1.43± 0.29 1.17± 0.01 43.44± 0.04 0.36± 0.00 46.40± 0.29 92.34% 55.73% 49.33% 25.50%

0.25 32 1.31± 0.29 1.17± 0.01 23.06± 0.03 0.36± 0.00 25.90± 0.29 58.69% 31.43% 20.99% 9.90%

Table 4: The average execution time (milliseconds) and recognition performance (in terms of TMR at FMR = 0.001) of HE
and the proposed hybrid method, when applying IoM Hashing in the normal and full disclosure scenarios, on the MOBIO
and LFW datasets using different face recognition models. In each model, the first row indicates HE protection (no CB) and
the other rows show our hybrid template protection.

FR Model α ℓtm
Average Execution Time (ms) normal scenario full disclosure scenario

CB Encoding Comparison Decoding Totall MOBIO LFW MOBIO LFW

ArcFace

- - - 1.24± 0.55 329.04± 3.96 0.38± 0.00 330.66± 4.50 100.00% 95.20% 100.00% 95.20%

(ℓtu=512)

1.00 1536 26.89± 2.54 1.19± 0.03 981.46± 3.23 0.39± 0.00 1009.92± 4.12 100.00% 97.67% 99.76% 95.30%

0.75 1152 23.06± 8.31 1.19± 0.01 736.24± 0.82 0.38± 0.00 760.86± 8.36 100.00% 97.17% 99.76% 94.17%

0.50 768 14.92± 2.07 1.19± 0.01 491.80± 0.41 0.38± 0.00 508.28± 2.11 100.00% 95.73% 99.76% 94.17%

0.25 384 6.67± 0.50 1.19± 0.01 248.39± 9.48 0.38± 0.00 256.62± 9.49 100.00% 91.33% 98.93% 90.37%

ElasticFace

- - - 1.24± 0.55 329.04± 3.96 0.38± 0.00 330.66± 4.50 99.96% 87.97% 99.96% 87.97%

(ℓtu=512)

1.00 1536 26.89± 2.54 1.19± 0.03 981.46± 3.23 0.39± 0.00 1009.92± 4.12 100.00% 96.83% 98.10% 92.63%

0.75 1152 23.06± 8.31 1.19± 0.01 736.24± 0.82 0.38± 0.00 760.86± 8.36 100.00% 95.43% 98.10% 92.30%

0.50 768 14.92± 2.07 1.19± 0.01 491.80± 0.41 0.38± 0.00 508.28± 2.11 100.00% 94.07% 98.10% 91.23%

0.25 384 6.67± 0.50 1.19± 0.01 248.39± 9.48 0.38± 0.00 256.62± 9.49 100.00% 91.53% 98.21% 81.90%

FaceNet

- - - 1.19± 0.01 84.27± 0.08 0.38± 0.00 85.83± 0.08 98.41% 88.97% 98.41% 88.97%

(ℓtu=128)

1.00 384 1.51± 0.02 1.19± 0.01 247.58± 1.71 0.39± 0.00 250.65± 1.71 99.96% 97.20% 95.44% 77.83%

0.75 288 1.13± 0.01 1.19± 0.01 186.34± 0.63 0.38± 0.00 189.03± 0.63 99.84% 95.37% 93.61% 74.10%

0.50 192 0.75± 0.01 1.19± 0.01 125.09± 0.12 0.38± 0.00 127.40± 0.12 99.33% 88.67% 87.38% 60.73%

0.25 96 0.38± 0.00 1.19± 0.01 63.91± 0.10 0.38± 0.00 65.85± 0.10 91.39% 67.97% 56.39% 45.00%

should note that in this scenario the adversary can easily
reconstruct the unprotected templates using the HE private
(decryption) key (i.e, very poor protection). However, for
hybrid-protected templates, the adversary can only recon-
struct the (mapped) CB-protected templates using the HE

private key, but it is still difficult for the adversary to re-
construct the unprotected templates from the CB-protected
templates. We can also see that with α = 1, the hybrid pro-
tection requires a longer execution time than HE. However,
we can adjust the value of α so that the hybrid protection



achieves a shorter execution time with comparable recogni-
tion performance.

3.3. Discussion

Our experiments in section 3.2 show that the proposed
hybrid scheme achieves exactly the same recognition per-
formance as the corresponding CB method. Our exper-
iments also show that in the normal scenario, the pro-
posed hybrid method (with α = 1) achieves superior per-
formance compared to HE. In the full disclosure scenario,
hybrid-protected templates (with α = 1) achieve compara-
ble performance with HE-protected templates for ArcFace
and ElasticFace, but HE-protected templates perform better
than hybrid-protected templates for FaceNet. Having said
that, it is important to keep in mind that HE-protected tem-
plates can be easily inverted to recover the original (unpro-
tected) templates, whereas hybrid-protected templates are
not easily invertible due to the extra layer of protection pro-
vided by the CB method that is applied prior to HE.

Tables 2-4 also show that there is a trade-off between
the execution time and recognition performance when us-
ing the proposed hybrid protection method. This trade-off
can be controlled with α. For α = 1, hybrid-protected
templates require longer execution times than HE-protected
templates. However, with smaller α, CB can in practice re-
duce the dimensionality of features prior to HE. Therefore,
we can achieve a shorter execution time compared to HE. In
particular, for a proper choice of α, for the hybrid-protected
templates we can simultaneously achieve a shorter execu-
tion time and comparable performance to the HE-protected
templates. For example, for ElasticFace and BioHashing,
we could set α = 0.25, whereas for FaceNet at the same
setting hybrid-protected templates have worse performance
than HE-protected templates. Therefore, in this case, it
would be better to set α to a higher value such as α = 0.75.
The suitable lengths of BioHash-protected templates (and
therefore α), which maintain the recognition performance
of unprotected templates, are investigated in [37] for differ-
ent SOTA face recognition models.

4. Conclusion
In this paper, we proposed a generic hybrid BTP scheme

for biometric templates by combining Cancelable Biomet-
rics (CB) and Homomorphic Encryption (HE). We showed
that the comparison methods of CB schemes ( such as Bio-
Hashing, MLP-Hashing, and IoM Hashing) can be adapted
to perform equivalent computations in the HE domain,
and therefore our hybrid scheme was found to achieve
equal recognition performance with the corresponding CB.
Our experiments further showed that the proposed hybrid
method is able to achieve better performance compared to
HE alone in the normal scenario. In the full disclosure
threat model (where algorithms and secretes are disclosed

to an adversary), the hybrid-protected templates were found
to have comparable performance with HE-protected tem-
plates in most cases, when the length of the CB-protected
templates was equal to the length of the unprotected tem-
plates. As the length of the CB-protected templates was de-
creased, the performance of the hybrid-protected templates
was found to also decrease, so for much smaller lengths
the performance of templates protected using HE alone was
sometimes found to be better than that of hybrid-protected
templates. However, the main drawback of HE-protected
templates is that they can be easily inverted by an adver-
sary with access to the secret decryption key, while hybrid-
protected templates remain irreversible in this case. Be-
sides the additional template protection offered by our hy-
brid BTP method, it is also useful for reducing the dimen-
sionality of the biometric templates with CB, prior to ap-
plying HE, which can decrease the amount of computation
on the encrypted templates (ciphertexts). In particular, by
appropriately tuning the length of CB-protected templates,
we could achieve comparable recognition performance with
HE, but with a faster execution time.
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